第1讲简单的数列问题(一)
新高考 核心考点与题型 数列 第1讲 等差数列及其前n项和 - 解析

第1讲 等差数列及其前n 项和[考情分析] 等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).考点一 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例1】在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48.【变式1】设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ). A .-6 B .-4 C .-2 D .2解析 (1)S 8=4a 3⇒8(a 1+a 8)2=4a 3⇒a 3+a 6=a 3,∴a 6=0,∴d =-2,∴a 9=a 7+2d =-2-4=-6.【变式2】已知数列{}{},n n a b 为等差数列,若11337,21a b a b +=+=,则55a b +=_______思路:条件与所求都是“n n a b +”的形式,由{}{},n n a b 为等差数列可得{}n n a b +也为等差数列,所以()33a b +为()()1155,a b a b ++的等差中项,从而可求出55a b +的值解:{}{},n n a b 为等差数列{}n n a b ∴+也为等差数列 ()()()3311552a b a b a b ∴+=+++()()553311235a b a b a b ∴+=+-+= 答案:35【变式3】等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( )A.3B.4C.log 318D.log 324∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列,∵log 3(2x )+log 3(4x +2)=2log 3(3x ), ∵log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去). ∵等差数列的前三项为log 38,log 312,log 318,∵公差d =log 312-log 38=log 332,∵数列的第四项为log 318+log 332=log 327=3.【例2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.【变式1】在等差数列{a n }中.若共有n 项,且前四项之和为21,后四项之和为67,前n 项和S n =286,则n =________.解析 (1)依题意知a 1+a 2+a 3+a 4=21,a n +a n -1+a n -2+a n -3=67.由等差数列的性质知a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=88,∴a 1+a n =22. 又S n =n (a 1+a n )2,即286=n ×222,∴n =26.【变式2】在等差数列{a n }中,前m 项的和为30,前2m 项的和为100,则前3m 项的和为________. 记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.【例3】 已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.解 由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057. 【变式1】在等差数列{}n a 中,12008a =-,其前n 项和为n S ,若121021210S S -=,则2008S 的值等于( ) A. 2007- B. 2008- C. 2007 D. 2008 思路:由121021210S S -=观察到n S n 的特点,所以考虑数列n S n ⎧⎫⎨⎬⎩⎭的性质,由等差数列前n 项和特征2n S An Bn =+可得nS An B n=+,从而可判定n S n ⎧⎫⎨⎬⎩⎭为等差数列,且可得公差1d =,所以()1120091n S S n d n n =+-=-,所以()2009n S n n =-,即20082008S =-,答案:B【变式2】设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6解 由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9a 1+a 929b 1+b 92=a 5b 5=2,故选A.【变式3】等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.考点二 等差数列的判定与证明典例迁移【例1】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义. 【变式1】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.【变式2】 已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n .设b n =a n -2n3n .证明:数列{b n }为等差数列,并求{a n }的通项公式.证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n 3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n3n +1=1, ∴{b n }为等差数列,又b 1=a 1-23=0.∴b n =n -1,∴a n =(n -1)·3n +2n . 考点三 等差数列的前n 项和及其最值【例4】 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16D .S 17解∵a 1=29,S 10=S 20,∵10a 1+10×92d =20a 1+20×192d ,解得d =-2,∵S n =29n +nn -12×(-2)=-n 2+30n =-(n -15)2+225.∵当n =15时,S n 取得最大值. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【变式1】 等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5【变式2】已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn =na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.【变式3】在等差数列{}n a 中,10a >,若其前n 项和为n S ,且148S S =,那么当n S 取最大值时,n 的值为( )A. 8B. 9C. 10D. 11【变式4】在等差数列{}n a 中,10a >,054>+a a ,054<a a ,使前n 项和0n >S 成立的最大正整数n 的值为________3、从n S 的图像出发,由148S S =可得n S 图像中11n =是对称轴,再由10a >与148S S =可判断数列{}n a 的公差0d <,所以n S 为开口向下的抛物线,所以在11n =处n S 取得最大值,答案:D4、思路:0n >S 成立的最大正整数n ,即001<>+n n s s 且此时成立。
第一讲 等差数列(1、2)

第一讲等差数列
在数串中,每两个相邻数的差相等,像这样一串数,我们称它为等差数列。
其中每一个数都叫做这个等差数列的一项,第一个数叫第一项,用a1表示;第二个数叫第二项,用a2表示……第n个数叫第n项,用a n表示.a1,a n又分别叫这个数列的首项和末项,,字母n表示等差数列的项数,等差数列中,从第2项开始,后边一项与前面一项的差始终是相等的,用字母d表示这个差,即d=a2-a1=a3-a2=…=a n-a n-1 。
我们把d 叫做和等差数列的公差。
等差数列的通项公式: a n=a1+(n-1)d; n= (a n-a1)÷d+1.
等差数列的求和公式:a1+a2+a3+…+a n-1+a n=(a1+a n)×n÷2 例:等差数列3,5,7,……的第10项和第100项。
例:已知等差数列3,6,9,12,………问45这个数是这个数列的第几项?
例:计算:1+4+7+.……+298
练习:1. 191+187+183+179+.……+111
2. 23+23×2+23×3+23×4+.……+23×23
3. 求所有两位数的和。
4. 求所有三位数的和。
5. (2002+2000+1998+.……+6+4+2)-(1+3+5+7+.……+1999+2001)。
第一讲1数列基础知识.docx

数列的基础知识数列的定义 按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项). 数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立. 数列的分类等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1. 运用方程的思想求解等比数列的基本量(1)若已知n ,a n ,S n ,先验证q =1是否成立,若q ≠1,可以通过列方程(组)⎩⎪⎨⎪⎧ a n =a 1q n -1,S n =a 1(1-q n )1-q ,求出关键量a 1和q ,问题可迎刃而解. (2)若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组⎩⎪⎨⎪⎧a n =a 1q n -1,a m =a 1q m -1,计算时两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n-m 直接求得q ,可减少运算量.公式法与分组转化法(1)公式法 直接利用等差数列、等比数列的前n 项和公式求和.①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . ②等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. (2)分组转化法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减.倒序相加法与并项求和法(1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的.(2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用错位相减法来求,如等比数列的前n 项和公式就是用此法推导的.。
第1讲 等差数列与等比数列

所以 q=- 1 ,所以 S4=S3+a4= 3 - 1 = 5 .
2
4 88
答案: 5 8
4.(2019·全国Ⅰ卷)记
Sn
为等比数列{an}的前
n
项和.若
a1=
1 3
,
a42
=a6,则
S5=
.
解析:设等比数列{an}的公比为 q,由 a42 =a6 可得 a12 q6=a1q5,解得 a1q=1,
则 S9= 9a1 a9 = 9 4 =18.故选 A.
2
2
(2)(2019·南昌期中)已知 Sn 为等差数列{an}的前 n 项和,若 a2019 >-1 且 Sn 有最小 a2020
方法技巧
解等差数列、等比数列基本运算问题的基本思想是方程思想,即通过等差数列、 等比数列的通项公式及前n项和公式得出基本量(等差数列的首项和公差、等 比数列的首项和公比),然后再通过相关公式求得结果.
热点训练1:(1)(2019·湖南省长望浏宁四县高三3月调研)中国古代词中,有一 道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多 十七,要将第八数来言”.题意是:把996斤绵分给8个儿子做盘缠,按照年龄从 大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的 绵是( ) (A)174斤 (B)184斤 (C)191斤 (D)201斤
(1)证明:由题设得 4(an+1+bn+1)=2(an+bn),则 an+1+bn+1= 1 (an+bn). 2
又因为 a1+b1=1,所以{an+bn}是首项为 1,公比为 1 的等比数列. 2
第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1
=
(2n
+
1)
7 8
n+1
,
an+1 an
=
(2n+1)78n+1 (2n-1)78n
=
14n+7 16n-8
.
当
aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列
高中数学课件-第1讲 数列的概念与简单表示法

第六章 数列第1讲 数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通考试要求项公式).2.了解数列是自变量为正整数的一类特殊函数,理解单调性是数列的一项重要性质,可用来求最值.01聚焦必备知识知识梳理1.数列的有关概念(1)数列的定义一般地,我们把按照__________________排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数数列{a n}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R 的函数,其自变量是__________,对应的函数值是________________,记为a n=f (n).数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.提醒2.数列的表示法解析式法、表格法、____________.3.数列的单调性从第2项起,每一项都_________它的前一项的数列叫做递增数列;从第2项起,每一项都_________它的前一项的数列叫做递减数列.特别地,__________________的数列叫做常数列.4.数列的通项公式和递推公式(1)如果数列{a n}的__________________与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.(2)如果一个数列的相邻两项或多项之间的关系可以用_______________来表示,那么这个式子叫做这个数列的递推公式.提醒(1)并不是所有的数列都有通项公式;(2)同一个数列的通项公式在形式上未必唯一.5.数列的前n项和公式如果数列{a n}的前n项和S n与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n项和公式.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( )夯基诊断√××√(2)已知数列{a n }的前n 项和公式为S n =n 2,则a n =____________.答案:2n -1当n=1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,且a 1=1也满足此式,故a n =2n -1,n ∈N *.(3)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=____________.答案:5n -4由a1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,归纳可知a n =5n -4.02突破核心命题考 点 一由an与S n的关系求通项公式C(2)已知数列{a n}的前n项和为S n,且满足S n=2n+2-3,则a n=_____.已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.反思感悟训练1 (1)已知数列{a n}的前n项和为S n,且2a1+22a2+23a3+…+2n a n=n·2n,则数列{a n}的通项公式为a n=____________.(2)已知S n为数列{a n}的前n项和,a1=1,S n S n+1=-a n+1(n∈N*),则a10=____________.例2 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为a n =____________.考 点 二由数列的递推关系求通项公式考向1累加法例3 已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =_______.2累乘法反思感悟B考 点 三数列的性质考向 1数列的单调性D2数列的周期性答案:13数列的最值A反思感悟训练3 (1)如表,定义函数f (x ):对于数列{a n },a 1=4,a n =f (a n -1),n =2,3,4,…,则a 2023=( )A.1B.2C.5D.4C x12345f (x )54312C 由题意,a1=4,a n=f(a n-1),所以a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)=4,a6=f(a5)=f(4)=1,a7=f(a6)=f(1)=5,…,则数列{a n}是以4为周期的周期数列,所以a2023=a2020+3=a3=5,故选C.突破核心命题限时规范训练聚焦必备知识 4103限时规范训练(四十)ADB4.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为( )CA.760B.800C.840D.924BCD6.(2023·珠海质检)数列{a n }满足a 1=1,a 2=2且a n +2=a n +(-1)n ,n ∈N *,则该数列的前40项之和为( )A.-170B.80C.60D.230C C 由a n +2=a n +(-1)n ,n ∈N *,得a 2k +2=a 2k +1,a 2k +1=a 2k -1-1,所以a 2k +1+a 2k +2=a 2k -1+a 2k =…=a 1+a 2=3,所以数列{a n }的前40项之和为20(a 1+a 2)=60.。
数学四年级下册暑期数学思维训练(110讲)

第1讲简单的数列问题(一)例题1(1)一个等差数列共有13项,每一项都比它的前一项大2,并且首项为33,那么末项是多少?(2)一个等差数列共有13项,每一项都比它的前一项小2,并且首项为33,那么末项是多少?练习1一个等差数列共有10项,每一项都比它的前一项大1,并且首项为21,那么末项是多少?例题2(1)一个等差数列共有10项,每一项都比它的前一项大7,并且末相为125,那么首项是多少?(2)一个等差数列共有10项,每一项都比它的前一项小7,并且末相为125,那么首项是多少?练习2一个等差数列共有12项,每一项都比它的前一项小4,并且末相为56,那么首项是多少?例题3(1)一个等差数列首项为7,第10项为61,那么这个等差数列的公差等于多少?(2)一个等差数列第4项为7,第10项为61,那么这个等差数列的公差等于多少?练习3一个等差数列第5项为25,第16项为91,那么这个等差数列的公差等于多少?例题4(1)一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有多少项?(2)一个等差数列第3项为50,末项为130,公差为8,那么这个等差数列一共有多少项?练习4已知等差数2,9,16,23,30,…那么709是其中第几项?例题5一个等差数列的首项为11,第10项为200,这个等差数列的公差是多少?第19项等于多少?305是第几项?例题6下面的各算式是按规律排列的:1+1,2+3,3+5,1+7,2+9,3+11,1+13,2+15,3+17,…请写出其中所有结果为98的算式。
作业1. 一个等差数列共有10项,每一项都比它的前一项大2,并且末项为75,那么首项是多少?2. 一个等差数列共有10项,每一项都比它的前一项小2,并且末项为75,那么首项是多少?3.一个等差数列首项为13,第9项为29,那么这个等差数列的公差等于多少?第20项等于多少?4. 一个等差数列第5项为47,第15项为87,那么这个等差数列的公差等于多少?63是第几项?5.如图所示,有一堆按规律摆放的砖,从上往下数,第1层有1块砖,第2层有5块砖,第3层有9块砖,……,按照这个规律,第19层有多少块砖?第2讲简单的数列问题(二)例题1计算下面各题:(1)3+6+9+12+15+18+21+24+27+30(2)41+37+33+29+25+21+17+13+9+5+1练习1计算:6+11+16+21+26+31+36+41+46例题2计算下列各题:(1)5+11+17+…+77+83(2)82+77+72+…+12+7练习2计算:100+92+84+…+12例题3计算下面各题:(1)12+18+24+…共10项(2)193+187+181+…共13项练习3计算:(1)10+13+16+…共12项例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完,请问:萱萱一共对了多少天,这本课外书共有多少页?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米。
第1讲求数列通项公式之累加法

第1讲求数列通项公式之累加法
一、概念
累加法指将同一数列中的项逐个累加,从而求出整个数列的和的方法,又称求和法、累和法。
二、运用方法
1、利用公式
设数列{a_n}具有通项公式:a_n=f(n),则数列{a_n}的前n项的和
(简记为S_n)可用下列公式计算:
S_n=a_1+a_2+...+a_n=f(1)+f(2)+...+f(n)
2、利用技巧
(1)数字之和的技巧
设有前n项和为S_n,而S_n+1=S_n+a_n+1,记a_n+1为B,则:
S_n+1=S_n+B
记S_n+1为C,则:
C=S_n+B
即:C=2S_n+B=2(S_n+B/2)
综上
S_n+1=2S_n+B=2(S_n+a_n+1/2)
(2)乘积之和的技巧
设数列{a_n}的前n项和为S_n,而S_n+1=S_n×a_n+1,记a_n+1为B,则:
S_n+1=S_n×B
记S_n+1为C,则:
C=S_n×B
即:C=B(S_n×B-1)
综上
S_n+1=B(S_n×B-1)=B(S_n×a_n+1-1)
三、总结
累加法是一种简便的数列通项公式求解方法,可以根据技巧将S_n+1表示为S_n的函数,从而使求解数列通项公式更加简单有效。