考点跟踪训练-数学-第15课
解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
黑龙江省虎林市2023-2024学年四年级数学第二学期期末质量跟踪监视模拟试题含解析

黑龙江省虎林市2023-2024学年四年级数学第二学期期末质量跟踪监视模拟试题一、填空题。
(每题2分,共20分)1.分数(____)小数(____)分数(____)小数(____)分数(____)小数(____)2.有两根6厘米长的小棒,如再添一根a厘米长的小棒围成一个三角形,a一定小于(_____)3.等腰三角形中一个角为70°,则另两个角分别为_____.4.一个三角形的三条边长度都是整数米,两条边分别是3米和4米,第三条边的长度可能有(________)种情况。
5.□26÷45,要使商是两位数,□里最小填__________,要想使商为一位数,□里最大填__________。
6.小华2月份每天晨跑a米,从3月1日开始每天比2月份的晨跑多跑200米,他3月份一共能跑(________)米。
7.三角形ABC中的一个内角是30°,剪去这个角(如下图),剩下的图形内角和是(______)°。
8.在○里填上“>”“<”或“=”2.7○3.49-0.9 2.25×1.5○22.5×0.152.5×0.99○2.5 1.02×1.01○1.029.三角形的内角和是(____________).10.把549400改写成以“万”为单位的数是(____)万,保留一位小数是(____)万。
二、选择题(每题2分,共10分)11.12.5先缩小到原来的1100,再扩大到1000倍是().A.12.5 B.125 C.1250 D.1.2512.若X比Y少C,则()。
A.X-Y=C B.X+Y=C C.Y-X=C 13.在乘法中,如果一个乘数乘10,要使积扩大100倍,另一个乘数要( ).A.乘10 B.乘1000 C.乘100 D.不变14.等底等面积的三角形和平行四边形,三角形的高是平行四边形的()。
A.2倍B.12C.一样高15.下面的物体是由5个小正方体搭成的,从上面看到的图形是()。
考点跟踪训练 视图与投影

考点跟踪训练视图与投影一、选择题1.(2011·盐城)下面四个几何体中,俯视图为四边形的是()2.(2011·宁波)如图所示的物体的俯视图是()3.(2011·温州)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()4.(2011·荆州)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8 cm,则投影三角尺的对应边长为()A.8 cm B.20 cm C.3.2 cm D.10 cm5.(2011·杭州)如图是一个正六棱柱的主视图和左视图,则图中的a=()A.2 3 B. 3 C.2 D.1二、填空题6.(2011·菏泽)如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是____________.7.(2011·枣庄)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是_______.8.(2011·孝感)一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.9.(2010·新疆建设兵团)长方体的主视图和左视图如下图所示(单位:cm),则其俯视图的面积是________cm2.10.(2011·东营)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……;则第⑥个图中,看得见的小立方体有__________个.三、解答题11.(2011·广州)5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是________(立方单位),表面积是__________(平方单位);(2)画出该几何体的主视图和左视图.12.(2011·茂名)画图题:请你画出下面“蒙古包”的左视图.....13.(2011·荆州)如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为多少?14.(2010·东营)将一直径为17 cm的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为多少cm3?15.(2010·宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44长方体8612正八面体812正十二面体201230你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____________;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.。
辽宁省辽河油田第二中学2024学年数学高三第一学期期末质量跟踪监视试题含解析

辽宁省辽河油田第二中学2024学年数学高三第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<2.设x ∈R ,则“327x <”是“||3x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+5.设全集U =R ,集合2{|340}A x x x =-->,则UA =( )A .{x |-1 <x <4}B .{x |-4<x <1}C .{x |-1≤x ≤4}D .{x |-4≤x ≤1}6.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位7.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( )A .1427B .2C .1D .38.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A .2B .3C .2D .39.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A .211-B .525-C .25D .251-10.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强11.执行如图所示的程序框图,若输入的3t =,则输出的i =( )A .9B .31C .15D .6312.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
惠民县2023届三年级数学第二学期期末质量跟踪监视试题含解析

惠民县2023届三年级数学第二学期期末质量跟踪监视试题一、神奇小帮手。
1.在括号里填上合适的单位。
桐桐家一个月大约用水8(______)。
港珠澳大桥全长约55(______)。
一根跳绳长2.5(______)。
数学书封面的面积大约是5(______)。
2.在( )里填上适当的单位名称.(1)的长度大约是2.1(_____).(2)的面积大约是395(_______).3.把45×4=180和200-180=20合并成综合算式是(_____________).4.把下面两组图形表示的算式分别列成综合算式.(1)综合算式:(___________)(2)综合算式:(___________)5.用两个长是8厘米,宽是4厘米的长方形分别拼成一个长方形或一个正方形(如图)。
拼成的长方形的周长是________厘米,拼成的正方形的周长是________厘米。
6.在()里填上“>”“<”或“=”。
1平方米(________)9000平方厘米3t(________)85 kg 8kg(________)8000g380÷3(________)482÷4 27×35(________)35×27 611(________)8117.找一找下列年份中哪些是闰年?哪些是平年?1928年1949年2200年2020年1900年1800年1942年1362年2092年1438年闰年有:___________________平年有:____________________8.6平方分米=_____平方厘米700平方分米=_____平方米4平方米6平方分米=_____平方分米2年=_____个月.二、我是小法官。
(对的打√,错的打×)9.50×60的积的末尾只有两个0。
(______)10.一个三角形的最小内角是49°,那么这个三角形一定是锐角三角形.(_____)11.23时15分就是晚上11时15分。
考点跟踪突破15数据的收集与整理

考点跟踪突破15数据的收集与整理一、选择题(每小题6分,共30分)1.(2014·呼和浩特)以下问题,不适合用全面调查的是( D )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命2.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有( C )A.4个B.3个C.2个D.1个3.(2014·福州)若7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( C )A.44 B.45 C.46 D.474.(2014·重庆)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛.为此,九(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( A )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(2014·成都)近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分) 60 70 80 90 100人数 4 8 12 11 5A.70分,80分B.80分,80分C.90分,80分D.80分,90分二、填空题(每小题6分,共30分)6.(2014·汕尾)小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为__6__,平均数为__6__.7.(2013·南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是__86__分.8.(2014·丽水)有一组数据:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是__2__.9.(2014·巴中)已知一组数据:0,2,x,4,5的众数是4,那么这组数据的中位数是__4__.10.(2013·新疆)某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了条形统计图,请估计该校九年级学生此次植树活动约植树__1_680__棵.三、解答题(共40分)11.(10分)(2014·宁波)作为宁波市政府民生实事之一的公共自行车建设工程已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车辆的统计,结果如下:(1)求这7天日租车辆的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车辆多少万车次?(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车辆3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率.(精确到0.1%)解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;将数据按照从小到大顺序排列为7.5,8,8,8,9,9,10,中位数为8;平均数为(7.5+8+8+8+9+9+10)÷7=8.5(2)根据题意得30×8.5=255(万车次),则估计4月份(30天)共租车辆255万车次(3)根据题意得3200×0.19600=130≈3.3%,则2014年租车费收入占总投入的百分率为3.3%12.(10分)(2012·天门)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一名(不设弃权票),选出了票数最多的甲、乙、丙三人,投票结果统计如图①;其次,对三名候选人进行了笔试和面试两项测试,各项成绩如下表所示;图②是某同学根据下表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图①和图②;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的总成绩,成绩高的将被录取,应该录取谁?解:(1)如图(2)甲的票数:200×34%=68(票);乙的票数:200×30%=60(票);丙的票数:200×28%=56(票)(3)甲的平均成绩:x1=68×2+92×5+85×32+5+3=85.1乙的平均成绩:x2=60×2+90×5+95×32+5+3=85.5丙的平均成绩:x3=56×2+95×5+80×32+5+3=82.7∵乙的平均成绩最高,∴应该录取乙13.(10分)(2013·安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.解:(1)∵把合格品数从小到大排列,第25,26个数都是4,∴这50名工人加工出的合格品数的中位数为4(2)设加工的合格品数是5的人数是x人,加工的合格品数是6的人数是y人,则2+6+8+10+x+y+4+2=50,即x+y=18,∵当x=11~17时,y=7~1,∴此时众数为5;当x=1~7时,y=17~11,∴此时众数为6;当x=8时,y=10,∴此时众数为4,6;当x=9时,y=9,∴此时众数为4;当x=10时,y=8,∴此时众数为4,5.综上所述,这50名工人加工出合格品数的众数的可能取值为4,5,6(3)这50名工人中,合格品数低于3件的有8人,∵400×850=64,∴估计该厂将接受技能再培训的人数约有64人14.(10分)(2013·天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32(2)∵x=150(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为12(15+15)=15(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名。
2020—2021年华东师大版七年级数学下册同步跟踪训练生活中的旋转现象(考点+分析).doc

(新课标)华东师大版七年级下册10.3.1生活中的旋转现象一.选择题(共10小题)1.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.下面四个图案是某种衣物的洗涤说明标识.其中没有用到图形的平移,旋转或轴对称设计的是()A. B. C.D.4.下列四个图形中哪些图中的一个矩形是由另一个矩形按顺时针方向旋转90°后所形成的?()A.①②B.②③C.①④D.②④5.下列现象中是旋转的是()A.车轮在水平地面上滚动B.火车车厢的直线运动C.电梯的上下移动D.汽车方向盘的转动6.将图形按顺时针方向旋转90°后的图形是()A.B.C.D.7.下列四个图形中,不能由如图通过平移或旋转得到的图形是()A.B.C. D.8.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA连续翻转(小正方形起始位置在AB边上),那么这个小正方形翻转到DA边的终点位置时,它的方向是()A.B.C.D.9.如图,这是一个正面为黑,反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘并使其颜色一致,请问应选择的拼木是()A.B.C.D.10.下列图片中,哪些是由图片(1)分别经过平移和旋转得到的()A.(3)和(4)B.(2)和(3)C.(2)和(4)D.(4)和(3)二.填空题(共7小题)11.如图是电脑CPU风扇的示意图.风扇共有9个叶片,每个叶片的面积约为8cm2.已知∠AOB=120°,在风扇的转动过程中,叶片落在扇形AOB内部的面积为_________ .12.如图,以左边图案的中心为旋转中心,将右边图案按_________ 方向旋转_________ 即可得到左边图案.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_________ .14.如图所示,图形①经过轴对称变换得到图形②;则图形①经过_________ 变换得到图形③;图形①经过_________ 变换得到图形④.(填平移或旋转)15.一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第2009个图案是第_________ 个.16.如图所示,图形①经过_________ 变换得到图形②;图形②经过_________ 变到图形③;图形③经过_________ 变换得到图形④(填平移、旋转或轴对称).17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_________ .三.解答题(共4小题)18.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?19.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′.20.如图,可以看做是一个弓形通过几次旋转得到的?每次旋转了多少度?21.如图是万花筒中的一个图案,其中菱形FJKG变成菱形FDAC,如果看成经过以F点为旋转中心、旋转角为x的旋转移动得到的,那么x等于多少度?请从下面的四个答案中选出一个正确的答案来.(A)60°;(B)120°;(C)180°;(D)以上答案都不对.10.3.1生活中的旋转现象参考答案与试题解析一.选择题(共10小题)1.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移考点:生活中的旋转现象.菁优网版权所有分析:根据对称和旋转定义来判断.解答:解:根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.点评:考查学生对对称和旋转的理解能力.要理解:“对镜贴花黄”是指人和镜像的对称关系;“坐地日行八万里”是指人绕地心旋转.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:生活中的旋转现象;轴对称图形;中心对称图形.菁优网版权所有分析:根据轴对称图形与中心对称图形的概念和图形特点求解.解答:解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选:B.点评:掌握好中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.下面四个图案是某种衣物的洗涤说明标识.其中没有用到图形的平移,旋转或轴对称设计的是()A. B. C.D.考点:生活中的旋转现象.菁优网版权所有分析:本题考查平移、旋转和轴对称的性质,结合图形,对选项进行一一分析,排除错误答案.解答:解:A、图案用到了图形的旋转设计;B、图案用到了图形的旋转设计;C、图案没有用到图形的平移,旋转或轴对称设计;D、图案既有旋转又有平移设计.故选C.点评:熟练掌握平移、旋转和轴对称的性质.①图形平移前后的形状和大小没有变化,只是位置发生变化;②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心;③轴对称图形的对应线段、对应角相等.4.下列四个图形中哪些图中的一个矩形是由另一个矩形按顺时针方向旋转90°后所形成的?()A.①②B.②③C.①④D.②④考点:生活中的旋转现象.菁优网版权所有分析:已知图形中的矩形和实线的对角线的位置,看看以那个点为旋转中心,按顺时针方向旋转90°能不能从一个矩形得到另一个矩形,再进行判断即可.解答:解:图①和③不论以那个点为旋转中心,按顺时针方向旋转90°都不能从一个矩形得到另一个矩形,而图②和图④以A点为旋转中心,按顺时针方向旋转90°能从一个矩形得到另一个矩形,故选D.点评:本题考查了矩形,旋转的性质的应用,主要考查学生对旋转的性质的理解,通过做此题培养了学生的观察图形的能力和空间想象能力.5.下列现象中是旋转的是()A.车轮在水平地面上滚动B.火车车厢的直线运动C.电梯的上下移动D.汽车方向盘的转动考点:生活中的旋转现象.菁优网版权所有分析:根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.即可得到答案.解答:解:A、车轮在水平地面上滚动不是旋转,故此选项错误;B、火车车厢的直线运动是平移,故此选项错误;C、电梯的上下移动是平移,故此选项错误;D、汽车方向盘的转动是旋转,故此选项正确;故选:D.点评:此题主要考查了生活中的旋转,关键是掌握旋转中心是点而不是线.6.将图形按顺时针方向旋转90°后的图形是()A.B.C.D.考点:生活中的旋转现象.菁优网版权所有专题:操作型.分析:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变;图片按顺时针方向旋转90°,分析可得答案.解答:解:根据旋转的意义,图片按顺时针方向旋转90°,分析可得D符合.故选D.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.7.下列四个图形中,不能由如图通过平移或旋转得到的图形是()A.B.C. D.考点:生活中的旋转现象;生活中的平移现象.菁优网版权所有专题:常规题型.分析:根据平移的性质,旋转的概念,结合图形,对选项一一分析,即可得到正确答案.解答:解:A、是由右边的图通过逆时针旋转90°得到的图形;B、右边的图通过旋转180°,鱼眼睛应在左上方,故不正确;C、是由右边的图通过顺时针旋转90°得到的图形;D、是由右边的图通过平移得到的图形;故选B.点评:本题考查了图形的平移,查旋转的性质.图形的平移只改变图形的位置,而不改变图形的形状和大小;图形的旋转,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.8.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA连续翻转(小正方形起始位置在AB边上),那么这个小正方形翻转到DA边的终点位置时,它的方向是()A.B.C.D.考点:生活中的旋转现象.菁优网版权所有分析:根据题意可得这个小正方形第一次回到起始位置时需16次翻转,而每翻转4次,它的方向重复依次,则此时就不难得到这个小正方形回到DA边的终点位置时的方向.解答:解:根据题意分析可得:小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB连续地翻转,正方形ABCD的边长是3cm,一个边长为1cm的小正方,即这个小正方形回到DA边的终点位置时需16次翻转,而每翻转4次,它的方向重复依次,故回到DA边的终点位置时它的方向是向下.故选:C.点评:此题主要考查了生活中的旋转现象,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.如图,这是一个正面为黑,反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘并使其颜色一致,请问应选择的拼木是()A.B. C D.考点:生活中的旋转现象.菁优网版权所有分析:将所给的拼木分别尝试拼接或由拼木盘观察,直接选出拼木.解答:解:A、C和D旋转之后都不能与图形拼满,B旋转180°后可得出与图形相同的形状,故选B.点评:本题难度一般,主要考查的是旋转的性质.【链接】①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.10.下列图片中,哪些是由图片(1)分别经过平移和旋转得到的()A.(3)和(4)B.(2)和(3)C.(2)和(4)D.(4)和(3)考点:生活中的旋转现象;生活中的平移现象.菁优网版权所有分析:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.二.填空题(共7小题)11.如图是电脑CPU风扇的示意图.风扇共有9个叶片,每个叶片的面积约为8cm2.已知∠AOB=120°,在风扇的转动过程中,叶片落在扇形AOB内部的面积为24cm2.考点:生活中的旋转现象.菁优网版权所有分析:根据旋转的性质和图形的特点求出图中∠AOB内部包含的叶片面积之和为一个叶片的面积,代入求出即可.解答:解:每个叶片的面积为8cm2,因而图形的面积是72cm2,∵∠AOB为120°∴叶片落在扇形AOB内部的面积是图形面积的,因而叶片落在扇形AOB内部的面积为72×=24cm2,故答案为:24cm2.点评:本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.如图,以左边图案的中心为旋转中心,将右边图案按逆时针方向旋转90°即可得到左边图案.考点:生活中的旋转现象.菁优网版权所有分析:根据旋转的意义,找出图中眼和嘴这两个关键处沿什么方向旋转即可.解答:解:观察图形中眼和嘴两个关键位置是按逆时针旋转90°得到的.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.考点:生活中的旋转现象.菁优网版权所有分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.点评:此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图所示,图形①经过轴对称变换得到图形②;则图形①经过旋转变换得到图形③;图形①经过平移变换得到图形④.(填平移或旋转)考点:生活中的旋转现象;生活中的平移现象.菁优网版权所有分析:根据旋转和平移的定义,直接求解.解答:解:观察图形,由图形(1)到(3)是旋转,图形(4)与(1)的大小、形状相同,是平移的得到的.点评:要根据旋转的定义,和平移的性质,确定图形变化的方式.将图象绕一定轴线转动一定角度后能使图象复原的一类对称动作叫旋转.15.一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第2009个图案是第 2 个.考点:生活中的旋转现象.菁优网版权所有专题:规律型.分析:观察图形变化规律可知,三个一串,用2009除以3,找余数即可.解答:解:图形每三个成规律性变化,2009÷3=669余2,按此规律画出的第2009个图案是第2个.点评:此题通过旋转,考查了同学们对规律的探索发现能力,是一道难度适中的题目.16.如图所示,图形①经过轴对称变换得到图形②;图形②经过平移变到图形③;图形③经过旋转变换得到图形④(填平移、旋转或轴对称).考点:生活中的旋转现象.菁优网版权所有分析:根据平移、旋转和轴对称的性质,可直接判断结果.解答:解:仔细观察各个图的位置关系可知:①和②是轴对称关系,②和③的形状大小一样,是平移关系,③和④图形的大小一样,但方向发生了变化,是旋转.∴图形①经过轴对称变换得到图形②;图形②经过平移变到图形③;图形③经过旋转变换得到图形④.点评:本题考查了生活中的旋转现象,图形平移前后的形状和大小没有变化,只是位置发生变化;旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心;轴对称图形的对应线段、对应角相等.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.考点:生活中的旋转现象.菁优网版权所有分析:钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.解答:解:根据题意得,×360°=120°.故答案为:120°.点评:本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.三.解答题(共4小题)18.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?考点:生活中的旋转现象.菁优网版权所有专题:常规题型.分析:根据旋转的性质,找出四张牌中成中心对称的一张即可.解答:解:被旋转过的1张牌是第二张牌.理由如下:第一张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,第二张牌是中心对称图形,第三张牌,因为最中间只有一张,所以不是中心对称图形,第四张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,∵将其中的1张牌旋转180°成第二行的样子,∴被旋转过的1张牌是第二张.点评:本题考查了生活中的旋转现象,需要注意扑克牌中图案的细微差别以及中心对称图形的性质.19.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′.考点:生活中的旋转现象.菁优网版权所有专题:操作型.分析:根据旋转的意义,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解答:解:点评:本题考查了图形的旋转变化,要准确把握旋转的定义.20.如图,可以看做是一个弓形通过几次旋转得到的?每次旋转了多少度?考点:生活中的旋转现象.菁优网版权所有分析:根据旋转的意义,图形是由4个弓星组成的,因此图形是由弓形顺时针或(逆时针)旋转得来的每次旋转的度数相同,共旋转了3次.解答:解:将图形弓形顺时针或(逆时针)旋转3次,每次旋转了90°.答:可以看做是一个弓形通过3次旋转得到的?每次旋转了90度.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.21.如图是万花筒中的一个图案,其中菱形FJKG变成菱形FDAC,如果看成经过以F点为旋转中心、旋转角为x的旋转移动得到的,那么x等于多少度?请从下面的四个答案中选出一个正确的答案来.(A)60°;(B)120°;(C)180°;(D)以上答案都不对.考点:生活中的旋转现象.菁优网版权所有专题:操作型.分析:根据旋转的意义,找出菱形FJKG中J,K,J3个个关键处按顺时针方向旋转240°或逆时针方向旋转120°后的形状即为菱形FDAC.解答:解:观察图形,菱形FJKG中∠GFJ为60°,根据旋转的意义,找出菱形FJKG中J,K,J3个个关键处按顺时针方向旋转240°或逆时针方向旋转120°后的形状即为菱形FDAC.故选B.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!。
2024届温州市瓯海区数学五年级第二学期期末质量跟踪监视试题含解析

2024届温州市瓯海区数学五年级第二学期期末质量跟踪监视试题一、仔细填空。
(每小题2分,共20分)1.375cm =(______)3dm 38.02m =(______)3dm 20.5L =(______)L (______)mL2.千克可以看作5千克的。
3.小明、小东、小磊三人跳绳的平均成绩是172个,小明跳了165个,小东跳了173个,小磊跳了________个.4.15分=(____)时 120平方厘米=(____)平方分米3.85立方米=(_____)立方分米 750立方厘米=(____)立方分米=(____)升5.一个圆柱的底面周长是18.84厘米,高是5厘米。
它的侧面积是(______)平方厘米,表面积是(______)平方厘米,体积是(__________)立方厘米。
6.如下图,大圆的直径是6厘米,小圆的直径是4厘米。
大圆里的涂色部分比小圆里的涂色部分大(________)平方厘米。
7.买1本字典和1支钢笔一共要用________元。
8.460升=(_______)立方米 6.48m 3=(_______)m 3(_______)dm 39.4 m 3=(______)dm 3 980 dm 3=(______)m 39.2002年我国森林覆盖率为百分之十六点五五。
横线上的这个数写作(_________)。
10.把两根长度分别是45厘米和15厘米的彩带剪成长度一样的短彩带,并且没有剩余,每根彩带最长是(______)厘米;一共有(______)根这样的彩带。
二、准确判断。
(对的画“√”,错的画“×”。
每小题2分,共10分)11.一根绳子用去了全长的35,还剩35米,则用去的比剩下的长。
(_______) 12.长方体相对的棱长度相等。
(________)13.把2块同样地正方体拼成一个长方体,表面积不变。
(____)14.数对(4,3)和(3,4)表示的位置是不一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15课
函数的应用
12. (2012· 南通)甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地 出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的 函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关 系.请根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数解 析式;(3)求轿车从甲地出发后经过多长时间追上货车.
第15课
函数的应用
5.(2011· 株洲)某广场有一喷水池,水从地面喷出,如图, 以水平地面为x轴,出水点为原点,建立平面直角坐标系, 水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的 一部分,则水喷出的最大高度是( A ) A.4米 B.3米 C.2米 D.1米 二、填空题 6.(2011· 桂林)双曲线y1、y2在第一象限的图象如图 所示, 过y1上的任意一点A,作x轴的平行线 交y2于B,交y轴于C,若S△AOB=1,则y2的解析式 是____________. 7. (2012· 无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0), -x2+4x-3 则抛物线的函数关系式为________________ . 8. (2012· 绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y(m)与水平距离x(m)之间的关系为 4 离是________m. 由此可知铅球推出的距
第15课
函数的应用
9.(2011· 扬州)如图,已知函数 与y=ax2+bx (a>0,b>0)的图象交于点P,点P的纵 坐标为1,则 x=-3 关于x的方程ax2+bx+=0的解为________ .
10.(2011· 武汉)一个装有进水管和出水管的容器,从某时刻起只打开进水管 进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打 开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位 8 分钟,容 :分钟)之间的函数关系如图所示.关停进水管后,经过________ 器中的水恰好放完.
2.(2013· 内江)小高从家骑自行车去学校上学,先走上 坡路到达点A,再走下坡路到达点B,最后走平路到达 学校,所用的时间与路程的关系如图所示.放学后,如 果他沿原路返回,且走平路、上坡路、下坡路的速度分 别保持和去上学时一致,那么他从学校到家需要的时间 是( D ) A.14分钟 B.17分钟 C.18分钟 D.20分钟
第15课
考点跟踪训练15
函数的应用
一、选择题 1. (2013· 长沙)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途 时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修 车前加快了速度继续匀速行驶, 下面是行驶路程s(m)关于时间t(min)的函数 图象,那么符合小明行驶情况的大致图象是 ( C )
第1一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与 时间关系的图象大致是( D )
4. (2012· 长沙)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例 .图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I 的函数解析式为( C )
第15课
函数的应用
三、解答题 11. (2012· 陕西)科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之 间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧 量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235 克/立方米. (1)求出y与x的函数表达式;(2)已知某山的海拔高度为1200米,请你求 出该山山顶处的空气含氧量约为多少?