宁波市中考数学试题(-含解析)

合集下载

2021年浙江省宁波市数学中考真题含答案解析

2021年浙江省宁波市数学中考真题含答案解析

上的 A2 处,称为第 1 次操作,折痕 DE 到 BC 的距离记为 h1。还原纸片后,再将△ADE 沿着过 AD 中点 D1 的直线折叠,使点 A 落在 DE 边上的 A2 处,称为第 2 次操作,折痕 D1E1 到 BC 的 距离记为 h2。按上述方法不断操作下去…,经过第 2015 次操作后得到的折痕 D2014E2014 到 BC 的距离记为 h2015,到 BC 的距离记为 h2015.若 h1=1,则 h2015 的值为( )
A.
B.
C.
D.
考点:简单组合体的三视图. 菁优网版权所有
分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 解答:解:从上面看易得上面一层有 3 个正方形,下面中间有一个正方形.
故选 A. 点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 6.(4 分)(2015•宁波)如图,直线 a∥b,直线 c 分别与 a,b 相交,∠1=50°,则∠2 的度数为( )
D.6×1013 元
考点:科学记数法—表示较大的数. 菁优网版权所有
分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看 把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝 对值>1 时,n 是正数。当原数的绝对值<1 时,n 是负数.
解答:解:将 6 万亿用科学记数法表示为:6×1012. 故选:C.
7
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
4.(4 分)(2015•宁波)在端午节到来之前,学校食堂推荐了 A,B,C 三家粽子专卖店,对全校

2020年浙江省宁波市中考数学试卷(有答案)

2020年浙江省宁波市中考数学试卷(有答案)

2020年浙江省宁波市中考数学试卷学校:___________姓名:___________班级:___________考号:___________ 一、选择题(本大题共10小题,共40.0分) 1. −3的相反数是( )A. −3B. −13 C. 13D. 32. 下列计算正确的是( )A. a 3⋅a 2=a 6B. (a 3)2=a 5C. a 6÷a 3=a 3D. a 2+a 3=a 53. 2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为( )A. 1.12×108B. 1.12×109C. 1.12×109D. 0.112×10104. 如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是( )A.B.C.D.5. 一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A. 14B. 13C. 12D. 236. 在二次根式√x −2中,字母x 的取值范围是( )A. x >2B. x <2C. x ≥2D. x ≤2 7. 如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF.若AC =8,BC =6,则BF 的长为( ) A. 2 B. 2.5 C. 3 D. 48. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −19. 如图,二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =−1.则下列选项中正确的是( )A. abc <0B. 4ac −b 2>0C. c −a >0D. 当x =−n 2−2(n 为实数)时,y ≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长D. 四边形ADEC的周长二、填空题(本大题共6小题,共30.0分)11.实数8的立方根是______.12.分解因式:2a2−18=______.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x−(22甲乙丙x−454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB⏜的长为______cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为______.(a>0)16.如图,经过原点O的直线与反比例函数y=ax的图象交于A,D两点(点A在第一象限),点B,C,(b<0)的图象上,AB//y轴,E在反比例函数y=bxAE//CD//x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a−b的值为______,b的值为a______.三、计算题(本大题共1小题,共10.0分)17.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?四、解答题(本大题共7小题,共70.0分)18.(1)计算:(a+1)2+a(2−a).(2)解不等式:3x−5<2(2+3x).19.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)20.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)21.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.22.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD⋅AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF//AC,AC=2EF,∠BAD,AE=2,DF=5,求菱形ABCD的边长.∠EDF=1224.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD⏜=BD⏜,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案和解析1.【答案】D【解析】解:−3的相反数是3.故选:D.根据只有符号不同的两个数互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】C【解析】解:A、a3⋅a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:1120000000=1.12×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.根据主视图的意义和画法可以得出答案.考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.【答案】D【解析】解:从袋中任意摸出一个球是红球的概率=44+2=23.故选:D.根据概率公式计算.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.【答案】C【解析】解:由题意得,x−2≥0,解得x≥2.故选:C.根据被开方数大于等于0列不等式求解即可.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.【答案】B【解析】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,∴AB =√AC 2+BC 2=√82+62=10. 又∵CD 为中线, ∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点, ∴BF 是△CDE 的中位线,则BF =12CD =2.5.故选:B .利用勾股定理求得AB =10;然后由直角三角形斜边上的中线等于斜边的一半求得CD 的长度;结合题意知线段BF 是△CDE 的中位线,则BF =12CD .本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD 的长度和线段BF 是△CDE 的中位线. 8.【答案】A【解析】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: {y =x +4.50.5y =x −1. 故选:A .直接利用“绳长=木条+4.5;12绳子=木条−1”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键. 9.【答案】D【解析】解:由图象开口向上,可知a >0, 与y 轴的交点在x 轴的上方,可知c >0,又对称轴方程为x =−1,所以−b 2a <0,所以b >0,∴abc >0,故A 错误∵;∴一次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点, ∴b 2−4ac >0,∴4ac −b 2<0,故B 错误; ∵−b2a =−1,∴b =2a ,∵当x =−1时,y =a −b +c <0, ∴a −2a +c <0,∴c −a <0,故C 错误; 当x =−n 2−2(n 为实数)时,y =ax 2+bx +c =a(−n 2−2)+b(−n 2−2)=an 2(n 2+2)+c ,∵a >0,n 2≥0,n 2+2>0,∴y =an 2(n 2+2)+c ≥c ,故D 正确, 故选:D .由图象开口向上,可知a >0,与y 轴的交点在x 轴的上方,可知c >0,根据对称轴方程得到b >0,于是得到abc >0,故A 错误;根据一次函数y =ax 2+bx +c(a >0)的图象与x轴的交点,得到b2−4ac>0,求得4ac−b2<0,故B错误;根据对称轴方程得到b=2a,当x=−1时,y=a−b+c<0,于是得到c−a<0,故C错误;当x=−n2−2(n为实数)时,代入解析式得到y=ax2+bx+c=a(−n2−2)+b(−n2−2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.【答案】A【解析】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF 的周长=AB+BC,则可得出答案.本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.11.【答案】2【解析】解:实数8的立方根是:3=2.√8故答案为:2.根据立方根的性质和求法,求出实数8的立方根是多少即可.此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.【答案】2(a+3)(a−3)【解析】解:2a2−18=2(a2−9)=2(a+3)(a−3).故答案为:2(a+3)(a−3).首先提取公因式2,再利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.【答案】甲【解析】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.【答案】18π【解析】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,=18π(cm),∴AB⏜的长=120⋅π×27180故答案为:18π.根据弧长公式即可得到结论.本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.【答案】2√2或2√3【解析】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②当∠OAC=90°时,点A与B重合,∴OC=2√2,综上所述,其斜边长为2√2或2√3,故答案为:2√2或2√3.当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC=√OA2+OC2=√22+(2√2)2=2√3;当∠OAC=90°时,点A与B重合,求得OC=2√2.本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.【答案】24 −13【解析】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE//CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =b x 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE −S 四边形ABCD =56−32=24,∴S △AOE =S △DEO =12,∴12a −12b =12, ∴a −b =24,∵S △AOC =S △AOB =12,∴BC//AD ,∴BC AD =TB TA ,∵S △ACB =32−24=8,∴S △ADC :S △ABC =24:8=1:3,∴BC :AD =1:3,∴TB :TA =1:3,设BT =a ,则AT =3a ,AK =TK =1.5k ,BK =0.5k , ∴AK :BK =3:1,∴S △AOKS △BKP=12a −12b =13, ∴a b =−13.故答案为24,−13.如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K.求出证明四边形ACDE 是平行四边形,推出S △ADE =S △ADC =S 五边形ABCDE −S 四边形ABCD =56−32=24,推出S △AOE =S △DEO =12,可得12a −12b =12,推出a −b =24.再证明BC//AD ,证明AD =3BC ,推出AT =3BT ,再证明AK =3BK 即可解决问题.本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b 80=2.6k +b, 解得:{k =80b =−128, ∴y 关于x 的函数表达式为y =80x −128(1.6≤x ≤3.1);(2)当y =200−80=120时,120=80x −128,解得x =3.1,货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5−3.1−0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【解析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.18.【答案】解:(1)(a+1)2+a(2−a)=a2+2a+1+2a−a2=4a+1;(2)3x−5<2(2+3x)3x−5<4+6x,移项得:3x−6x<4+5,合并同类项,系数化1得:x>−3.【解析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.19.【答案】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【解析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【解析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.21.【答案】解:(1)把B(1,0)代入y=ax2+4x−3,得0=a+4−3,解得a=−1,∴y=−x2+4x−3=−(x−2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,−3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=−(x−4)2+5.【解析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)30÷15%=200(人),200−30−80−40=50(人),直方图如图所示:=144°.(2)“良好”所对应的扇形圆心角的度数=360°×80200(3)这次测试成绩的中位数是良好.=300(人),(4)1500×40200答:估计该校获得优秀的学生有300人.【解析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴ADAC =ACAB,∴AC2=AD⋅AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴BFBC =BEBF,∴BF2=BE⋅BC,∴BC=BF2BE =423=163,∴AD=163.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB//DC,∠BAC=12∠BAD,∵AC//EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=12∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴EDEG =EFDE,∴DE2=EF⋅EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=√2EF,又∵DGDF =DEEF,∴DG=√2DF=5√2,∴DC=DG−CG=5√2−2.【解析】(1)证明△ADC∽△ACB,得出ADAC =ACAB,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段BFBC =BEBF,则BF2=BE⋅BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段EDEG =EFDE,则DE=√2EF,可求出DG,则答案可求出.此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.【答案】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD−∠EBD=12(∠ACD−∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵AD⏜=BD⏜,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∠ABC=45°,∴∠FAC=∠EBC=12∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED−∠FED=∠FAC−∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴AEAC =AGCD,∵在Rt△ABG中,AG=√22AB=4√2,在Rt△ADE中,AE=√2AD,∴ADAC =45,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=53,∴ED=AD=203,∴CE=CD+DE=353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE−EM=56,∵∠FDM=45°,∴FM=DM=56,∴S△DEF=12DE⋅FM=259.【解析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC=90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出AEAC=AG CD ,求出ADAC=45,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=53,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.本题是圆的综合题,考查了角平分线的定义,圆周角定理,圆内接四边形的性质,相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。

浙江省宁波市2021年中考数学试卷(解析版)

浙江省宁波市2021年中考数学试卷(解析版)

浙江省宁波市2021中考数学试卷试题卷Ⅰ一、选择题目(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在﹣3,﹣1,0,2这四个数中,最小的数是( )A. ﹣3B. ﹣1C. 0D. 2【答案】A【解析】【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2. 计算()3a a ⋅-的结果是( ) A. 2aB. 2a -C. 4aD. 4a -【答案】D【解析】 【分析】根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.3. 2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为( )A. 73210⨯B. 83.210⨯C. 93.210⨯D. 90.3210⨯ 【答案】B【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 3.2a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到3的后面,所以8.n =【详解】解:8320000000=3.210.故选:.B【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.4. 如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A. B.C. D.【答案】C【解析】【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C .【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.5. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁 【答案】D【解析】【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D .【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6. 要使分式12x +有意义,x 的取值应满足( ) A. 0x ≠B. 2x ≠-C. 2x ≥-D. 2x >- 【答案】B【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】解: 分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键.7. 如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )C. 1【答案】C【解析】【分析】根据条件可知△ABD为等腰直角三角形,则BD=AD,△ADC是30°、60°的直角三角形,可求出AC长,再根据中位线定理可知EF=2AC。

2020年浙江省宁波市中考数学试卷 (解析版)

2020年浙江省宁波市中考数学试卷 (解析版)

2020年宁波市中考数学试卷一、选择题1.﹣3的相反数为()A.﹣3B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5 3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010 4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A 在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.参考答案一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3B.﹣C.D.3【分析】根据只有符号不同的两个数互为相反数解答.解:﹣3的相反数是3.故选:D.2.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:1120000000=1.12×109,故选:B.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法可以得出答案.解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【分析】根据概率公式计算.解:从袋中任意摸出一个球是红球的概率==.故选:D.6.二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤2【分析】根据被开方数大于等于0列不等式求解即可.解:由题意得,x﹣2≥0,解得x≥2.故选:C.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.二、填空题(每小题5分,共30分)11.实数8的立方根是2.【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.解:实数8的立方根是:=2.故答案为:2.12.分解因式:2a2﹣18=2(a+3)(a﹣3).【分析】首先提取公因式2,再利用平方差公式分解因式得出答案.解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为18πcm(结果保留π).【分析】根据弧长公式即可得到结论.解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为2或2.【分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2;当∠OAC=90°时,点A与B重合,求得OC=2.解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当∠OAC=90°时,点A与B重合,∴OC=2,综上所述,其斜边长为2或2,故答案为:2或2.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A 在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,的值为﹣.【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD =56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==,∴=﹣.故答案为24,﹣.三、解答题(本大题有8小题,共80分)17.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=AB cos B=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=AB sin B=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC=90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED﹣∠FED=∠FAC﹣∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AG=,在Rt△ADE中,AE=AD,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.。

2021年浙江省宁波市中考数学试卷(附答案详解)

2021年浙江省宁波市中考数学试卷(附答案详解)

2021年浙江省宁波市中考数学试卷1.在−3,−1,0,2这四个数中,最小的数是()A. −3B. −1C. 0D. 22.计算a3⋅(−a)的结果是()A. a2 B. −a2C. a4D. −a43.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为()A. 32×107B. 3.2×108C. 3.2×109D. 0.32×1094.如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.5.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x−(单位:环)及方差S2(单位:环 2)如下表所示:甲乙丙丁x−9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A. 甲B. 乙C. 丙D. 丁6.要使分式1有意义,x的取值应满足()x+2A. x≠0B. x≠−2C. x≥−2D. x>−27.如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为()A. √33B. √32C. 1D. √628. 我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A. {x +y =510x +3y =30 B. {x +y =53x +10y =30 C. {x +y =30x 10+y 3=5D. {x +y =30x 3+y 10=59. 如图,正比例函数y 1=k 1x(k 1<0)的图象与反比例函数y 2=k 2x(k 2<0)的图象相交于A ,B 两点,点B 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A. x <−2或x >2B. −2<x <0或x >2C. x <−2或0<x <2D. −2<x <0或0<x <210. 如图是一个由5张纸片拼成的平行四边形ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张矩形纸片EFGH 的面积为S 3,FH 与GE 相交于点O.当△AEO ,△BFO ,△CGO ,△DHO 的面积相等时,下列结论一定成立的是( )A. S 1=S 2B. S 1=S 3C. AB =ADD. EH =GH11. −5的绝对值是______. 12. 分解因式:x 2−3x =______.13.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为______ .14.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中CD⏜的长为______ cm.(结果保留π)15.在平面直角坐标系中,对于不在坐标轴上的任意臥点A(x,y),我们把点B(1x ,1y)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=2x(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为______ .16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为______ ,sin∠AFE的值为______ .17.(1)计算:(1+a)(1−a)+(a+3)2.(2)解不等式组:{2x+1<93−x≤0.18.如图是由边长为1的小正方形构成的6×4的网格,点A,B均在格点上.(1)在图1中画出以AB为边且周长为无理数的▱ABCD,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以AB为对角线的正方形AEBF,且点E和点F均在格点上.19.如图,二次函数y=(x−1)(x−a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.20.图1表示的是某书店今年1∼5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1∼5月的营业总额一共是182万元,观察图1、图2,解答下列问题:(1)求该书店4月份的营业总额,并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.21.我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D′的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)22.某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流理超过多少兆时,选择C方案最划算?23.【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2√5,AD=2AE,求AC的长.24.如图1,四边形ABCD内接于⊙O,BD为直径,AD⏜上存在点E,满足AE⏜=CD⏜,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=√3,求△FGD的周长.2②求CG的最小值.答案和解析1.【答案】A【知识点】有理数大小比较【解析】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是−3.故选:A.画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键⋅.2.【答案】D【知识点】同底数幂的乘法【解析】【分析】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3⋅(−a)=−a3⋅a=−a4.故选:D.3.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:320000000=3.2×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【知识点】简单组合体的三视图【解析】解:从正面看,底层是一个比较长的矩形,上层中间是一个比较窄的矩形.故选:C.根据主视图是从正面看得到的视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.5.【答案】D【知识点】算术平均数、方差【解析】解:甲、丙、丁射击成绩的平均环数较大,∵丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故选:D.根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.6.【答案】B【知识点】分式有意义的条件有意义,则x+2≠0,【解析】解:要使分式1x+2解得:x≠−2.故选:B.直接利用分式有意义则分母不等于零,即可得出答案.此题主要考查了分式有意义的条件,正确掌握分式有意义的条件是解题关键.7.【答案】C【知识点】含30°角的直角三角形、三角形的中位线定理【解析】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∵∠B =45°,BD =√3,∴AD =BD =√3,∵∠C =60°,∴DC =ADtan60∘=√3√3=1,∴AC =DC =2,∵E ,F 分别为AB ,BC 的中点,∴EF =12AC =1.故选:C .由直角三角形的性质求出AD =BD =√3,由锐角三角函数的定义求出DC =1,由三角形的中位线定理可求出答案.本题考查了直角三角形的性质,三角形中位线定理,锐角三角函数,熟练掌握三角形的中位线定理是解题的关键. 8.【答案】A【知识点】由实际问题抽象出二元一次方程组、数学常识【解析】解:设清酒x 斗,醑酒y 斗,依题意得:{x +y =510x +3y =30. 故选:A .设清酒x 斗,醑酒y 斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.【答案】C【知识点】一次函数与反比例函数综合【解析】解:由反比例函数与一次函数相交于点A 、B ,可得点A 坐标与点B 坐标关于原点对称.故点A 的横坐标为−2.当y 1>y 2时,即正比例函数图象在反比例图象上方,观察图象可得,当x<−2或0<x<2时满足题意.故选:C.先根据点A与B关于原点对称,得出A横坐标,再找出正比例函数落在反比例函数图象上方的部分对应的自变量的取值范围即可.本题考查了反比例函数与一次函数交点问题,找出A点横坐标是解题关键.属于基础题型.10.【答案】A【知识点】等腰直角三角形、矩形的性质、平行四边形的性质、全等三角形的判定与性质【解析】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ//EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=12⋅DH⋅OJ,S△DHG=12⋅DE⋅GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=12⋅CG⋅DH,S△ADH=12⋅DH⋅AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故选:A.如图,连接DG,AH,过点O作OJ⊥DE于J.证明S△DGH=S△AEH,S△DGC=S△ADH,可得结论.本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是证明S△DGH=S△AEH,S△DGC=S△ADH.11.【答案】5【知识点】绝对值【解析】解:根据负数的绝对值是它的相反数,得|−5|=5.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解题的关键是掌握绝对值的性质.12.【答案】x(x−3)【知识点】因式分解-提公因式法【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式x,即可得出答案.【解答】解:原式=x(x−3),故答案为:x(x−3)13.【答案】38【知识点】概率公式【解析】解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为3.8.故答案为:38先求出球的总个数,再根据概率公式即可得出摸出一个球是红球的概率.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】2π【知识点】弧长的计算、垂径定理、切线的性质【解析】解:如图所示,连接OC ,OD ,OP ,∵AC ,BD 分别与⊙O 相切于点C ,D ,故∠OCP =∠ODP =90°,又OC =OD ,OP =OP ,则Rt △OCP≌Rt △ODP(HL).∵∠P =120°,∴∠OPC =∠OPD =60°,∴∠COP =∠DOP =30°,∴∠COD =60°.∴CD ⏜的长为l CD ⏜=nπr 180=60°×π×6180=2π.故答案为:2π.连接OC ,OD ,OP ,可利用HL 证明Rt △OCP≌Rt △ODP ,从而可得出∠COD 的度数,最后利用弧长公式求解答案即可.本题考查了切线的性质、全等三角形的判定、弧长的计算,求出∠COD 的度数是解题的关键. 15.【答案】14或32【知识点】反比例函数图象上点的坐标特征、矩形的性质、反比例函数系数k 的几何意义【解析】解:设点A 的坐标为(m,2m ),∵点B 是点A 的“倒数点”,∴点B 坐标为(1m ,m 2),∵点B 的横纵坐标满足1m ⋅m2=12, ∴点B 在某个反比例函数上,∴点B 不可能在OE ,OC 上,分两种情况:①点B 在ED 上,由ED//x 轴,∴点B 、点A 的纵坐标相等,即m 2=2m ,∴m =±2,(−2舍去),∴点B 纵坐标为1,此时,S △OBC =12×3×1=32;②点B 在DC 上,∴点B 横坐标为3,即1m =3,∴点B 纵坐标为:m 2=16,此时,S △OBC =12×3×16=14;故答案为:14或32.设点A 的坐标为(m,2m ),由“倒数点”的定义,得点B 坐标为(1m ,m 2),分析出点B 在某个反比例函数上,分两种情况:①点B 在ED 上,由ED//x 轴,得m 2=2m ,解出m =±2,(−2舍去),得点B 纵坐标为1,此时,S △OBC =12×3×1=32;②点B 在DC 上,得点B 横坐标为3,即1m =3,求出点B 纵坐标为:m 2=16,此时,S △OBC =12×3×16=14. 本题考查了反比例函数图象上点的坐标特征,新定义的阅读理解能力,三角形面积的求法.解题关键是理解“倒数点”的定义. 16.【答案】2 √2−1【知识点】轴对称的基本性质、矩形的性质、解直角三角形【解析】解:∵BM =BE ,∴∠BEM =∠BME ,∵AB//CD ,∴∠BEM =∠GCM ,又∵∠BME =∠GMC ,∴∠GCM =∠GMC ,∴MG =GC =1,∵G 为CD 中点,∴CD =AB =2.连接BF ,FM ,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF//BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF//BG,∴∠BNF=90°,∵BF平分∠ABN,∴FA=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,FA=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2−x,NG=MG−NM=1−x,∵FM//GC,∴△FMN∽△CGN,∴CGFM =GNNM,即12−x =1−xx,解得x=2+√2(舍)或x=2−√2,∴EF=BE=2−x=√2,∴sin∠AFE=AEEF =√2√2=√2−1.故答案为:2;√2−1.连接BF ,FM ,由翻折及BM =ME 可得四边形BEFM 为菱形,再由菱形对角线的性质可得BN =BA.先证明△AEF≌△NMF 得AE =NM ,再证明△FMN∽△CGN 可得CG FM =GNNM ,进而求解.本题考查矩形的翻折问题,解题关键是连接辅助线通过全等三角形及相似三角形的判定及性质求解. 17.【答案】解:(1)原式=1−a 2+a 2+6a +9=6a +10;(2){2x +1<9①3−x ≤0②, 解①得:x <4,解②得:x ≥3,∴原不等式组的解集是:3≤x <4.【知识点】平方差公式、完全平方公式、一元一次不等式组的解法【解析】(1)直接利用乘法公式化简,再合并同类项得出答案;(2)分别解不等式,进而得出不等式组的解集.此题主要考查了乘法公式以及解一元一次不等式组,正确掌握乘法公式是解题关键. 18.【答案】解:(1)如图1中,四边形ABCD 即为所求(答案不唯一).(2)如图2中,四边形AEBF 即为所求.【知识点】无理数、尺规作图与一般作图、勾股定理【解析】(1)根据平行四边形的定义以及题目条件画出图形即可.(2)根据正方形的定义画出图形即可.本题考查作图−应用与设计作图,无理数,勾股定理,平行四边形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】解:(1)由二次函数y=(x−1)(x−a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,=2.∴1+a2解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²−4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²−4x.【知识点】二次函数与一元二次方程、二次函数的性质、二次函数图象上点的坐标特征、二次函数图象与几何变换【解析】(1)根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值即可.(2)将a的值代入,结合抛物线解析式求平移后图象所对应的二次函数的表达式.本题考查了抛物线与x轴的交点,二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.20.【答案】解:(1)该书店4月份的营业总额是:182−(30+40+25+42)=45(万元),补全统计图如下:(2)42×25%=10.5(万元),答:5月份“党史”类书籍的营业额是10.5万元;(3)4月份“党史”类书籍的营业额是45×20%=9(万元),∵10.5>9,且1−3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,∴5月份“党史”类书籍的营业额最高.【知识点】折线统计图、条形统计图【解析】(1)用1∼5月的营业总额减去其他月份的总额,求出4月份的营业额,从而补全统计图;(2)用5月份的营业额乘以“党史”类书籍所占的百分比即可;(3)先判断出1−3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,再求出4月份的“党史”类书籍的营业额,与5月份进行比较,即可得出答案.本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,如粮食产量,折线统计图表示的是事物的变化情况,如增长率.21.【答案】解:(1)∵B为AD′中点,AD′,∴AB=12∵AD′=40cm,∴AB=20cm;(2)如图,过点B作BE⊥AD于点E,∵AB=BD,∴AD=2AE,∵AP平分∠BAC,∠BAC=140°,∴∠BAE=1∠BAC=70°,2在Rt△ABE中,AB=20cm∴AE=AB⋅cos70°≈20×0.34=6.8(cm),∴AD=2AE=13.6(cm),∵AD′=40cm,∴40−13.6=26.4(cm).∴伞圈D沿着伞柄向下滑动的距离为26.4cm.【知识点】解直角三角形的应用【解析】(1)根据中点定义即可求出AB的长;(2)过点B作BE⊥AD于点E,根据等腰三角形的性质可得AD=2AE,然后利用锐角三角函数可得AE的长,所以AD=2AE=13.6cm,进而可得伞圈D沿着伞柄向下滑动的距离.本题考查了解直角三角形的应用,解决本题的关键是掌握解直角三角形的方法.22.【答案】解:(1)根据题意,m=3072,n=(56−20)÷(1144−1024)=0.3;(2)设在A方案中,每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式为y=kx+b(k≠0),把(1024,20),(1144,56)代入,得:{20=1024k+b56=1144k+b,解得{k=0.3b=−287.2,∴y关于x的函数关系式为y=0.3x−287.2(x≥1024);(3)3072+(266−56)÷0.3=3772(兆),由图象得,当每月使用的流理超过3772兆时,选择C方案最划算.【知识点】一次函数的应用【解析】(1)根据题意,结合题意可得m=3072,n=(56−20)÷(1144−1024)=0.3;(2)利用待定系数法解答即可;(3)利用B方案每月免费使用流量3072兆加上达到C方案所超出的兆数即可.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【答案】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°−∠ADE−∠ADC=180°−60°−60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴BDCD =DEDG;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD=CD2DG =322=92.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠FAC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴CDBC =CECF,∠DEC=∠BFC,∵BC=5,CF=CD=2√5,∴CE=CD2BC =(2√5)25=4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴AEAD =ADAC=12,∴AC=2AD,AD=2AE,∴AC=4AE=43CE=43×4=163.【知识点】四边形综合【解析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.此题重点考查全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质等知识,解第(3)题时,应注意探究题中的隐含条件,通过适当添加辅助线构造全等三角形和相似三角形;此题难度较大,属于考试压轴题.24.【答案】解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵AE⏜=CD⏜,∴∠ABG=∠DBC=α,∴∠AGB=90°−α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°−α,∴∠BEC=∠AGB,∵∠CEF=180°−∠BEC,∠BGD=180°−∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=√32,AD=2,∴AB=√32,AD=√3,∵AE⏜=CD⏜,∴AE⏜+DE⏜=CD⏜+DE⏜,即AD⏜=CE⏜,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB=ABBG =√32,∴∠AGB=60°,AG=12BG=1,∴EF=DG=AD−AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=12DG=12,DE=√32DG=√32,在Rt△FED中,DF=√EF2+DE2=√72,∴FG+DG+EF=5+√72,∴△FGD的周长为5+√72;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴BHCH =CHFH,设GH=x,∴BH=2−x,∴CH2=2(2−x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2−x)=(x−1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为√3.【知识点】圆的综合【解析】(1)利用直径所对的圆周角为90°和在同一圆中,等弧所对的圆周角相等,即可得结果.(2)证线段相等只需证线段所在的两个三角形全等即可.利用全等三角形的判定可得△CFE≌△BDG(ASA)可得结论,(3)①连接DE,AD⏜=CE⏜,由弧相等得出弧所对的弦相等,在Rt△ABG中,sin∠AGB=AB BG =√32,得EF=1,在Rt△DEG中,∠EGD=60°,可得EG=12,DE=√32,在Rt△FED中,由勾股定理得DF=√72,即可求得周长的值.②如图,过点C作CH⊥BF 于H,可得△BAD≌△CHF(AAS),得FH=AD,由相似三角形的判定可得△BHC∽△CHF,设GH=x,由相似的性质得CH2=2(2−x),在Rt△GHC中,由勾股定理知CG2=GH2+CH2)=(x−1)2+3,即可得最小值.本题考查圆的综合应用,解本题的关键要熟练掌握圆的性质.全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等基本知识点.。

2020年浙江省宁波市中考数学试题及参考答案(word解析版)

2020年浙江省宁波市中考数学试题及参考答案(word解析版)

宁波市2020年初中学业水平考试数学试题(满分为150分,考试时间为120分钟)试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a53.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案与解析试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数解答.【解题过程】解:﹣3的相反数是3.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解题过程】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【总结归纳】此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:1120000000=1.12×109,故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据主视图的意义和画法可以得出答案.【解题过程】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【总结归纳】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率公式计算.【解题过程】解:从袋中任意摸出一个球是红球的概率==.故选:D.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列不等式求解即可.【解题过程】解:由题意得,x﹣2≥0,解得x≥2.故选:C.【总结归纳】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4【知识考点】直角三角形斜边上的中线;勾股定理;三角形中位线定理.【思路分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解题过程】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【总结归纳】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解题过程】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解题过程】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【总结归纳】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【知识考点】全等三角形的判定与性质;等边三角形的性质.【思路分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解题过程】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【总结归纳】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.【知识考点】立方根.【思路分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解题过程】解:实数8的立方根是:=2.故答案为:2.【总结归纳】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.分解因式:2a2﹣18=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解题过程】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.【知识考点】算术平均数;方差.【思路分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解题过程】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).【知识考点】弧长的计算.【思路分析】根据弧长公式即可得到结论.【解题过程】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.【总结归纳】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC =OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.【知识考点】勾股定理;切线的性质.【思路分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解题过程】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.【总结归纳】本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解题过程】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==3,∴=﹣3.故答案为24,﹣3.【总结归纳】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【知识考点】单项式乘多项式;完全平方公式;解一元一次不等式.【思路分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解题过程】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【总结归纳】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【知识考点】利用轴对称设计图案;利用旋转设计图案.【思路分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解题过程】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【总结归纳】本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【知识考点】等腰三角形的性质;解直角三角形的应用.【思路分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【解题过程】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【总结归纳】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;抛物线与x轴的交点.【思路分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【解题过程】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.【总结归纳】本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解题过程】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.【总结归纳】本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.【解题过程】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,由图可甲的速度为=50(千米/小时),货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【总结归纳】本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【知识考点】相似形综合题.【思路分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解题过程】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.【总结归纳】此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【知识考点】圆的综合题.【思路分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC =90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.。

2020年浙江省宁波市中考数学试卷(含详细解析)

由图中给出的信息解答下列问题:
(1)求测试成绩为合格的学生人数,并补全频数直方图.
(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.
(3)这次测试成绩的中位数是什么等第?
(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?
22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
A.2B.2.5C.3D.4
8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A. B.
(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.
(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.
21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).
19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.

宁波市2024学年第一学期十三校联考八上期中考数学试卷(含答案)

2024 学年第一学期八年级(上)期中数学试卷一. 选择题 (每题 3 分, 共 30 分)1. 2023 年第 19 届亚运会是一场规模盛大的体育盛事, 以下是某运会会标, 其中是轴对称图形的是 ( )A. B. C. D.2. 下列长度的三条线段中, 能组成三角形的是 ( )A. 3 cm,5 cm,8 cmB. 3 cm,4 cm,8 cmC. 3 cm,3 cm,5 cmD. 4 cm,4 cm,8 cm3. 若a>b ,则下列不等式不一定成立的是( )A. a+6>a+5B. 3a>3bC. 1−5a<1−5bD. ac >b c4. 能说明命题“若a>b ,则a2>b2 ” 是假命题的反例是( )A. a=−1,b=−2B. a=2,b=−1C. a=2,b=1D. a=−1,b=05. 如图,已知AB=AD ,添加下列一个条件后,仍无法判定△ABC≅△ADC的是( )A. CB=CDB. ∠BCA=∠DCAC. ∠BAC=∠DACD. ∠B=∠D=90∘第 5 题图第 7 题图第 8 题图6. 下列条件中,不能判定△ABC是直角三角形的是 ( )A. ∠A:∠B:∠C=3:4:5B. b2=(a+c)(a−c)C. ∠C=∠A−∠BD. a:b:c=7:24:257. 如图,在 △ABC 中, ∠B =35∘,∠C =50∘ ,分别以点 A,C 为圆心,大于 12AC 的长为半径画弧,过两弧的交点作直线,交 BC 于点 P ,连结 AP ,则 ∠BAP 的度数是( )A. 35∘B. 40∘C. 45∘D. 50∘8. 如图,在 Rt △ABC 中, ∠C =90∘ ,用尺规作图法作出射线 AE,AE 交 BC 于点 D,CD =5,P 为 AB 上一动点,则 PD 的最小值为( )A. 2B. 3C. 4D. 59. 对于任意实数 p 、q ,定义一种运算: p@q =p −q +pq ,例如 2@3=2−3+2×3 . 请根据上述定义解决问题: 若关于 x 的不等式组 {2@x <4x@2≥m有 3 个整数解,则 m 的取值范围是( )A. −8≤m <−5 B. −8<m ≤−5 C. −8≤m ≤−5 D. −8<m <−510. 如图, 清代数学家李锐在其著作《勾股算术细草》中利用三个正方形出入相补的方法证明了勾股定理. 如图,在 Rt △ABC 中, ∠ACB =90∘ ,分别以 AB,AC 和 BC 为边,按如图所示的方式作正方形 ABKH , ACIG 和 BCFD,KH 与 CI 交于点 J,AB 与 DF 交于点 E . 若四边形 BCFE 和 △HIJ 的面积和为 5, 四边形 ACJH 和 △BDE 的面积和为 12,则 AC +BC 的值为( )A. 42 B. 132 C. 48 D. 7第 10 题图 第 14 题图 第 16 题图二、填空题 (每小题 3 分, 共 18 分)11. “ a 的 2 倍与 b 的和是正数”用不等式表示为12. "等腰三角形的两个底角相等" 的逆命题是_____命题(填“真”或“假”).13. 等腰三角形 ABC 中 ∠A =50∘ ,则 ∠B 的度数是 _____14. 在《算法统宗》中有一道 “荡秋千” 的问题: “平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记. 仕女佳人争踣, 终朝笑语欢嬉. 良工高士素好奇, 算出索长有几? ”译文为: 如图, 秋千 OA 静止时踏板离地面 CD 的距离为 1 尺,将它往前面推送两步 (即 CD 的长为 10 尺),秋千的踏板 B 就和人一样高,已知这个人的身高为 5 尺,则绳索 OA 的长度为_____ 尺.15. 已知 x −3y =3 ,且 x >2,y <1 ,若 m =x +2y ,则 m 的取值范围是16. 如图,一副三角板如图叠放, ∠C =∠DFE =90∘,∠A =30∘,∠D =45∘,AC =DE,AC,DE 互相平分于点 O ,点 F 在边 AB 上,边 AC,EF 交于点 H ,边 AB,DE 交于点 G . 则 ∠AFE = _____; 若 GF =a ,则 AH = _____(用含 a 的代数式表示).三、解答题 (第 17、18、22 题各 6 分, 第 19、20、21 题各 8 分, 第 23 题 10 分, 共 52 分)17. 计算 (1) 解不等式 x +5≥3 ,并写出满足该不等式的负整数解.(2)解不等式组 {2x −1≤3(x +1)x −12−x 3<1 ,并把解集表示在数轴上.18. 如图, 由小正方形组成的网格中, 请分别在三个网格中涂黑两个方格, 使整个网络中的黑色方格构成的图案为轴对称图形 (图 1, 图 2, 图 3 中所作的图形不全等).图 1 图 2 图 319. 已知: 如图,在 △ABC 中, AD ⊥BC 于点 D,E 是 AC 上一点,连结 BE 交点 AD 于点 F,BF =AC , DF =DC .(1) 求证: △BDF ≅△ACD .(2) 求证: BE⊥AC .(3) 若BD=4,CD=3 ,求BE的长.20. 已知: 如图,在四边形ABCD中, ∠ABC=Rt∠,CD=7,AD=24 ,点E是AC中点,连结BE,DE,BD ,且BE=12.5 .(1) 求证: ∠ADC=90∘ .(2)若∠BAD=30∘ ,求证: △BDE是等边三角形.21. 2024 年, 人工智能技术将迎来新的突破. 智能驾驶、智能家居、智能医疗等领域的创新将改变人们的生活方式,并带来巨大的便利. 某连锁酒店计划向机器人公司购买A型号和B型号送餐机器人共 40 台, 其中B型号机器人不少于A型号机器人的35倍.(1)该连锁酒店最多购买几台A型号机器人?(2)机器人公司报价A型号机器人 7 万元/台, B型号机器人 9 万元/台,要使总费用不超过 313 万元, 则有哪几种购买方案?22. 如图 1 是有两个外开式活动门扇的双开入户铜门. 门槛AB长为250 cm,AD,BC 分别为左右门扇的底部门宽,且AD=BC ,关上门时, C与D重合. 阳光明媚的某天,将两扇门向外开到如图 2 的位置 (平面示意图),这时阳光正好垂直照射向门槛AB ,因门的遮挡,在门槛上留下三线段AF、FH、HB ,只有线段FH晒到太阳,且AF:FH:HB= 24:11:15 ,求此时C、D间的距离. 太阳光线图1 图223. 如图 1,等腰三角形ABC中, AD是BC边上的中线,延长BC至点E ,使AD=DE ,连结AE .图1 图2 图3(1)求证: △ADE是等腰直角三角形.(2)如图 2,过点B作AC的垂线交AE于点P ,试判断△ABP的形状,并说明理由.(3)如图 3,在(2)的基础上, AD=4 ,连结CP ,若△CPE是直角三角形,求CE的长.答案和解析一、选择题12345678910B C D A B A C D B A二、填空题11. 2a+b>0 12.真公公公号. 宁波初中数学小屋13. 65∘,50∘,80∘14 . 14.515. 4<m<8316. 75∘,3a217. (1) 得x≥−2 .1 分负整数解为x=−2,−1 .2 分(2) 解不等式①,得: x≥−4 .1 分解不等式 2,得x<9 . .2 分故不等式组的解集为: −4≤x<9 .3 分画数轴 .4 分三、简答题18. 如图 (答案不唯一)19. (1) 证明: ∵AD⊥BC ,∴∠ADC=∠BDF=90∘ ,在 Rt △ADC和 Rt △BDF中,{BF=ACDF=DC ∴Rt△ADC≅△Rt△BDF(HL) .3 分(2)证明: ∵Rt△ADC≅Rt△BDF ,∴∠C=∠BFD , .4 分∵∠DBF+∠BFD=90∘ ,∴∠C+∠DBF=90∘ ,∴BE⊥AC .5 分(3) 解: ∵Rt△ADC≅△Rt△BDF ,∴AD=BD=4 , ∵CD=3,BD=4 ,∴BC=BD+CD=7,AC=A D2+C D2=5 .6 分∵S△ABC=12BC⋅AD=12AC⋅BE∴BE=285.8 分20. ∵EB是斜边AC上的中线∴AC=2BE=2×12.5=25 .2 分又∵CD=7,AD=24∴C D2+A D2=A C2 .3 分∴∠ADC=90∘ .4 分(2) ∵BE=AE,DE=AE ,∴∠ABE=∠BAE,∠ADE=∠DAE , .5 分∵∠ABE+∠BAE=∠BEC,∠ADE+∠DAE=∠DEC , ..6 分∴∠BED=∠BEC+∠DEC=2(∠BAE+∠DAE)=2∠BAD ,∵∠BAD=30∘ ,∴∠BED=2∠BAD=60∘ , .7 分∵BE=ED ,∴△EBD是等边三角形 .8 分21. 解: (1) 设该连锁酒店购买x台A型号机器人,则购买(40 - x)台B型号机器人,根据题意得: 40−x≥35x .1 分解得: x≤25 , .2 分∴x的最大值为 25 .3 分答: 该连锁酒店最多购买 25 台A型号机器人;(2)根据题意得: 7x+9(40−x)≤313 , .4 分解得: x≥472. .5 分又∵x≤25 ,且x为正整数,∴x可以为24,25, .6 分∴共有 2 种购买方案,方案 1: 购买 24 台A型号机器人,16 台B型号机器人;方案 2: 购买 25 台A型号机器人,15 台B型号机器人 .22. ∵AF:FH:HB=24:11:15,AB=250 cm ,∴AF=250×2424+11+15=120( cm) ,同理FH=55( cm),HB=75( cm) .2 分∵AD=BC=125 cm . .3 分∴DF=A D2−A F2=35( cm),CH=B C2−H B2=100( cm) .5 分∴CE=100−35=65( cm) ,∴CD=D E2+C E2=5290(7250) ( cm) .6 分图223. (1) 证明: ∵AB=AC,AD是BC边上的中线,∴AD⊥BC , .2 分∴∠ADC=90∘ ,又∵AD=DE ,∴△ADE是等腰直角三角形; .3 分(2) 解: △ABP是等腰三角形.理由: ∵∠ADC=90∘ ,∴∠CAD+∠DCA=90∘ ,∵BP⊥AC ,∴∠PBE+∠DCA=90∘ ,∴∠CAD=∠PBE ,∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD ,∴∠BAD=∠PBE , ∵△ADE是等腰直角三角形,∴∠DAE=∠E=45∘ ,∴∠BAD+∠DAE=∠PBE+∠E ,即∠BAP=∠BPA , .5 分∴BA=BP ,∴△ABP是等腰三角形; .6 分(3) 分两种情况: ①∠PCE=90∘ ,证△ABD≅△BPC(AAS) ,∴BC=AD=4 ,设CE=x ,则CD=4−x,BD=4−x,BC=8−2x ,∴8−2x=4 ,解得x=2 ,即CE=2 ; .8 分②∠CPE=90∘ ,作 PF ⊥CE ,同理可证 △ABD ≅△BPF (AAS ) ,∴BF =AD =4 ,设 EF =x ,则 CF =x,CD =4−2x,BD =4−2x,BC =8−4x,BF =8−3x ,∴8−3x =4 ,解得 x =43 ,图3∴CE =2x =83 .10 分综上所述, EC 的长为 2 或 83 .。

2022年浙江省宁波市中考数学测评考试试题附解析

2022年浙江省宁波市中考数学测评考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将方程(43)(21)1x x +-=化为一般形式,下列正确的是( ) A .28650x x +-=B . 28550x x --=C .26550x x +-=D . 26650x x -+=2.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和 一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单位:分)如下:9.64,9.73,9.72,9.77,9.73,9.68,9.70,则这名选手的最后得分是( ) A .9.71分 B .9.712分 C .9.72分 D .9.73分 3.如图所示,∠l 和∠2是( )A .同位角B .同旁内角C .内错角D .以上结论都不对4.掷一枚硬币,正面向上的概率为( ) A .1B .12C .13D .145.下列计算正确的是( ) A .3303a a a a -÷==B .64642()()ab ab ab ab -÷==C .844()()()x y x y x y --÷+=+D .53532()()a a a a a -÷-=-÷=-6.关于x 的方程2(1)0x a --=的解是3,则a 的值是( ) A .4 B .-4 C .5 D .-5 7.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm二、填空题如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数有 个.9.粮仓顶部是圆锥形,这个圆锥的底面直径为 4m ,母线是 3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡至少需要 m 2.(保留一位小数)10.写出一个开口向下,对称轴是直线 x=3,且与y 轴交点是(0,一2)的抛物线的解析 式: .11.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .12.为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表: 区域12 3 4 5 6 7 8 9 10 降雨量(mm) 10121313201514151414则该县这l0个区域降雨量的众数为 mm ,平均降雨量为 mm .13.一张桌子上摆放着若干个碟子,从三个方向上看,三视图如图所示,则这张桌子上共有 个碟子.14.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 . 15.若方程6=+ny mx 的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12y x 则=m ,=n . 16.55°18′的角的余角等于 ,34°56′的角的补角等于 .17. 某班有40名学生,其中男、女生所占比例如图所示,则该班男生有 人.18.大于-3.3且小于 5的非负整数有 .三、解答题19.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.20.如图所示为点光源 N 照射下的两个竖直标杆 AB、CD 以及它们的影子 BE 和DF.(1)找出点光源N的位置;(2)Rt△ABE 与 Rt△CDF 相似吗?请说明理由.21.判断下列各组数是否成比例,若成比例请写出比例式:(1)73,143,1,2; (2)5,535,一2,10722.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.23.如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.AOB24.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答问题:图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)25.如图所示,在Rt△ABC中,∠A=∠B,CD是∠ACB的平分线,请判定CD与AB的位置关系,并说明理由.26.下面是CBA赛季总分排名在前四位的球队各种分数统计结果:运动队名称吉林通钢八一双鹿广东宏远药业江苏同曦二分球55.Ol%54.96%55.84%53.63%三分球34.79%36.88%38.59%33.77%罚球74.3%77.71%74.O2%66.51%优势在哪里,不足之处是什么?以及在今后的训练与比赛中,要注意怎样调整?27.说说你从下图中获得了哪些信息.各电视节目最爱看的人数统计表28.用字母表示以下运算律.(1)加法交换律;(2)加法结合律;(3)乘法交换律;(4)乘法结合律;(5)分配律.29.为了方便管理,学校每年都为新的七年级学生制作学生卡片,卡片上有了位数字的编号,其中前六位数表示该生入学年份、所在班及该生在班级中的序号;末位数表示性别;1 表示男生,2表示女生. 如:2007年入学的3班32号男同学的编号为 0703321. 则2008年入学的 10班的 15号女同学的编号为多少?有一次老师捡到一张编号为0 807 021 的学生卡片,你能帮忙找到失主吗?30.如图是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点0顺时针依次旋转90°,l80°,270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!(方格纸中的小正方形的边长为1个单位长度)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.B5.C6.A7.D二、填空题8.59.18.810.2=--+(答案不唯一).y x(3)711.70°,ll0°12.14,1413.1214.415.4,216.34°42′,l45°4′17.2218.0,1,2,3,4三、解答题19.如图中斜线区.20.(1)EA 和 FC 的交点为光源N 点.(2)不相似,只有当 AB= CD,且点光源 N 在BD 的垂直平分线上,Rt△ABE才与 Rt△CDF 相似.21.(1)成比例:1423713=;(2)=22.略23.(1)(2)如图.(3)略24.方法不唯一,例如:将△ABC 以点C 为旋转中心,按逆时针方向旋转90°,再向右平移3个单位长度就得到△DEF25.CD ⊥AB ,理由略26.略27.例:男生爱看体育节目,不爱看少儿节目;女生爱看文艺节目,不爱看军事节目28.(1)a+b=b+a (2)(a+b)+c=a+(b+c) (3)ab=ba (4)()()ab c a bc ⋅=⋅ (5)()m a b c ma mb mc ++=++29.2008年入学的10班的15号女同学的编号是0810152. 编号为0807021的学生卡是2008年入学的7班的2号男同学的30.略AOB。

2022年浙江省宁波市中考数学真题(解析版)

2022年浙江省宁波市中考数学真题一、选择题1.2022-的相反数是()A.2022 B.2022- C.12022-D.12022【答案】A 【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A .【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.下列计算正确的是()A.34a a a += B.623a a a ÷= C.()325a a = D.34a a a ⋅=【答案】D 【解析】【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据幂的乘方判断C 选项;根据同底数幂的乘法判断D 选项.【详解】解:A 选项,a 3与a 不是同类项,不能合并,故该选项不符合题意;B 选项,原式=a 4C 选项,原式=a 6,故该选项不符合题意;D 选项,原式=a 4,故该选项符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握a m •a n =a m +n 是解题的关键.3.据国家医保局最新消息,全国统一的医保信息平台己全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为()A.71.3610⨯ B.813.610⨯ C.91.3610⨯ D.100.13610⨯【答案】C 【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:1360000000用科学记数法表示为91.3610⨯.故选:C【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.4.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A. B. C.D.【答案】C 【解析】【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C 符合题意,故答案选:C .【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.6℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃【答案】B 【解析】【分析】应用众数和中位数的定义进行就算即可得出答案.【详解】解:由统计表可知,36.5℃出现了4次,次数最多,故众数为36.5,中位数为36.536.52+=36.5(℃).故选:B .【点睛】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键.6.已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为()A.236πcm B.224πcm C.216πcm D.212πcm 【答案】B 【解析】【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧;【详解】4624S rl πππ==⋅⋅=侧2cm ,故选B .【点睛】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可.7.如图,在Rt ABC 中,D 为斜边AC 的中点,E 为BD 上一点,F 为CE 中点.若AE AD =,2DF =,则BD 的长为()A. B.3C. D.4【答案】D 【解析】【分析】根据三角形中位线可以求得AE 的长,再根据AE =AD ,可以得到AD 的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD 的长.【详解】解:∵D 为斜边AC 的中点,F 为CE 中点,DF =2,∴AE =2DF =4,∵AE =AD ,∴AD =4,在Rt △ABC 中,D 为斜边AC 的中点,∴BD =12AC =AD =4,故选:D .【点睛】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD 的长.8.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为()A.10375x y x y +=⎧⎪⎨+=⎪⎩ B.10375x y x y +=⎧⎪⎨+=⎪⎩ C.75103x y x y +=⎧⎪⎨+=⎪⎩D.75103x y x y +=⎧⎪⎨+=⎪⎩【答案】A 【解析】【分析】根据题意列出方程组即可;【详解】原来有米x 斗,向桶中加谷子y 斗,容量为10斗,则10x y +=;已知谷子出米率为35,则来年共得米375x y +=;则可列方程组为10375x y x y +=⎧⎪⎨+=⎪⎩,故选A .【点睛】本题考查了根据实际问题列出二元一次方程组,题目较简单,根据题意正确列出方程即可.9.点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A.2m >B.32m >C.1m < D.322m <<【答案】B 【解析】【分析】根据y 1<y 2列出关于m 的不等式即可解得答案.【详解】解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m -2)2-(m -1)2<0,即-2m +3<0,∴m >32,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m 的不等式.10.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH 的面积C.BEF 的面积D.AEH △的面积【答案】C【解析】【分析】设正方形纸片边长为x ,小正方形EFGH 边长为y ,得到长方形的宽为x -y ,用x 、y 表达出阴影部分的面积并化简,即得到关于x 、y 的已知条件,分别用x 、y 列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH 是正方形,设正方形纸片边长为x ,正方形EFGH 边长为y ,则长方形的宽为x -y ,所以图中阴影部分的面积=S 正方形EFGH +2S △AEH +2S △DHG=2112()222y y x y xy +⨯-+⨯=2xy ,所以根据题意,已知条件为xy 的值,A.正方形纸片的面积=x 2,根据条件无法求出,不符合题意;B.四边形EFGH 的面积=y 2,根据条件无法求出,不符合题意;C.BEF 的面积=12xy ,根据条件可以求出,符合题意;D.AEH △的面积=21()22xy y y x y --=,根据条件无法求出,不符合题意;故选C .【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.二、填空题11.写出一个大于2的无理数_____.【答案】(答案不唯一)【解析】【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【详解】解:∵,∴大于2的无理数须使被开方数大于4(答案不唯一).【点睛】本题考查无理数定义及比较大小.熟练掌握无理数的定义是解题的关键.12.分解因式:x 2-2x +1=__________.【答案】(x -1)2【解析】【详解】由完全平方公式可得:2221(1)x x x -+=-故答案为2(1)x -.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.13.一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为___________.【答案】511【解析】【分析】利用概率计算公式,用红色球的个数除以球的总个数,算出概率即可.【详解】∵有5个红球和6个白球,∴袋中任意摸出一个球是红球的概率555611P ==+,故答案为:511.【点睛】本题主要考查概率计算公式,一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率()m P A n=,掌握概率计算公式是解答本题的关键.14.定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.【答案】12-##0.5-【解析】【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可.【详解】解:∵11ba b a ⊗=+,∴()211121(1)11x x x x x x x x x x x ++++⊗=+==+++,又∵21(1)++⊗=x x x x,∴22121x x x x x++=+,∴()()()221210x xx x x ++-+=,∴()()2210x x x x +-+=,∴()2210xx +=,∵21(1)++⊗=x x x x即0x ≠,∴210x +=,解得12x =-,经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-.【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.15.如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.【答案】32或65【解析】【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.【详解】解:连接OA ,①当D 点与O 点重合时,∠CAD 为90°,设圆的半径=r ,∴OA =r ,OC =4-r ,∵AC =4,在Rt △AOC 中,根据勾股定理可得:r 2+4=(4-r )2,解得:r =32,即AD =AO =32;②当∠ADC =90°时,过点A 作AD ⊥BC 于点D ,∵12AO •AC =12OC •AD ,∴AD =AO ACOC⋅,∵AO =32,AC =2,OC =4-r =52,∴AD =65,综上所述,AD 的长为32或65,故答案为:32或65.【点睛】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.16.如图,四边形OABC 为矩形,点A 在第二象限,点A 关于OB 的对称点为点D ,点B ,D 都在函数(0)y x x=>的图象上,BE ⊥x 轴于点E .若DC 的延长线交x 轴于点F ,当矩形OABC 的面积为时,EFOE的值为___________,点F 的坐标为___________.【答案】①.12②.(2,0)【解析】【分析】连接OD ,作DG ⊥x 轴,设点B (b ,62b ),D (a ,62a),根据矩形的面积得出三角形BOD 的面积,将三角形BOD 的面积转化为梯形BEGD 的面积,从而得出a ,b 的等式,将其分解因式,从而得出a ,b 的关系,进而在直角三角形BOD 中,根据勾股定理列出方程,进而求得B ,D 的坐标,进一步可求得结果.【详解】解:如图,作DG ⊥x 轴于G ,连接OD ,设BC 和OD 交于I ,设点B (b ,62b ),D (a ,62a),由对称性可得:△BOD ≌△BOA ≌△OBC ,∴∠OBC =∠BOD ,BC =OD ,∴OI =BI ,∴DI =CI ,∴DI CI OI BI,∵∠CID =∠BIO ,∴△CDI ∽△BOI ,∴∠CDI =∠BOI ,∴CD ∥OB ,∴S △BOD =S △AOB =12S 矩形AOCB =922,∵S △BOE =S △DOG =12|k |=3,S 四边形BOGD =S △BOD +S △DOG =S 梯形BEGD +S △BOE ,∴S 梯形BEGD =S △BOD 922,∴12(62a +62b )•(a -b )=922,∴2a 2-3ab -2b 2=0,∴(a -2b )•(2a +b )=0,∴a =2b ,a =-2b (舍去),∴D (2b ,622b ),即:(2b ,32b),在Rt △BOD 中,由勾股定理得,OD 2+BD 2=OB 2,∴[(2b )2+(b )2]+[(2b -b )2+(b -b )2]=b 2+(b )2,∴b ,∴B ,),D (),∵直线OB 的解析式为:y x ,∴直线DF 的解析式为:y x ,当y =0时,x =0,∴x =332,∴F (332,0),∵OE ,OF =332,∴EF =OF -OE =32,∴12EF OE =,故答案为:12,(332,0).【点睛】本题考查了矩形性质,轴对称性质,反比例函数的“k ”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.三、解答题17.计算(1)计算:(1)(1)(2)x x x x +-+-.(2)解不等式组:43920x x ->⎧⎨+≥⎩【答案】(1)21x -(2)3x >【解析】【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.【小问1详解】解:原式2212x x x =-+-21x =-;【小问2详解】解:43920x x ->⎧⎨+≥⎩①②,解不等式①,得3x >,解不等式②,得2x ≥-,所以原不等式组的解是3x >.【点睛】本题考查了整式的混合运算,解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.18.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB 的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;【小问1详解】答案不唯一.【小问2详解】【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.19.如图,正比例函数23y x =-的图像与反比例函数(0)k y k x=≠的图像都经过点(,2)A a .(1)求点A 的坐标和反比例函数表达式.(2)若点(,)P m n 在该反比例函数图像上,且它到y 轴距离小于3,请根据图像直接写出n 的取值范围.【答案】(1)(3,2)A -,6y x =-(2)2n >或2n <-【解析】【分析】(1)把点A 的坐标代入一次函数关系式可求出a 的值,再代入反比例函数关系式确定k 的值,进而得出答案;(2)确定m 的取值范围,再根据反比例函数关系式得出n 的取值范围即可.【小问1详解】解:把2A a (,)的坐标代入23y x =-,223a =-,解得3a =-,∴32A -(,).又∵点32A -(,)是反比例函数(0)k y k x =≠的图像上,∴326k =-⨯=-,∴反比例函数的关系式为6y x =-;【小问2详解】解:∵点P m n (,)在该反比例函数图像上,且它到y 轴距离小于3,∴30m -<<或0m <<3,当3m =-时,623n -==-,当3m =时,623n -==-,由图像可知,若点P m n (,)在该反比例函数图像上,且它到y 轴距离小于3,n 的取值范围为或2n -<.【点睛】本题考查反比例函数图像上点的坐标特征,反比例函数与一次函数的图像交点坐标,把点的坐标代入相应的函数关系式求出待定系数是求函数关系式的常用方法.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【解析】【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【小问1详解】++++=(天).∵4710142055∴这5期的集训共有55天.【小问2详解】由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,-=(秒),进步了11.7211.520.2∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.【小问3详解】个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】(1)15m(2)在该消防车不移动位置的前提下,云梯能够伸到险情处;理由见解析【解析】【分析】(1)在Rt△ABD中,利用锐角三角函数的定义求出AB的长,即可解答;(2)根据题意可得DE=BC=2m,从而求出AD=17m,然后在Rt△ABD中,利用锐角三角函数的定义求出AB的长,进行比较即可解答.【小问1详解】解:在Rt △ABD 中,∠ABD =53°,BD =9m ,∴AB =9cos530.6BD ≈︒=15(m ),∴此时云梯AB 的长为15m ;【小问2详解】解:在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE =BC =2m ,∵AE =19m ,∴AD =AE -DE =19-2=17(m ),在Rt △ABD 中,BD =9m ,∴AB ==m ),<20m ,∴在该消防车不移动位置的前提下,云梯能伸到险情处.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?【答案】(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克【解析】【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式;(2)设每平方米小番茄产量为W 千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【小问1详解】解:∵∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴40.5(2)0.55y x x =--=-+(28x ≤≤,且x 为整数);【小问2详解】解:设每平方米小番茄产量为W 千克,22(0.55)0.550.5(5)12.5=-+=-+=--+w x x x x x .∴当5x =时,w 有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.23.(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF =∥交DE 于点G ,求证:DG EG =.(2)如图2,在(1)的条件下,连接,CD CG .若,6,3⊥==CG DE CD AE ,求DE BC的值.(3)如图3,在ABCD 中,45,︒∠=ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G ,⊥EF EG 交BC 于点F .若40,︒∠=EGF FG 平分,10∠=EFC FG ,求BF 的长.【答案】(1)证明见详解(2)13(3)5+【解析】【分析】(1)利用∥DE BC ,证明,ADG ABF AEG ACF △△△△ ,利用相似比即可证明此问;(2)由(1)得DG EG =,CG DE ⊥,得出DCE 是等腰三角形,利用三角形相似即可求出DE BC的值;(3)遵循第(1)、(2)小问的思路,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .构造出等腰三角形、含30°、45°角的特殊直角三角形,求出BN 、FN 的值,即可得出BF 的长.【小问1详解】解:∵DE BC ∥,∴,ADG ABF AEG ACF △△△△ ,∴,==DG AG EG AG BF AF CF AF,∴DG EG BF CF =.∵BF CF =,∴DG EG =.【小问2详解】解:由(1)得DG EG =,∵CG DE ⊥,∴6CE CD ==.∵3AE =,∴9AC AE CE =+=.∵DE BC ∥,∴ADE ABC .∴13DE AE BC AC ==.【小问3详解】解:如图,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .在ABCD 中,,45=∠=∠=︒BO DO ABC ADC .∵EG BD ∥,∴由(1)得=ME GE ,∵⊥EF EG ,∴10==FM FG ,∴∠=∠EFM EFG .∵40∠︒=EGF ,∴40EMF ∠=︒,∴50EFG ∠=︒.∵FG 平分EFC ∠,∴50∠=∠=︒EFG CFG ,∴18030∠=︒-∠-∠-∠=︒BFM EFM EFG CFG .∴.在Rt FMN 中,sin 305,cos30=︒==︒=MN FM FN FM .∵45,∠=︒⊥MBN MN BN ,∴5==BN MN ,∴5=+=+BF BN FN .【点睛】本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.24.如图1,O 为锐角三角形ABC 的外接圆,点D 在 BC上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:△≌△BDE FDG .(3)如图2,AD 为O 的直径.①当 AB 的长为2时,求AC 的长.②当:4:11=OF OE 时,求cos α的值.【答案】(1)902︒∠=-BFD α(2)见解析(3)①3;②5cos 8α=【解析】【分析】(1)根据∠-∠=∠=AFB BFD ACB α,180∠+∠=︒AFB BFD 即可求解;(2)由(1)的结论,FG AC 、BE FG =证()BDE FDG SAS △≌△即可;(3)①通过角的转换得32∠=∠-∠=ABC ABD DBG α,即可求 AC 的长;②连结BO ,证△∽△BDG BOF ,设4OF x =,则114OE x DE DG kx ===,,由相似的性质即可求解;【小问1详解】∵∠-∠=∠=AFB BFD ACB α,①又∵180∠+∠=︒AFB BFD ,②②-①,得2180∠=︒-BFD α,∴902︒∠=-BFD α.【小问2详解】由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α,∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =.∵FG AC ,∴∠=∠CAD DFG .∵CAD DBE ∠=∠,∴∠=∠DFG DBE .∵BE FG =,∴()BDE FDG SAS △≌△.【小问3详解】①∵△≌△BDE FDG ,∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α.∵DE DG =,∴()11809022∠=︒-∠=︒-DGE FDG α,∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α,∵AD 为O 的直径,∴90ABD ∠=︒.∴32∠=∠-∠=ABC ABD DBG α.∴ AC 与 AB 的度数之比为3∶2.∴ AC 与 AB 的的长度之比为3∶2,∵ 2AB =,∴ 3=AC .②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α.∵2∠=BDG α,∴∠=∠BOF BDG .∵902∠=∠=︒-BGD BFO α,∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k ,∴==DG BD k OF BO.∵411=OF OE ,∴设4OF x =,则114OE x DE DG kx ===,,∴114==+=+OB OD OE DE x kx ,154==+BD DF x kx ,∴154154114114++==++BD x kx k BO x kx k ,由154114+=+k k k,得247150+-=k k ,解得154k =,23k =-(舍),∴11416=+=OD x kx x ,15420=+=BD x kx x ,∴232==AD OD x ,在Rt ABD △中,205cos 328∠===BD x ADB AD x ,∴5cos 8α=.【点睛】本题主要考查圆的性质、三角函数、三角形的全等、三角形的相似,掌握相关知识并灵活应用是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市20XX年中考数学试题(word版,含解析)20XX年浙江省宁波市中考数学试卷解析(全卷满分150分,考试时间120分钟,不得使用计算器)bb24ac参考公式:抛物线y ax bx c的顶点坐标为,. 2a4a2一、选择题(每小题4分,共48分)1. (20XX年浙江宁波4分)1的绝对值是【】 311A. B. 3 C. D. -3 33【答案】A.【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以,的绝对值是,故选A.131313132. (20XX年浙江宁波4分)下列计算正确的是【】342352A. (a) a B. 2a a 2 C. (2a)4a D. a a a【答案】D.【考点】幂的乘方和积的乘方;合并同类项;同底幂乘法.【分析】根据幂的乘方和积的乘方,合并同类项,同底幂乘法运算法则逐一计算作出判断:A. (a2)3a23a6a5,选项错误;B. 2a a21a a2,选项错误;C. (2a)222a24a24a,选项错误;D. a a3a13a4,选项正确.故选D.3. (20XX年浙江宁波4分)20XX年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学计数法可表示为【】A. 0.6×10元B. 60×10元C. 6×10元D. 6×10元【答案】C.【考点】科学记数法. 13111213【分析】根据科学记数法的定义,科学记数法的表示形式为a×10,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵6万亿=6 000 000 000 000一共13位,∴16万亿=6 000 000 000 000=6×10.故选C.4. (20XX年浙江宁波4分)在端午节道来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购. 下面的统计量中,最值得关注的是【】A. 方差B. 平均数C. 中位数D. 众数【答案】D.【考点】统计量的选择,众数。

【分析】学校食堂最值得关注的应该是哪家粽子专卖店爱吃的人数最多,由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数. 故选D.5. (20XX年浙江宁波4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是【】12nA. 【答案】A.B.C.D.【考点】简单组合体的三视图..【分析】根据俯视图的定义,找出从上往下看到的图形,从上往下看,俯视图有两排,前排中间有一个正方形后排三个正方形. 故选A.6. (20XX年浙江宁波4分)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为【】A. 150°B. 130°C. 100°D. 50°【答案】 B.【考点】平行线的性质;补角的定义.【分析】如答图,∵a∥b,∴∠1=∠3.∵∠1=50°,∴∠3=50°.∴∠2=130°.故选B.7. (20XX年浙江宁波4分)如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为【】A. BE=DFB. BF=DEC. AE=CFD. ∠1=∠2【答案】C.【考点】平行四边形的性质;全等三角形的判定.【分析】根据平行四边形的性质和全等三角形的判定对各选项进行分析,作出判断:∵四边形是平行四边形,∴AB∥CD,AB=CD.∴∠ABE=∠CDF.若添加BE=DF,则根据SAS可判定△ABE≌△CDF;若添加BF=DE,由等量减等量差相等得BE=DF,则根据SAS可判定△ABE≌△CDF;若添加AE=CF,是AAS不可判定△ABE≌△CDF;若添加∠1=∠2,则根据ASA可判定△ABE≌△CDF.故选C.8. (20XX年浙江宁波4分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为【】A. 15°B. 18°C. 20°D. 28°【答案】B.【考点】圆周角定理;等腰三角形的性质;三角形内角和定理.【分析】如答图,连接OB,»所对的圆周角和圆心角,∵∠A和∠BOC是同圆中同弧BC∴BOC2 A.∵∠A=72°,∴∠BOC=144°.∵OB=OC,∴CBO BCO.∴CBO故选B.9. (20XX年浙江宁波4分)如图,用一个半径为30cm,面积为300cm的扇形铁皮,制作一个无底的218014418. 2圆锥(不计损耗),则圆锥的底面半径r为【】A. 5cmB. 10cmC. 20cmD. 5cm【答案】B.【考点】圆锥的计算.【分析】∵扇形的半径为30cm,面积为300cm,∴扇形的圆心角为2300360120. 230∴扇形的弧长为1203020cm. 180∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得2r20,解得r10cm.∴圆锥的底面半径为10cm.故选B.10. (20XX年浙江宁波4分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,若h1=1,则h2015的值为【】A. 122015B. 122014C. 1122015 D. 2122014【答案】D.【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE是△ABC的中位线,D1E1是△A D1E1的中位线,D2E2是△A2D2E1的中位线,… ∴h211111, 22111h31212, 2221111h412313, 22221111h201512201412014. 2222…故选D.11. (20XX年浙江宁波4分)二次函数y a(x4)4(a0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为【】A. 1B. -1C. 2D. -2【答案】A.【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数y a(x4)24(a0)的图象在2<x<3这一段位于x 轴的下方,在6<x<7这一段位于x轴的上方,∴当x2513时,二次函数y a(x4)24(a0)的图象位于x轴的下方;当x时,二次函数22y a(x4)24(a0)的图象位于x轴的上方.1652a<a(4)4<0161629∴<a<.259a(134)24>0a>16252∴a的值为1.故选A.12. (20XX年浙江宁波4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【】A. ①②B. ②③C. ①③D. ①②③【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l,①的长和宽分别为a, b,②③的边长分别为c, d.a c d ①根据题意,得cb d ②,a b2c l ③①②,得a c c b a b2c,1211将2c l代入a b2c,得a b2a b l(定值), 22将a b2c代入③,得4c l2c l(定值),而由已列方程组得不到d.∴分割后不用测量就能知道周长的图形标号为①②.故选A.二、填空题(每小题4分,共24分)13. (20XX年浙江宁波4分)实数8的立方根是▲【答案】2.【考点】立方根.【分析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x=a,则x就是a的一个立方根:∵2=8,∴8的立方根是2.14. (20XX年浙江宁波4分)分解因式:x9【答案】x3x3.【考点】应用公式法因式分解.【分析】因为x29x232,所以直接应用平方差公式即可:x29x232x3x3.15. (20XX年浙江宁波4分)命题“对角线相等的四边形是矩形”是▲ 命题(填“真”或“假”)【答案】假.【考点】命题的真假判定;矩形的判定.【分析】根据矩形的判定,对角线相等的平行四边形才是矩形,而对角线相等的四边形也可能是等腰梯形等,故命题“对角线相等的四边形是矩形”是假命题.16. (20XX年浙江宁波4分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9m,则旗杆AB的高度是▲ m(结果保留根号)【答案】+9.【考点】解直角三角形的应用(仰角俯角问题);锐角三角函数定义;特殊角的三角函数值.【分析】根据在Rt△ACD中,tan ACD ADBD,求出AD的值,再根据在Rt△BCD中,tan BCD,DCDC求出BD的值,最后根据AB=AD+BD,即可求出答案:在Rt△ACD中,∵tan ACDAD. ,∴AD DC tan ACD9tan3009DCBD在Rt△BCD中,∵tan BCD,∴BD DC tan BCD9tan450919. DC∴AB=AD+BD=+9(m).17. (20XX年浙江宁波4分)如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,则⊙O的半径为▲【答案】25. 4【考点】矩形的性质;垂径定理;勾股定理;方程思想的应用.【分析】如答图,连接EO并延长交AD于点H,连接AO,∵四边形ABCD是矩形,⊙O与BC边相切于点E,∴EH⊥BC,即EH⊥AD. ∴根据垂径定理,AH=DH.∵AB=8,AD=12,∴AH=6,HE=8.设⊙O的半径为r,则AO=r,OH8r.在Rt OAH中,由勾股定理得8r62r2,解得r∴⊙O的半径为225. 425. 418. (20XX年浙江宁波4分)如图,已知点A,C在反比例函数y例函数y a(a0)的图象上,点B,D在反比xb(b0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,x则a b的值是▲【答案】6. 【考点】反比例函数综合题;曲线上点的坐标与方程的关系;特殊元素法和方程思想的的应用【分析】不妨取点C的横坐标为1,∵点C在反比例函数y a(a0)的图象上,∴点C的坐标为1, a. x∵CD∥x轴,CD在x轴的两侧,CD=2,∴点D的横坐标为1.∵点D在反比例函数y(b0)的图象上,∴点D的坐标为1, b.∵AB∥CD∥x轴,AB与CD的距离为5,∴点A的纵坐标为b 5.∵点A在反比例函数y bxaa, b5. (a0)的图象上,∴点A的坐标为x b5∵AB∥x轴,AB在x轴的两侧,AB=3,∴点B的横坐标为a3b15 a. 3b5b53b15ab25b b∵点B在反比例函数y(b0)的图象上,∴点B 的坐标为, . 3b15a x b5a b2b5b2b5∴.b5b4b15b53b15a∵b50,∴4b15b b 3. ∴a 3.∴a b 6.三、解答题(本大题有8小题,共78分)1x219. (20XX年浙江宁波6分)解一元一次不等式组2x1,并把解在数轴上表示出来. 13【答案】解:由1x2得x3,由2x11得x2, 3∴不等式组的解集为3<x 2.解集在数轴上表示如下:【考点】解一元一次不等式组;在数轴上表示不等式组的解集.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个. 在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20. (20XX年浙江宁波8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都...是白球的概率.【答案】解:(1)设红球的个数为x个,则根据题意,得1. 221,解得x2(检验合适). 21x2∴布袋里红球有2个.(2)画树状图如下:∵两次摸球共有12种等可能结果,两次摸到的球都是白球的情况有2种,∴两次摸到的球都是白球的概率为21. 1261列方程求解即可. 2【考点】列表法或画树状图法;概率;方程思想的应用. 【分析】(1)设红球的个数为x个,根据从中任意摸出1个球,是白球的概率为(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (20XX年浙江宁波8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目. 为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出)(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?【答案】解:(1)∵2025%40,∴本次被调查的学生人数为40人.(2)∵最喜爱足球的人数为4030%12;最喜爱跑步的人数为401012153,∴补全条形统计图如下:151290,(3)∵12004041∴估计全校最喜爱篮球的人数比最喜爱足球的人数多90人.【考点】条形统计图和扇形统计图;频数、频率和总量的关系;用样本估计总体.【分析】(1)用最喜爱跳绳的人数除以其所占百分比即可得本次被调查的学生人数.(2)求出最喜爱足球的人数和最喜爱跑步的人数即可补全条形统计图.(3)用总人数乘以样本中最喜爱篮球的人数所占比例与最喜爱足球的人数所占比例的差即可.22. (20XX年浙江宁波10分)宁波火车站北广场将于20XX年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【答案】解:(1)设B种花木的数量是x棵,则A种花木的数量是2x600棵.根据题意,得x2x6006600,解得x2400, 2x6004200.答: A种花木的数量是4200棵,B种花木的数量是2400棵.(2)设安排y人种植A种花木,则安排26y人种植B种花木. 根据题意,得42002400,解得y14. 60y4026y经检验,y14是原方程的根,且符合题意.26y12.答:安排14人种植A种花木,安排12人种植B种花木,才能确保同时完成各自的任务.【考点】一元一次方程和分式方程的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设B种花木的数量是x棵,则A种花木的数量是2x600棵,等量关系为:“广场内种植A、B两种花木共6600棵”.(2)方程的应用解题关键是找出等量关系,列出方程求解. 本题设安排y 人种植A种花木,则安排26y人种植B种花木,等量关系为:“每人每天能种植A花木60棵或B花木40棵”.23. (20XX年浙江宁波10分)已知抛物线y(x m)(x m),其中m 是常数(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点?【答案】解:(1)证明:∵y(x m)2(x m)(x m)(x m1),∴由y(x m)(x m1)0得x1m, x2m 1.∵m m1,∴不论m为何值,该抛物线与x轴一定有两个公共点. 2 5,2(2)①∵y(x m)2(x m)x22m1x m m1,∴抛物线的对称轴为直线x2m125,解得m 2. 2∴抛物线的函数解析式为y x25x 6.51②∵y x25x6x. 24∴该抛物线沿y轴向上平移21个单位长度后,得到的抛物线与x轴只有一个公共点. 4【考点】抛物线与x轴交点问题;二次函数的性质;二次函数的平移性质.【分析】(1)证明y0总有两个不等的实数根即可.(2)①根据对称轴为直线x5列方程求解即可. 2②把y x25x6化为顶点式即可求解.24. (20XX年浙江宁波10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形。

相关文档
最新文档