八年级数学上册 1.3 平行线的性质(第2课时)教案 浙教版
1.3 平行线的性质 课件2(数学浙教版八年级上册)

上节结论
你记 清楚了吗?
同位角相等,两直线平行
两直线平行,同位角相等。
AB // CD 可得____________
内错角相等,两直线平行 4、如果∠2=∠4,根据________________________ AD // BC 可得_____________ ∠3 =_______ ∠5 , 5、如果_______ 根据内错角相等,两直线平行, 1 2 4 5 C D
B 3 4 1 A C 2 E D
3 如图,D,E分别是AB,AC上的点.若∠1=∠2,则 DE ∥ BC ( 内错角相等,两直线平行 ) ∴ ∠EDB+∠ABC= 180°(两直线平行,同旁内角互补).
A D 1 2 B C E
例3 如图,已知AB∥CD,AD∥BC。判 断∠1与∠2是否相等,并说明理由。 解 ∠1=∠2. 理由如下:
例2 如图,已知∠1=∠2,若直线b⊥m,则直线a⊥m, 请说明理由.
n 解 ∵∠1=∠2(已知)
1 3
m
∴a∥b(同位角相等,两直线平行)
a
4
∴∠3=∠4(两直线平行,同位角相等) ∵b⊥m(已知) ∴∠4=90°(垂直的意义) ∴∠3=90° ∴a⊥m.
2
b
2如图,若∠1=∠2,则 AB ∥ CD (同位角相等,两直线平行 ), ∠3 = ∠4 (两直线平行,内错角相等)。
1 2 3 4
a A b d B
第2题
A
D
E C D 第3题
c
第1题
C
B
• 如图所示, 已知AB//CD ,AD//BC, BF平分 ∠ABC ,DE平分∠ADC, • 则 DE//FB,请说明理由.
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。
浙教版八年级数学上册1.3平行线的性质(2)

A B
C
B
F E C 图2 D
A
图1
练习二: 填空:如图(1):
∴∠B= ∠ C
AB
CD
(已知), ( 两直线平行,内错角相等).
如图(2):
∠ ADE= ∠ B (已知), ∴ DE BC ( 同位角相等,两直线平行), ∴∠CED+∠ C=180º(两直线平行,同旁内角互补 ).
A A B D C (1) D B (2) E C
D C
解:∠1=∠2 ∠ B A ∵AB∥CD(已知) ∥ (已知) ∴∠1+∠ ∴∠ ∠BAD=180° ° 图1—14 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∵AD∥BC(已知) ∥ (已知) ∴∠2+∠ ∴∠ ∠BAD=180° ° 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∴∠1=∠ (同角的补角相等) ∴∠ ∠2(同角的补角相等) 讨论: 还有其它解法吗? 如不用“ 两直线平行, 同 讨论 : 还有其它解法吗 ? 如不用 “ 两直线平行 , 旁内角互补”这个性质是否可以解? 旁内角互补”这个性质是否可以解?
D
(2)
∴ ∠3+ ∠4=180 °
平角的意义) 又∵ ∠2+ ∠4=180 ° (平角的意义)
∵ ∠2=∠3 ∠
( 已证 已证)
F
平行线的性质: 性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等.
数学表示格式:
已知) ∵ AB ∥ CD (已知 已知 ∴ ∠2=∠3( ∠ ( )
C
做一做: 做一做:
3、如图,已知∠1+∠2=180 ° , 如图,已知∠1+∠ ∠3=65°,求∠4的度数。 3=65° 的度数。
《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。
2. 通过实例让学生熟练掌握平行线的性质。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。
2. 教学难点:如何理解和应用平行线的性质。
三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。
- 提出问题,引导学生思考平行线的相关知识。
2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。
- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。
- 鼓励学生动手操作,亲自验证平行线的性质。
4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。
- 对学生的解答进行点评,帮助他们改正错误,加深理解。
5. 小结与反思:
- 引导学生总结本节课的学习内容。
- 鼓励学生分享自己的学习心得,提出疑问或困惑。
四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。
五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。
- 思考如何改进教学方法,提高教学质量。
八年级-浙教版-数学-上册-[教学设计] 第1课时 平行线的性质与判定
![八年级-浙教版-数学-上册-[教学设计] 第1课时 平行线的性质与判定](https://img.taocdn.com/s3/m/4de2b88f77a20029bd64783e0912a21614797f91.png)
第1章三角形的初步知识1.3 证明第1课时平行线的性质与判定【教学内容】浙教版八年级上册第1.3证明第1课时平行线的性质与判定.【教材分析】推理与证明在初中数学教学中是一个重要内容,里面包含很强的逻辑思维和重要的数学思想.掌握好推理与证明,不但是学生应掌握的数学知识,也是延伸数学应用的一个内容.本节课内容是在已学过的定义、命题、定理、性质、基本事实等基础上开展的,并为后期几何知识的相关证明和推理奠定了基础,在整个初中数学学习阶段具有举足轻重的地位.【学情分析】对数学严谨性的认识具有相对性,而实际上数学的严谨性本身也具有相对性.初中数学教学只能帮助学生认识数学的最基本的内容和方法,因此对数学严谨性也有一个逐步适应和提高的过程.鉴于这个层面,平面几何启蒙阶段的初中生对于推理证明还不太适应,不理解证明的意义,不太懂证明的方法和格式,这些都是需要老师和学生共同克服的问题.推理与证明是在已学过的定义、定理、性质、基本事实等基础上开展的新的知识,而这些对于初中生来说,还是比较抽象的,要学生会正确地应用这些知识来进行新的推理与证明,就要让学生在课堂上能完全明白这些定义、定理、性质、基本事实的意义和用法.【教学目标】1.了解证明的含义;2.体验、理解证明的意义和必要性;3.会根据平行线的性质与判定进行简单的推理论证.【教学重难点】简单的推理证明.【教学方法】自主学习、合作交流、大胆猜想、启发式教学.【教学过程】一、证明的必要性问题1、观察下面图形,你有什么感觉?如上图所示,一组直线a、b、c、d是否都互相平行?问题2、动手测量一下线段AB与线段CD,哪条长?三、证明的步骤已知:如图,DE∥BC,∠1=∠E.求证:BE平分∠ABC.出示例题,先让学生独立思考,然后教师引导学生共同写出证明过程,在此期间,强调证明过程必须有理有据总结归纳:证明几何命题的思路分析根据已知依据所学步步递推证实判断四、题型总结类型一、平行线的判定例1 已知:如图,在四边形ABCD中,AC平分∠BAD,∠1=∠2.证明:AB∥CD.变式跟进1如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.类型二、平行线的性质例2 已知:如图,AB∥CD,EP、FP分别平分∠BEF、∠DFE.求证:∠PEF+∠PFE=90°.变式跟进2 已知:如图所示,直线AB//CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.类型之三平行线的性质与判定的综合例3 已知:如图,∠A=∠C,∠1和∠2互补.求证:AB∥CD.变式跟进3请将下列证明过程补充完整.已知:如图,AD⊥BC,EF⊥BC,垂足分别为DF,∠EGA=∠E.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFC=∠ADC=90°(垂直的定义).∴AD∥EF (____________________) .∴ _____= _____(两直线平行,内错角相等),_____= _____(两直线平行,同位角相等).∵ _____= _____(已知),∴ _____________________,∴AD平分∠BAC(____________________).(注重推理过程和理由)。
浙教版 数学八年级上第1章 电子课本

第1章 平行线§1.1同位角、内错角、同旁内角问题:平面上两条直线有哪两种位置关系?(平行和相交) 两条直线和第三条直线相交的关系:像∠1与∠5,它们都在第三条直线 l 3 的同旁,并且分别位于直线l 1,l 2 的相同一侧,这样的一对角叫做同位角。
同位角:∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7像∠3和∠5分别位于第三条直线l 3 的异侧,并且都在两条直线l 1 与l 2 之间,这样的一对角叫做内错角。
内错角:∠3和∠5 ∠4和∠6像∠3与∠6都在第三条直线l 3 的同旁,并且在直线l 1 与l 2 之间,这样的一对角叫做同旁内角。
同旁内角:∠4和∠5 ∠3和∠6例1 如图,直线DE 截直线AB ,AC ,构成8个角。
指出所有的同位角、内错角和同旁内角。
练一练:1.如图,直线AB ,CD 被直线EF 所截,请找出一对同位角,一对内错角和一对同旁内角。
2.(1)如果把图看成是直线AB ,EF 被直线CD 所截,那么∠1与∠2是一对什么角?∠3与∠4呢?∠ 2与∠4呢? (2)如果把图看成是直线CD ,EF 被直线AB 所截,那么∠1与∠5是一对什么角? (3)哪两条直线被哪一条直线所截,∠2与∠5是同位角?(直线AB 和CD 被直线EF 所截)合作学习:如图1-3:两只手的食子和拇指在同一平面内,它们构成的一对角可以看成是什么角?类似地,你还能用两只手的手指构成同位角和同旁内角吗?例2 如图,直线DE 交∠ABC 的边BA 于点F 。
如果内错角∠1与∠2相等,那么同位角∠1与∠4相等,同旁内角∠1与∠3互补。
请说明理由。
小结: 变式图形,图中的∠1与∠2都是同位角。
图形特征:在形如字母“F ”的图形中有同位角。
变式图形:图中的∠1与∠2都是内错角。
图形特征:在形如“Z ”的图形中有内错角。
3l 1l 2l 1234567812345678A B C D E E FA B DCP Q 12345A BC DE F 1234A BC D E F变式图形:图中的∠1与∠2都是同旁内角。
浙江省义乌市下骆宅初级中学八年级数学上册 平行线的性质(1)学案(无答案) 浙教版

1.3 平行线的性质(1)〖学习目标〗1.理解:平行线的性质与平行线的判定是互逆关系.2.掌握:平行线的性质.3.应用:会用平行线的性质进行推理和计算.4.通过学习平行线的性质与判定的联系与区别,培养学生事物是普遍联系又是相互区别的辩证唯物主义思想.〖学习过程〗(一)创设情境,复习导入1.如图2-58,2.如图2-59,(1)已知∠1=∠2,则∠2与∠3有什么关系?为什么?(2)已知∠1=∠2,则∠2与∠4有什么关系?为什么?3.如图2-60,一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是142°,第二次拐的角∠C是多少度?分析:第3题是一个实际问题,要给出∠C的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系?(二)探索新知、讲授新课1.请同学们画出直线AB的平行线CD,结合画图过程思考画出的平行线,已有一对同位角的关系是怎样的?利用量角器量一下.得性质:两直线平行,同位角相等.2.请同学们观察图2-62的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?得:两直线平行,内错角相等两直线平行,同旁内角互补(三)尝试反馈,巩固练习已知平行线AB、CD被直线AE所截(1)从∠1=110°,可以知道∠2是多少度?为什么?(2)从∠1=110°,可以知道∠3是多少度?为什么?(3)从∠1=110°,可以知道∠4是多少度,为什么?(四)当堂检测:1.图2-65是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?2.如图2-69,已知D是AB上的一点,E是AC上的一点,∠ADE=60°,∠B=60°,∠AED=40°(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、1.合作学习:
如图,直线AB∥CD,并被直线EF所截。
∠2与∠3相等吗?∠3与∠4的和是多少度?
思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2.你发现平行线还有哪些性质?
平行线的性质:
两条平行线被第三条直线所截,内错角相等。
简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
简单地说,两直线平行,同旁内角互补。
3.做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2= ()
∠3= -∠1= ()
4.例3 如图1-14,已知AB∥CD,AD∥BC。
判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?
解:∠1=∠2
∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)
∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5.练一练:(P.14课内练习1、2)
6.例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。
∠CBD与∠D相等吗?请说明理由。
思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
教学反思
学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.所以理解由判定公理推出判定定理的证明过程是重点,也是难点.。