数学1模(1)
高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题

模块1高考真题对应学生用书P81剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.但在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的.“稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心去理解归纳,是难以拿到高分的.在数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修1集合与函数知识的考查,相对来说比较常规,难度不大,变化小,综合性低,属于基础类必得分试题,主要考查集合的概念及运算,函数的图象及定义域、值域、单调性、奇偶性、对称性、周期、最值等基本性质.做题时若能熟练应用概念及性质,掌握转化的技巧和方法,基本不会丢分。
若综合其他省市自主命题卷研究,必修1的知识又能与命题、不等式、导数、分段函数等知识综合,强化了数形结合思想、分类讨论思想、转化与化归的数学思想的运用,提高了试题的难度,所以作为高一学生来说,从必修1就应该打好牢固的基础,培养最基本的能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修1所考查的全部试题,请同学们根据所学必修1的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学习内容的小综合试题,同学们可根据目前所学内容,有选择性地试做!)穿越自测一、选择题1.(2018·全国卷Ⅰ,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案A解析根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.2.(2018·全国卷Ⅱ,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案C解析∵A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.3.(2018·某某卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}答案C解析因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得,∁U A={2,4,5},故选C.4.(2018·全国卷Ⅲ,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案C解析由集合A={x∈R|x≥1},所以A∩B={1,2},故选C.5.(2018·某某卷,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C ={-1,0,1}.故选C.6.(2018·某某卷,理1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}答案 B解析由题意可得,∁R B={x|x<1},结合交集的定义可得,A∩(∁R B)={x|0<x<1}.故选B.7.(2018·卷,文1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2} 答案 A解析 A ={x ||x |<2}={x |-2<x <2},B ={-2,0,1,2},∴A ∩B ={0,1}.故选A. 8.(2018·全国卷Ⅰ,理2)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0,得x <-1或x >2,所以A ={x |x <-1或x >2},于是∁R A ={x |-1≤x ≤2},故选B.9.(2018·全国卷Ⅲ,文7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x ) 答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln (2-x )过此点.故B 正确.10.(2018·某某卷,理5)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 由题意结合对数函数的性质可知,a =log 2e>1,b =ln 2=1log 2e ∈(0,1),c =log1213=log 23>log 2e ,据此可得,c >a >b .故选D.11.(2018·全国卷Ⅱ,文3)函数f (x )=e x -e-xx2的图象大致为( )答案 B解析 ∵x ≠0,f (-x )=e -x-e xx2=-f (x ), ∴f (x )为奇函数,排除A ,∵f (1)=e -e -1>0,∴排除D ;∵f (2)=e 2-e -24=4e 2-4e 216;f (4)=e 4-e-416=e 2·e 2-1e 416,∴f (2)<f (4),排除C.因此选B.12.(2018·全国卷Ⅰ,理9)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞) D.[1,+∞) 答案 C解析 画出函数f (x )的图象,再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C.13.(2018·全国卷Ⅰ,文12)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值X 围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎪⎨⎪⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值X 围是(-∞,0),故选D.14.(2018·全国卷Ⅲ,理12)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案 B解析 ∵a =log 0.20.3,b =log 20.3,∴1a =log 0.30.2,1b =log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b <1,即0<a +b ab<1.又∵a >0,b <0,∴ab <0,即ab <a +b <0,故选B.二、填空题15.(2018·某某卷,1)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 答案 {1,8}解析 由题设和交集的定义可知,A ∩B ={1,8}.16.(2018·某某卷,5)函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 要使函数f (x )有意义,则log 2x -1≥0,解得x ≥2,即函数f (x )的定义域为[2,+∞).17.(2018·全国卷Ⅰ,文13)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2018·全国卷Ⅲ,文16)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,则f (-a )=-2.19.(2018·卷,理13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 y =sin x (答案不唯一)解析 令f (x )=⎩⎪⎨⎪⎧0,x =0,4-x ,x ∈0,2],则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.20.(2018·某某卷,9)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________.答案22解析 由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=-1+12=12,因此f [f (15)]=f 12=cos π4=22. 21.(2018·某某卷,15)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值X 围是________.答案 (1,4) (1,3]∪(4,+∞)解析 由题意,得⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x -4>0,此时f (x )=x 2-4x +3=0,x =1,3,即在(-∞,λ)上有两个零点;当λ≤4时,f (x )=x -4=0,x =4,由f (x )=x 2-4x +3在(-∞,λ)上只能有一个零点,得1<λ≤3.综上,λ的取值X 围为(1,3]∪(4,+∞).22.(2018·某某卷,理14)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x的方程f (x )=ax 恰有2个互异的实数解,则a 的取值X 围是________.答案 (4,8)解析 当x ≤0时,方程f (x )=ax ,即x 2+2ax +a =ax ,整理可得,x 2=-a (x +1),很明显x =-1不是方程的实数解,则a =-x 2x +1,当x >0时,方程f (x )=ax ,即-x 2+2ax -2a =ax ,整理可得,x 2=a (x -2),很明显x =2不是方程的实数解,则a =x 2x -2,令g (x )=⎩⎪⎨⎪⎧-x 2x +1,x ≤0,x 2x -2,x >0,其中-x 2x +1=-x +1+1x +1-2,x 2x -2=x -2+4x -2+4,原问题等价于函数g (x )与函数y =a 有两个不同的交点,求a 的取值X 围.结合对勾函数和函数图象平移的规律绘制函数g (x )的图象,同时绘制函数y =a 的图象如图所示,考查临界条件,结合a >0观察可得,实数a 的取值X 围是(4,8).。
考研数学一(概率统计)模拟试卷1(题后含答案及解析)

考研数学一(概率统计)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.对任意两个事件A和B,若P(AB)=0,则( ).A.AB=B.C.P(A)P(B)=0D.P(A—B)=P(A)正确答案:D解析:选(D),因为P(A—B)=P(A)一P(AB).知识模块:概率统计部分2.在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于( ).A.{T(1)≥t0}B.{T(2)≥t0)C.(T(3)≥t0)D.{T(4)≥t0}正确答案:C解析:{T(1)≥t0)表示四个温控器温度都不低于临界温度t0,而E发生只要两个温控器温度不低于临界温度t0,所以E={T(3)≥t0},选(C).知识模块:概率统计部分3.设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是( ).A.B.C.P(AB)=P(A)P(B)D.P(A-B)=P(A)正确答案:D解析:因为A,B不相容,所以P(AB)=0,又P(A-B)=P(A)-P(AB),所以P(A-B)=P(A),选(D).知识模块:概率统计部分4.设A,B为两个随机事件,其中00且P(B|A)=,下列结论正确的是( ).A.P(A|B)=B.P(A|B)≠C.P(AB)=P(A)P(B)D.P(AB)≠P(A)P(B)正确答案:C解析:知识模块:概率统计部分5.设0,则下列结论正确的是( ).A.事件A,B互斥B.事件A,B独立C.事件A,B不独立D.事件A,B对立正确答案:B解析:知识模块:概率统计部分6.设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).A.f1(x)+f2(x)为某一随机变量的密度函数B.f1(x)f2(x)为某一随机变量的密度函数C.F1(x)+F2(x)为某一随机变量的分布函数D.F1(x)F2(x)为某一随机变量的分布函数正确答案:D解析:可积函数f(x)为随机变量的密度函数,则f(x)≥0且,显然(A)不对,取两个服从均匀分布的连续型随机变量的密度函数验证,(B)显然不对,又函数F(x)为分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,F(+∞)=1,显然选择(D).知识模块:概率统计部分7.设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与一X分布函数相同,则( ).A.F(x)=F(一x)B.F(x)=一F(一x)C.f(x)=f(一x)D.f(x)=一f(一x)正确答案:C解析:知识模块:概率统计部分8.设随机变量X的密度函数为,则P{a 知识模块:概率统计部分9.设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)( ).A.与μ及σ2都无关B.与μ有关,与σ2无关C.与μ无关,与σ2有关D.与μ及σ2都有关.正确答案:A解析:知识模块:概率统计部分10.设X~N(μ,42),Y~N(μ,52),令p=P(X≤μ一4),q=P(Y≥μ+5),则( ).A.p>qB.p<qC.p=qD.p,q的大小由μ的取值确定正确答案:C解析:知识模块:概率统计部分11.设随机变量X~N(μ,σ2),其分布函数为F(x),则对任意常数a,有( ).A.F(a+μ)+F(a一μ)=1B.F(μ+a)+F(μ一a)=1C.F(a)+F(一a)=1D.F(a一μ)+F(μ一a)=1正确答案:B解析:知识模块:概率统计部分12.设随机变量X~U[1,7],则方程x2+2Xx+9=0有实根的概率为( ).A.B.C.D.正确答案:C解析:知识模块:概率统计部分填空题13.设P(B)=0.5,P(A—B)=0.3,则P(A+B)=__________.正确答案:0.8解析:因为P(A—B)=P(A)一P(AB),所以P(A+B)=P(A—B)+P(B)=0.8.知识模块:概率统计部分14.设P(A)=0.6,P(B)=0.5,P(A—B)=0.4,则P(B—A)=_________,P(A+B)=__________.正确答案:0.9解析:因为P(A—B)=P(A)一P(AB),所以P(AB)=0.2,于是P(B—A)=P(B)一P(AB)=0.5—0.2=0.3,P(A+B)=P(A)+P(B)一P(AB)=0.6+0.5一0.2=0.9.知识模块:概率统计部分15.设事件A,B相互独立,P(A)=0.3,且,则P(B)=___________.正确答案:解析:知识模块:概率统计部分16.设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则=_________.正确答案:0.6解析:由P(A—B)=P(A)一P(AB)=0.3及P(A)=0.7,得P(AB)=0.4,则=1一P(AB)=0.6.知识模块:概率统计部分17.设P(A)=0.4,且P(AB)=P(AB),则P(B)=____________.正确答案:0.6解析:因为P(AB)=P(A+B)=1一P(A+B),所以P(AB)=1一P(A+B)=1一P(A)一P(B)+P(AB),从而P(B)=1一P(A)=0.6.知识模块:概率统计部分18.设A,B为两个随机事件,则=_________.正确答案:0解析:知识模块:概率统计部分19.设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为___________.正确答案:解析:A,B,C都不发生的概率为=1一P(A+B+C),而ABCAB且P(AB)=0,所以P(ABC)=0,于是P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)=,故A,B,C都不发生的概率为.知识模块:概率统计部分20.设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+c)=,则P(A)=__________.正确答案:解析:由P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)且ABC=,P(A)=P(B)=P(C),得知识模块:概率统计部分21.有16件产品,12个一等品,4个二等品.从中任取3个,至少有一个是一等品的概率为_________正确答案:解析:设A={抽取3个产品,其中至少有一个是一等品},.知识模块:概率统计部分22.设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为__________.正确答案:解析:设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),知识模块:概率统计部分23.从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=_________.正确答案:9解析:n阶行列式有n!项,不含a11的项有(n一1)(n一1)!个,则=,则n=9.知识模块:概率统计部分24.设一次试验中,出现事件A的概率为P,则n次试验中A至少发生一次的概率为___________,A至多发生一次的概率为___________.正确答案:解析:知识模块:概率统计部分25.正确答案:解析:知识模块:概率统计部分26.正确答案:4解析:知识模块:概率统计部分27.设X~B(2,p),Y~B(3,p),且P(X≥1)=,则P(Y≥1)=_________.正确答案:解析:知识模块:概率统计部分28.设X~N(2,σ2),且P(2≤X≤4)=0.4,则P(X<0)=__________.正确答案:0.1解析:知识模块:概率统计部分29.设随机变量X服从参数为λ的泊松分布,且P(X=0)=,则P(X≥1)=_________正确答案:1-e-2解析:知识模块:概率统计部分30.设随机变量X服从参数为λ的指数分布,且E[(X一1)(X+2)]=8,则λ=__________.正确答案:解析:知识模块:概率统计部分31.正确答案:2解析:知识模块:概率统计部分32.一工人同时独立制造三个零件,第k个零件不合格的概率为,以随机变量X表示三个零件中不合格的零件个数,则P(X=2)=__________.正确答案:解析:知识模块:概率统计部分33.正确答案:解析:Y的可能取值为2,3,6,知识模块:概率统计部分34.设随机变量X~N(0,1),且Y=9X2,则Y的密度函数为__________.正确答案:解析:知识模块:概率统计部分35.设随机变量X的概率密度函数为,则Y=2X的密度函数为fY(y)=_________正确答案:解析:知识模块:概率统计部分36.设离散型随机变量X的分布函数为则Y=X2+1的分布函数为_________.正确答案:解析:知识模块:概率统计部分解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一(高等数学)模拟试卷120(题后含答案及解析)

考研数学一(高等数学)模拟试卷120(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.=A.0.B.-∞.C.+∞.D.不存在但也不是∞.正确答案:D解析:因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选(D).知识模块:高等数学2.设f(x)=x-sinxcosxcos2x,g(x)=则当x→0时f(x)是g(x)的A.高阶无穷小.B.低价无穷小.C.同阶非等价无穷小.D.等价无穷小.正确答案:C解析:由等价无穷小因子替换及洛必达法则可得因此选(C).知识模块:高等数学填空题3.设有定义在(-∞,+∞)上的函数:(A)f(x)= (B)g(x)=(C)h(x)= (D)m(x)=则(I)其中在定义域上连续的函数是____________;(II)以x=0为第二类间断点的函数是____________.正确答案:(I)B(Ⅱ)D解析:(I)当x>0与x<0时上述各函数分别与某初等函数相同,故连续.从而只需再考察哪个函数在点x=0处连续.注意到若f(x)=,其中g(x)在(-∞,0]连续h(x)在[0,+∞)连续.因f(x)=g(x)(x∈(-∞,0])f(x)在x=0左连续.若又有g(0)=h(0)f(x)=h(x)(x∈[0,+∞))f(x)在x=0右连续.因此f(x)在x=0连续.(B)中的函数g(x)满足:sinx|x=0=(cosx-1)|x=0,又sinx,cosx-1均连续g(x)在x=0连续.因此,(B)中的g(x)在(-∞,+∞)连续.应选(B).(Ⅱ)关于(A):由x=0是f(x)的第一类间断点(跳跃间断点).关于(C):由e≠h(0)=0是h(x)的第一类间断点(可去间断点).已证(B)中g(x)在x=0连续.因此选(D).或直接考察(D).由=+∞x=0是m(x)的第二类间断点.知识模块:高等数学解答题解答应写出文字说明、证明过程或演算步骤。
考研《数学一》模考试题+解析

一、选择题:(1)〜(8)小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的。
1.设f(x)的导函数为222)1(1x x +-,则f(x)的一个原函数是()。
A.x arctan 1+B.xarctan 1-C.)1ln(2112x ++D.)1ln(2112x +-2.设二维随机变量(X,Y)的分布函数为的值依次为和则常数πB A yB x A y x F 2arctan )(arctan 2(),(++=()。
A.π和π22B.41π和πC.212π和πD.21π和π3.设向量组(Ⅰ)β1,β2,…,βt,(Ⅱ)α1,α2,…,αs,则下列命题:①若向量组(Ⅰ)可由(Ⅱ)线性表示,且s<t,则必有(Ⅰ)线性相关,②若向量组(Ⅱ)可由(Ⅰ)线性表示,且s<t,则必有(Ⅰ)线性相关,③若向量组(Ⅰ)可由(Ⅱ)线性表示,且(Ⅰ)线性无关,则必有s≥t,④若向量组(Ⅱ)可由(Ⅰ)线性表示,且(Ⅰ)线性无关,则必有s≥t,正确的是()。
A.①④B.①③C.②③D.②④4.设当x→0时,tdt x x x x x x x xsin )(,11)(,sin tan )(cos 1022⎰-=--+=-=γβα都是无穷小,将它们关于x 的阶数从低到高排列,正确的顺序为()。
A.)(x α,)(x β,)(x γB.)(x α,)(x γ,)(x β考研《数学一》模考试题+解析C.)(x γ,)(x α,)(x βD.)(x β,)(x α,)(x γ5.设矩阵).(3E)-A r )r ,~,220210000300000=+--=((则矩阵E A B A B A.6B.7C.5D.46.设处则在a x a x a f x f ax =-=--→,1)()()(lim2()。
A.0)()(≠'=a f a x x f 处可导且在B.的极大值(为))(x f a fC.的极值(不是))(x f a fD.处不可导在a x x f =)(7.设⎰=40sin ln πxdx I ,⎰=40cot ln πxdx J ,⎰=40cos ln πxdx K ,则I,J,K 的大小关系为()。
2023高考数学模拟卷(一)(含答案解析)

9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
数模第一次作业-(1)

. .2016年数学建模论文第套论文题目:专业、:专业、:专业、:提交日期: 2016.6.27题目:人口增长模型的确定摘要对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,先求对数用matlab里线性拟合求出参数,即人口净增长率r=0.0214,对该模型与实际数据进行对比,并计算了从1980年后每隔10年的人口数据,与实际对比,有很大出入。
因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=0.0268和人口所能容纳最大值m x=285.89,与实际数据对比,拟合得很好,并预测出1980年后每隔10年的人口数据,与实际对比,比较符合。
为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,并计算了误差。
关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示:表1 人口记录表试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。
二、问题分析由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来50年人口数据预测,但发现与实际数据有较大出入。
考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年人口实际数据。
三、问题假设1.假设所给的数据真实可靠;2.各个年龄段的性别比例大致保持不变;3.人口变化不受外界大的因素的影响;4.马尔萨斯人口模型(1)单位时间的人口增长率r 为常数;(2)将N t 视为t 的连续可微函数。
考研数学一(矩阵及其运算)模拟试卷1(题后含答案及解析)

考研数学一(矩阵及其运算)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.下列命题中不正确的是A.如A是n阶矩阵,则(A—E)(A+E)=(A+E)(A—E).B.如A,B均是n×1矩阵,则ATB=BTA.C.如A,B均是n阶矩阵,且AB=0,则(A+B)2=A2+B2.D.如A是n阶矩阵,则AmAk=AkAm.正确答案:C解析:(A)中,由乘法有分配律,两个乘积均是A2一E,而(D)是因乘法有结合律,两乘积都是Am+k,故(A),(D)都正确.关于(B),由于ATB,BTA都是1×1矩阵,而1阶矩阵的转置仍是其自身,故ATB=(ATB)T=BTA亦正确.唯(C)中,从AB=0还不能保证必有BA=0,例如A=,则AB=,因此,(C)不正确.选(C).知识模块:矩阵及其运算2.已知3阶矩阵A可逆,将A的第2列与第3列交换得B,再把B的第1列的一2倍加至第3列得C,则满足PA-1=C-1的矩阵P为A.B.C.D.正确答案:B解析:对矩阵A作一次初等列变换相当于用同类的初等矩阵右乘A,故应选(B).知识模块:矩阵及其运算3.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=A.B.C.D.正确答案:A解析:对矩阵P作一次初等列变换:把第2列加至第1列,便可得到矩阵Q.若记E12(1)=,则Q=PE12(1).那么QTAQ=[PE12(1)]TA[PE12(1)]=(1)(PTAP)E12(1)所以应选(A).知识模块:矩阵及其运算4.设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=A.kA*.B.kn-1A*.C.knA*.D.k-1A*.正确答案:B解析:由于kA=(kaij),故行列式|kA|的代数余子式按定义为再根据伴随矩阵的定义知应选(B).知识模块:矩阵及其运算5.设A,B是n阶矩阵,则C=的伴随矩阵是A.B.C.D.正确答案:D解析:由于CC*=|C|E=|A||B|E,因此应选(D).另外,作为选择题不妨附加条件A,b可逆,那么知识模块:矩阵及其运算6.设A,B,C是n阶矩阵,且ABC=E,则必有A.CBA=E.B.BCA=E.C.BAC=E.D.ACB=E.正确答案:B解析:由ABC=E知A(BC)=(BC)A=E,或(AB)C=C(AB)=E,可见(B)正确.由于乘法不一定能交换,故其余不恒成立.知识模块:矩阵及其运算7.设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B—C=A.E.B.一E.C.A.正确答案:A解析:由B=E+AB(E一A)B=EB=(E—A)-1;C=A+CAC(E—A)=AC=A(E—A)-1(或C=AB).那么B—C=(E一A)-1-A(E—A)-1=(E—A)(E 一A)-1=E(或B—C=B—AB=E).故选(A).知识模块:矩阵及其运算填空题8.设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.正确答案:AB=BA解析:两个对称矩阵的乘积不一定是对称矩阵.例如而AB对称AB=BTAT=BA.所以应填:AB=BA.知识模块:矩阵及其运算9.设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.正确答案:5解析:设α=(a1,a2,a3)T,β=(b1,b2,b3)T,则而αTβ=(a1,a2,a3)=a1b1+a2b2+a3b3,注意到αTβ正是矩阵αβT的主对角线元素之和,所以αTβ=1+6+(-2)=5.知识模块:矩阵及其运算10.设α=(1,2,3)T,β=(1,,0)T,A=αβT,则A3=_________.正确答案:解析:由于A=αβT==2.所以A3=(αβT)(αβT)(αβT)=α(βTα)(βT α)βT=4αβT=4A= 知识模块:矩阵及其运算11.已知A=,则An=___________.正确答案:解析:由于A=λE+J,其中J=,而进而知J4=J5=…=0.于是知识模块:矩阵及其运算12.已知A=,则An=__________.正确答案:解析:对A分块为则B=3E+J,由于J3=J4=…=0,于是Bn=(3E+J)n=3nE+3n -2J2.而C=(3,-1),C2=6C,…,Cn=6n-1C,所以知识模块:矩阵及其运算13.设A=,则A2013一2A2012=___________.解析:由于A2013一2A2012=(A一2E)A2012,而A一2E=试乘易见(A 一2E)A=0,从而A2013一2A2012=0.知识模块:矩阵及其运算14.已知PA=BP,其中P=,则A2012=__________.正确答案:E解析:因为矩阵P可逆,由PA=BP得A=P-1BP.那么A2=(P-1BP)(P-1BP)=P-1B(PP-1)BP=P-1B2P.归纳地A2012=P-1B2012P.因为,易见B2012=E.所以A2012=P-1EP=E.知识模块:矩阵及其运算15.已知2CA一2AB=C—B,其中A=,则C3=____________.正确答案:解析:由2CA一2AB=C-B得2CA一C=2AB—B.故有C(2A—E)=(2A—E)B.因为2A—E=可逆,所以C=(2A—E)B(2A—E)-1.那么C3=(2A—E)B3(2A—E)-1 知识模块:矩阵及其运算16.已知A=,则An=___________.正确答案:解析:先求A的特征值与特征向量.由对λ=0,由(0E—A)x=0,解出α1=;对λ=6,由(6E—A)x=0,解出α2=令P=.而A=PAP-1,于是知识模块:矩阵及其运算17.=___________.正确答案:解析:E12=是初等矩阵,左乘A=所得E12A是A作初等行变换(1,2两行对换),而E122011A表示A作了奇数次的1,2两行对换,相当于矩阵A作了一次1,2两行对换,故而右乘E13是作1,3两列对换,由于是偶数次对换,因而结果不变,即为所求.知识模块:矩阵及其运算18.设A=,(A-1)*是A-1的伴随矩阵,则(A-1)*=__________.正确答案:解析:因为A-1.(A-1)*=|A-1|E,有(A-1)*=|A-1|A=A.本题|A|=6,所以(A-1)*= 知识模块:矩阵及其运算19.已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=___________.正确答案:解析:若依次求每个代数余子式再求和,这很麻烦.我们知道,代数余子式与伴随矩阵A*有密切的联系,而A*与A-1又密不可分.对于A用分块技巧,很容易求出A-1.由于又因A*=|A|A-1,那么可见Ak1+Ak2+…+Akn= 知识模块:矩阵及其运算20.(Ⅰ)已知A=,则(A*)-1=____________.(Ⅱ)已知A=,则A-1=____________.(Ⅲ)设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A 一2B,B=,则(A+2E)-1=____________.(Ⅳ)设A=,B=(E+A)-1(E—A),则(E+B)-1=____________.(Ⅴ)如A3=0,则(E+A+A2)-1=____________.正确答案:解析:(Ⅰ)由AA*=|A|E,有(Ⅱ)A=(Ⅲ)由AB=A一2B有AB+2B=A+2E 一2E,得知(A+2E)(E-B)=2E,即(A+2E)(E一B).(Ⅳ)由于B+E=(E+A)-1(E 一A)+E=(E+A)-1(E—A)+(E+A)-1(E+A) =(E+A)-1[(E—A)+(E+A)]=2(E+A)-1,故(B+E)-1=(E+A).(Ⅴ)注意(E—A)(E+A+A2)=E—A3=E.知识模块:矩阵及其运算解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一(数理统计)模拟试卷1(题后含答案及解析)

考研数学一(数理统计)模拟试卷1(题后含答案及解析)题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设X1,X2,X3,X4为来自总体N(1,σ2)(σ>0)的简单随机样本,则统计量的分布为( )A.N(0,1)B.t(1)C.X2(1)D.F(1,1)正确答案:B解析:考查产生t分布的典型模式由于Xi服从N(1,σ2),i=1,2,3,4,且相互独立,所以X1-X2服从N(0,2σ2),X3+X4-2服从N(0,2σ2).于是服从N(0,1),服从N(0,1).知识模块:数理统计2.设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn(n≥2)为来自总体X的简单随机样本,统计量,则有( )A.E(T1)>E(T2),D(T1)>D(T2)B.E(T1)>E(T2),D(T1)<D(T2)C.E(T1)<E(T2),D(T1)>D(T2)D.E(T1)<E(T2),D(T1)<D(T2)正确答案:D解析:故D(T1)<D(T2),从而应选D.知识模块:数理统计3.设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率的值随σ的增大而( ) A.单调增大B.保持不变C.单调减少D.增减不定正确答案:B解析:故应选B 知识模块:数理统计4.设总体X服从N(μ,σ2),分别是取自总体X的样本容量分别为10和15的两个样本均值,记p1=,则有( )A.p1<p2B.p1=p2C.p1>p2D.p1=μ,p2=6正确答案:C解析:因为由于Ф(x)是单调增加的,所以p1>p2 ,应选C.知识模块:数理统计5.设总体X服从N(μ,σ2),与S2分别为样本均值和样本方差,n为样本容量,则下面结论不成立的是( )A.B.C.D.正确答案:D解析:正态总体抽样分布中,与S2是相互独立的,故A、B、C选项结论都是正确的,只有D是不成立的.知识模块:数理统计解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则∠ABC 等于( )
A .100°
B .110°
C .120°
D .130°
肥乡区第三中学模拟数学试题五
时间:120 分钟 满分:120 分
一、选择题(本大题共有 16 个小题,共 42 分,1-10 小题各 3 分,11-16 小题各 2 分)(本部分考题
学生通过小七平台直接作答)
1. 下列英文字母中,是中心对称图形的是( )
A .
B .
C .
D .
2. 下列实数中的无理数是(
)
A .﹣
B .π
C .0.57
D .
3. 成人每天维生素 D 的摄入量约为 0.0000046 克.数据“0.0000046”用科学记数法表示为(
)
A .46×10
﹣7
B .4.6×10
﹣7
C .4.6×10
﹣6
D .0.46×10
﹣5
4. 下列运算正确的是(
)
A .﹣3﹣2=﹣5
B .
=±2
C . 3-1
= -3
D .x 3•x 5=x 15
5. 由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在
该位置的小立方块的个数,则这个几何体的主视图是( )
第 5 题图
A .
B .
C .
D .
2a
6.
计算 a +1 2 a +1
的结果是(
)
A .1
B .
2a + 2 4a
C .2
D .
a +1
7. 如图,小明从 A 处沿北偏东 40°方向行走至点 B 处,又从点 B 处沿南偏东 70°方向行走至点 C 处,则
第 7 题图
+
⎧3 -x ≥ 4①
⎪
8.解不等式组⎨2 x +1 >x -2 ②时,不等式①②的解集在同一条数轴上表示正确的是()
⎩3 3
A.B.
C.D.
9.如图,双曲线y=的一个分支为()
A.①B.②C.③D.④
10.如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A、B 两点,若⊙O 的直径
为8,则弦AB 长为()A.8 B.4 C.D.
第9 题图第10 题图第12 题图第14 题图11.下列说法正确的是()
A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是0.1%的事件在一次试验中一定不会发生D.数据3,5,4,1,﹣2 的中位数是4 12.如图,在△ABC 中,AB=AC,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D,再分别以点B,D 为圆心,大于BD 长为半径画弧,两弧相交于点M,作射线CM 交AB 于点E.若AE=2,BE=1,则EC 的长度是()
A.B.C.3 D.2
13.甲、乙二人做某种机械零件,已知每小时甲比乙少做8 个,甲做120 个所用的时间与乙做150 个所用
的时间相等,设甲每小时做x 个零件,下列方程正确的是()
A.=B.=C.=D.=
14.如图,点P 是正六边形ABCDEF 内部一个动点,AB=1cm,则点P 到这个正六边形六条边的距离之
和为()cm.
A.6 B.3 C.3 D.6 3
3
3 15.图1
是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图
2 的新几何体,则该新几何体的体积为()
A.40πcm3 B.60πcm3 C.70πcm3 D.80πcm3
第15 题图第16 题图
16.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系
如图所示.下列结论:
①小球在空中经过的路程是40m;②小球运动的时间为6 s;③小球抛出3 秒时,速度为0;
④当t=1.5s 时,小球的高度h=30m.其中正确的是()
A.①④B.①②C.②③④D.②④
二、填空题(本题共 10分)(17 题拍一张照片,统一上传到人人通 17 题中)
17.(1)若a-b=3,a+b=-2则a2-b2=.
(2)如图,矩形ABCD 的顶点A,B 在数轴上,CD =6,点A 对应的数为﹣1,则点B 所对应的数为.
17(2)题图17(3)题图
(3)如图,已知点A坐标为(,1),B为x轴正半轴上一动点,则∠AOB度数为,在点B运
动的过程中AB +1
OB
2
的最小值为.
三、解答题(18 题拍一张照片,统一上传到人人通 18 中)
18.(本小题满分8分)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:
魔术师能立刻说出观众想的那个数.
(1)如果小玲想的数是﹣3,请你通过计算帮助她告诉魔术师的结果;
(2)如果小明想了一个数计算后,告诉魔术师结果为85,那么魔术师立刻说出小明想的那个数是;
(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.
19.(本小题满分9分)定义新运算:对于任意实数,a、b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求x ⊕(﹣4)= 6,求x 的值;
(2)若3⊕a 的值小于10,请判断方程:2x2﹣bx﹣a=0 的根的情况.
五、解答题(20 题拍一张照片,统一上传到人人通 20 中)
20.(本小题满分9分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为每次连续接球10 个,每垫球到位1 个记1 分.
运动员丙测试成绩统计表
测试序号12345678910
成绩(分)768b758a87
运动员丙测试成绩的平均数和众数都是7,
(1)成绩表中的a=,b=;
(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?
请用你所学过的统计量加以分析说明(参考数据:三人成绩的方差分别为S 甲2=0.81、S 乙2=0.4、S 丙2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从乙手中传出,球传一次甲得到球的概率是.
21.(本小题满分9分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC 交BE 的延长线于F,BF 交AC 于G,连接CF.
(1)求证:△AEF ≌△DEB;
(2)若∠BAC=90°,①试判断四边形ADCF 的形状,并证明你的结论;
②若AB=8,BD=5,直接写出线段AG 的长.
七、解答题(22 题拍一张照片,统一上传到人人通 22 中)
22.(本题10分)有甲乙两个玩具小汽车在笔直的240米跑道MN上进行折返跑游戏,甲从点M出发,匀速在M、N 之间折返跑,同时乙从点N 出发,以大于甲的速度匀速在N、M 之间折返跑.在折返点的时间忽略不计.
(1)若甲的速度为v,乙的速度为3v,第一次迎面相遇的时间为t,则t 与v 的关系式;
(注释:当两车相向而行时相遇是迎面相遇,当两车在N点相遇时也视为迎面相遇)(2)如图1,
①若甲乙两车在距M 点20 米处第一次迎面相遇,则他们在距M 点米第二次迎面相遇;
②若甲乙两车在距M 点50 米处第一次迎面相遇,则他们在距M 点米第二次迎面相遇;
(3)设甲乙两车在距M 点x 米处第一次迎面相遇,在距M 点y 米处第二次迎面相遇.某同学发现了y 与x的函数关系,并画出了部分函数图象(线段OA,不包括点O,如图2所示).
①则a=,并在图2中补全y与x的函数图象(在图中注明关键点的数据);
②分别求出各部分图象对应的函数表达式;。