高三数学一模试卷
2024届上海市闵行区高三一模数学试题及答案

上海市闵行区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.12一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 0,1,1M a ,若1M ,则实数a .2.若1sin 3,则 sin .3.若4.5.6.7.则 8.的值最小,则a 9.10..11.已知数列 n a 为无穷等比数列,若12ii a,则1i i a的取值范围为.12.已知点P 在正方体1111ABCD A B C D 的表面上,P 到三个平面ABCD 、11ADD A 、11ABB A 中的两个平面的距离相等,且P 到剩下一个平面的距离与P 到此正方体的中心的距离相等,则满足条件的点P 的个数为.第12题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知a b R 、,a b ,则下列不等式中不一定成立的是().A 22a b ;.B 22a b ;.C 22a b ;.D 22a b .14.某校读书节期间,共120名同学获奖(分金、银、铜三个等级),从中随机抽取24名同学参加交流会,若按高一、高二、高三分层随机抽样,则高一年级需抽取6人;若按获奖等级分层随机抽样,则金奖获得者需抽取4人.下列说法正确的是().A 高二和高三年级获奖同学共80人;.B 获奖同学中金奖所占比例一定最低;.C 获奖同学中金奖所占比例可能最高;.D 获金奖的同学可能都在高一年级.15.已知复数1z 、2z 在复平面内对应的点分别为P 、Q ,5OP (O 为坐标原点),且221122sin 0z z z z ,则对任意R ,下列选项中为定值的是().A OQ 16.①“1x .A .C 三、17.如图,,且PA PD2a(1)(2)第17题图18.(本题满分14分,第1小题满分6分,第2小题满分8分)在ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2cos a c B c .(1)若1cos 3B,3c ,求b 的值;(2)若ABC 为锐角三角形,求sin C 的取值范围.19.B 表示事件已知04p ,曲线1 、2 的方程分别为22y px(08x ,0y )和22x py (08y ,0x ),1 与2 在第一象限内相交于点 ,K K K x y .(1)若OK p 的值;(2)若2p ,定点T 的坐标为 4,0,动点M 在直线y x 上,动点 ,N N N x y (04N x )在曲线2 上,求MN MT 的最小值;(3)已知点y x,求实数p 的已知a R , 32251ln f x a x x x a x .(1)若1为函数 y f x 的驻点,求实数a 的值;(2)若0a ,试问曲线 y f x 是否存在切线与直线10x y 互相垂直?说明理由;(3)若2a ,是否存在等差数列123,,x x x (1230x x x ),使得曲线 y f x 在点22,x f x 处的切线与过两点11,x f x 、33,x f x 的直线互相平行?若存在,求出所有满足条件的等差数列;若不存在,说明理由.参考答案与评分标准一. 填空题 1.2−; 2.13; 3.4; 4.6; 5.6π; 6.y x =±; 7.23π;8.3;9.18; 10.0,,22⎧⎪−⎨⎪⎪⎩⎭; 11.[)2,+∞;12.6.二. 选择题 13.C ; 14.D ; 15.A ; 16.C .三. 解答题17.(1) [证明]连接AC ,ABCD 为正方形且F 为BD 的中点, F ∴为AC 的中点,又E 为PC 中点,//EF PA ∴. …………………………………2分又EF 不在平面PAD 上,PA ⊂平面PAD ,//EF ∴平面PAD . ………………………………………6分 (2) [解] 2,2PA PD a AD a ===,PA PD ∴⊥, ∴PAD △为等腰直角三角形,取AD 中点M ,由等腰三角形性质可知PM AD ⊥, ………………………………8分 又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PM ABCD ∴⊥平面,……………………………………………10分连接BM ,则PBM ∠为直线PB 与平面ABCD 所成的角, ………………………12分由1,22PM a BM a ==,PMMB ⊥可得tan 5PBM ∠=, ∴直线PB 与平面ABCD 所成的角的正切值为5. ……………………………14分18.[解] (1)将1cos 3B =,3c =带入条件中可得5a =,………………………2分 由余弦定理2222cos b a c ac B =+−可得b =; …………………………6分 (2) 2cos a c B c −=,由正弦定理可得sin 2sin cos sin A C B C −=, ………8分 sin sin()sin cos cos sin A B C B C B C =+=+,sin cos sin cos sin B C C B C ∴−=,sin()sin B C C −=, ……………………10分(,),(0,)222B C C πππ−∈−∈,所以B C C −=,即2B C =,…………………12分 又因为ABC △为锐角三角形,(,)64C ππ∴∈,1sin (,22C ∈.………………14分19.[解](1)从这36名小青荷中随机抽取两名的方法数为236C ,……………………2分 抽取的两名都不会说日语的方法数为216C , ………………………………4分因此,抽取的两名中至少有一名会说日语的概率为21623617121C C −=; ………………6分(抽取的两名小青荷中至少有一名会说日语的方法数为211202016C C C + 给2分)(2)当6m =、12n =时,事件A 与B 相互独立, ……………………………8分M理由如下:从这些小青荷中随机抽取一名,事件A 发生的概率121()363P A ==, 事件B 发生的概率6121()362P B +==, …………………………………10分 事件A 与B 同时发生的概率61()366P A B ==, …………………………12分 111()()()326P A P B P A B ⋅=⨯==,因此,事件A 与B 相互独立. …………………………………14分(其它答案:当7m =、14n =时,1()3P A =,7147()3612P B +==,7()36P A B =;当8m =、16n =时,1()3P A =,8162()363P B +==,82()369P A B ==.)(2)[另解] 从这些小青荷中随机抽取一名,事件A 发生的概率121()363P A ==, 事件B 发生的概率()36m nP B +=, …………………………8分 事件A 与B 同时发生的概率()36mP AB =, …………………………10分 若事件A 与B 相互独立,则1()()()33636m n m P A P B P A B +⋅=⨯==, 整理得2n m =, …………………………12分 所以可取6m =、12n =或7m =、14n =或8m =、16n =. ……………14分 (学生只需写出三种情况中的一种即可)20.[解](1)联立2222y pxx py⎧=⎪⎨=⎪⎩,由点(,)K K K x y 在第一象限,得22K K x p y p=⎧⎨=⎩,…………………………2分 由||OK ==2p =; ……4分 (2)曲线1Γ和2Γ关于直线y x =对称,取N 关于y x =的对称点'N ,则'N 在曲线24(04,0)y x x y =≤≤≥上, ………………6分min min ()(')MN MT MN MT ∴+=+,又因为''MN MT TN +≥,所以只需求T 到24(04,0)y x x y =≤≤≥上动点'N 的距离'TN 的最小值,令'(4)N x x ≤≤,则'TN==,………8分当2x =时,'TN 的最小值为min ()MN MT ∴+=所以(当(8M −−,N 时)MN MT +的最小值为…10分(3)由(1)可得1|||AC x==,(102x p≤≤),2||BD x==,(228p x<≤),…………………………12分因此当12px=时,2m p=,当28x=时,t=,………………………………………14分由1[,2]2mt∈,得122≤≤,……………………………………………16分解得16160p−≤≤−.……………………………………………18分21.[解](1)由题意21()3(2)25ax a xxf x−=−−++',…………………2分由1为函数()y f x=的驻点,得(1)3(2)3(1)0a af=−++−=',因此1a=;……………………………………………4分(2)当0a=时,32()25lnf x x x x x=−−++,21()625f x x xx=−−++',………………………………………………6分原问题等价于是否存在x>,使得()10xf'+=,令21(())1626(0)x x x xxg x f+=−−++>='因为函数()y g x=在区间1[,1]2上是一段连续曲线,且111()022g=>,(1)10g=−<,……………………………………………8分由零点存在定理,存在1(,1)2x∈,使得00(())10x xg f'+==,即曲线()y f x=存在切线与直线10x y+−=互相垂直;……………………10分(3)当2a=时,2()5lnf x x x x=−+−,1()25xxf x=−+'−,假设存在等差数列123123,,(0)x x x x x x<<<满足题意,则31231()()()x xxxfxff−=−',即223131223131ln ln1255x x x xxx x x x x−−−+−=−+−−−,将1322x xx+=代入上式得,3131312()ln lnx xx xx x−=−+,………………………12分即3313112(1)ln01xxxx xx−−=+,令312(1),()ln(1)1x tt h t t tx t−==−>+,……………14分则22241(1)()0(1)(1)httt t t t−−=−=<++',因此函数()y h t =在(0,)+∞上为严格减函数, …………………………………16分由题意311x t x =>,(1)0h =,所以()0h t <,即31()0xh x <.因此,不存在等差数列123123,,(0)x x x x x x <<<满足题目条件.……………18分。
2024届上海市黄浦区高三一模数学试题及答案

上海市黄浦区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.6一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 2A x x , 1B x x ,则A B .2.若函数 1y x x a 为偶函数,则实数a 的值为.3.已知复数1z i (i 为虚数单位),则满足z w z 的复数w 为.4.5.6.7.某城市,34,36,418.在 若25a 9. 12010.若 .11.设123,,,,n a a a a 是首项为3且公比为313233log log log a a a 1343log 1log 18n n a a 的最小正整数n 的值为.12.若正三棱锥A BCD 的底面边长为6,,动点P 满足DA CB PA PB PC PD ,则2PA PB PA 的最小值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.设x R ,则“38x ”是“2x ”的().A 充分而不必要条件;.B 必要而不充分条件;.C 充要条件;.D 既不充分也不必要条件.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是().A 720;.B 710;.C 310;.D 35.15.若实数a 、b 满足221a b ab ,则必有().A 222a b ;.B 221a b ;.C 1a b ;.D 2a b .16.O 最近的点为点①点p Q ).A 三、17.4、3、2后,(1)(2)n t ,求数列 n t 的18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,平面ABCD 平面ADEF ,四边形ADEF 是正方形,//BC AD ,45BAD CDA ,2CD,AD (1)证明:CD 平面ABF ;(2)求二面角B EF A 的正切值.19.(折线DCE )(1)(2)第18题图第19题图设a 为实数,1 是以点 0,0O 为顶点、以点10,4F为焦点的抛物线,2 是以点 0,A a 为圆心、半径为1的圆位于y 轴右侧且在直线y a 下方的部分.(1)求1 与2 的方程;(2)若直线2y x 被1 所截得的线段的中点在2 上,求a 的值;(3)是否存在a ,满足:2 在1 的上方,且2 有两条不同的切线被1 所截得的线段长相等?若存在,求出a 的取值范围;若不存在,请说明理由.第20题图设函数 f x 与 g x 的定义域均为D ,若存在0x D ,满足 00 f x g x 且 00''f x g x ,则称函数 f x 与 g x “局部趋同”.(1)判断函数 151f x x 与 322f x x x 是否“局部趋同”,并说明理由;(2)已知函数 21g x x ax (0x ), 2e xg x b (0x ).求证:对任意的正数a ,都存在正数b ,使得函数 f x 与 g x “局部趋同”;(3)对于给定的实数m ,若存在实数n ,使得函数 1n h x mx x(0x )与 2ln h x x “局部趋同”,求实数m 的取值范围.高三数学参考答案和评分标准说明:1.本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.一、填空题(本大题满分54分. 其中第1~6题每题满分4分,第7~12题每题满分5分)1. [1 2]−,;2. 1;3. i − ;4. 54;5. 12; 6. ; 7. 56; 8. 2425; 9.220; 10. π(0,]6; 11. 25; 12. 8. 二、选择题(本大题共4小题,满分18分.其中第13、14题每题满分4分,第15、16题每题满分5分)13. A 14. B 15. D 16. C三、解答题(本大题共有5题,满分78分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解:(1)设等比数列{}n a 的公比为q ,由4345441000a a a a a a q q=⋅⋅=, 可得341000a =,即410a =. …………………………2分又由3454,3,2a a a 成等差数列,可得354426,a a a += 即402060,q q+=解得1q =或2,又{}n a 是严格增数列,所以2q =,…………………4分 故443410252n n n n a a q −−−==⋅=⋅. …………………………6分(2)由3(12)n n S =−,可得当2n ≥时,1113(22)32n n n n n n b S S −−−=−=−=−⋅,又1111332b S −==−=−⋅,所以对一切正整数n ,都有132n n b −=−⋅, …………………9分所以3132n n t −===⋅, ……………………11分所以{}n t 的前n 和为113131213(122)(21)44124n n n −−+++=⋅=−−. …………………14分 18.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分.解:(1)在平面ABCD 内,BAD ∠=CDA ∠45=︒,∴直线AB, DC 相交,设它们交于点P ,90DPA ∴∠=︒, 即AB CD ⊥. 四边形ADEF 是正方形,AF AD ∴⊥,又平面ABCD ⊥平面ADEF ,它们的交线为AD ,AF ⊂平面ADEF ,故AF ⊥平面ABCD ,又CD ⊂平面ABCD ,AF CD ∴⊥. ……………4分又AB 与AF 是平面ABF 内的两条相交直线,∴CD ⊥平面ABF . ……………6分(2)在平面ABCD 内,过B 作BG AD ⊥,垂足为G .又平面ABCD ⊥平面ADEF , 它们的交线为AD ,故BG ⊥平面ADEF . ……………8分在平面ADEF 内,过G 作GH EF ⊥,垂足为H ,连BH ,则BH EF ⊥,故BHG ∠就是二面角B EF A −−的平面角, ……………11分又sin 45sin 45BG BA CD =︒=︒=,GH AF AD ===在直角BGH △中,1tan 4BG BHG GH ∠===, 所以二面角B EF A −−的正切值为14. ……………14分 法二:设O 是线段AD 的中点,由APD △是以AD 为底边的等腰直角三角形,可知PO AD ⊥,由平面ABCD ⊥平面ADEF , 它们的交线为AD ,且PO ⊂平面ABCD ,故PO ⊥平面ADEF , 设M 是线段EF 的中点,则OM ⊂平面ADEF ,可得PO OM ⊥,又,O M 是正方形ADEF 的对边,AD EF 的中点,可得AD OM ⊥, …………9分分别以,,OD OM OP 为,,x y z 轴建立如图的空间直角坐 标系,则(42,0,0)EF =−,(2,42,2)BF =−,设(,,1)n x y =是平面BEF 的一个法向量,则有(42)0,24220,n EF x n BF x y ⎧⋅=−=⎪⎨⋅=⋅+⋅−=⎪⎩解得0,1.4x y =⎧⎪⎨=⎪⎩故1(0,,1)4n =,又(0,0,22)OP =是平面ADEF 的一个法向量, ……………11分 所以二面角B EF A −−的余弦值为||4224172217||||n OP n OP ⋅⋅==⋅⋅, ,故二面角B EF A −−的正切值为14. ……………14分 19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.解:(1)由πππ()333DOC αα∠=+−<<,2π3AOB ∠=, 可知 π3COE α∠=−, 作OF CD ⊥, 垂足为F ,由OD OC =,可知CF DF =且1π262DOF DOC α∠=∠=+, 在直角DOF △中,πsin()62DF OD α=+,故π2sin()62CD OD α=+, 同理可得ππ2sin()2sin()6262EC OC OD αα=−=−, ……………4分 所以π2sin()62OD α++π2sin()10062OD α−=,可得OD =5050ππsin()sin()cos 62622ααα=++−(米). ……6分(2)设花卉育苗区的面积为S 平方米,则221π1πsin()sin()2323S OD OD αα=++− 22150ππ[sin()sin()]233cos 2ααα=++−. ………9分1]1cos cos 2S =α==−+α. ……………12分 当且仅当cos 1α=且ππ33α−<<,即0α=时,S 取最大值,此时50OD =米. 故使π3DOC ∠=,且50OD =米,可使花卉育苗区的面积最大. ………………14分 20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)设1Γ的方程为22x py =,又124p =,得21p =,即1Γ的方程为2y x =, ……2分 2Γ的方程为22()1(0,)x y a x y a +−=><. ……………4分(2)设直线2y x =+与1Γ的交点为1122(,),(,)M x y N x y ,线段MN 中点为00(,)G x y , 由22,,y x y x =+⎧⎨=⎩可得220x x −−=,故1200015,2222x x x y x +===+=, ……………7分 由点G 在2Γ上,可知215()142a +−=且52a <,解得52a =. ……………10分 (3)设(,)D x y 为2Γ上任一点,则1)y a x =−<<. 点D 在1Γ的上方等价于2a x >,即2a x >对于(0,1)x ∈t =, 由(0,1)x ∈, 可得(0,1)t ∈,故222151()24x t t t +=−++=−−+的最大值为54, 可得54a >. ………12分 设直线y kxb =+与2Γ相切, 被1Γ截得的线段长为L ,则0,1k b a ><−,1=,可得a b −=, 又由2,,y kx b y x =+⎧⎪⎨=⎪⎩可得20x kx b −−=, 设它的两个实根为12,x x , 则2222212(1)()(1)(4)L k x x k k b =+−=++, …………14分 设a b n −=,则1n >,n =,222432(144)4(41)L n n n a n n a n =−−+=−+−,令432()4(41)f n n n a n =−+−,则3223()412(82)[4()811]2f n n n a n n n a '=−+−=−+−, 当且仅当8110a −<,即118a <时,存在132n +=,使得在1(1.5,)n 与1(,)n +∞上, ()f n '分别小于0和大于0, 故()f n 分别严格增与严格减,故在(1.5,)+∞上必存在两个不同的n 值, 对应的()f n 相等,即存在两个不同的正数k ,使得对应的L 值相等.所以存在a 满足题中条件,且a 的取值范围是511(,)48. ……………18分21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)1212()(),()(),f x f x f x f x =⎧⎨''=⎩(*1)即为32512,532,x x x x ⎧+=+⎨=+⎩………………2分 也即3310,1,x x x ⎧−−=⎨=±⎩由1x =与1x =−都不满足方程3310x x −−=, 故(*1)无解,所以1()f x 与2()f x 非“局部趋同”. ……………4分(2)1212()(),()(),g x g x g x g x =⎧⎨''=⎩即为2e ,2e ,x x x ax b x a b ⎧−+=⎨−+=⎩ 等价于2(2)0,2e ,x x a x a x a b ⎧−++=⎨−+=⎩(*2) ………7分 令2()(2)g x x a x a =−++,对于任意正数a ,由(0)0g a =>,()02a g a =−<, 又()g x 在[0 ]2a ,上的图像是连续不间断的,故 ()g x 在(0 )2a ,上至少有一个零点, ……9分 设0x 是其中一个零点,则存在正数002e x x a b −+=,使得(*2)在(0 )+∞,上有解0x , 故对任意的正数a ,都存在正数b ,使得函数1()g x 与2()g x “局部趋同”. …………10分(3)1212()(),()(),h x h x h x h x =⎧⎨''=⎩(*)即为2ln ,1,n mx x x n m x x ⎧+=⎪⎪⎨⎪−=⎪⎩等价于221ln ,,mx x n mx x −=⎧⎨=−⎩(*3) ………13分令()ln h x x =,则1()h x x'=,()h x 的图像在点(,ln )t t 处的切线的方程为1ln ()y t x t t −=−, 即1ln 1y x t t=+−,令ln 11t −=−,可得1t =,此时上述切线方程为1y x =−,………15分 故当且仅当21m =时,直线21y mx =−与()h x 的图像相切,由图像可知,当且仅当21m ≤时,直线21y mx =−与()h x 的图像有公共点(在y 轴右侧),故当且仅当12m ≤时,21ln mx x −= 有正数解0x ,此时存在200n mx x =−,使得(*3)有正数解,从而1()h x 与2()h x “局部趋同”.所以满足条件的实数m 的取值范围是1(,]2−∞. ……………18分。
2024届上海市长宁区高三一模数学试题及答案

上海市长宁区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.12一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 ,4A , 1,3,5,7B ,则A B .2.复数z 满足11z i(i 为虚数单位),则z .3.不等式11 的解集为. 4.5.将46.物体的瞬时速度为.7.第1支水笔的编号为.8.10lg II .其中I 为2,则其相应的声9.10.11.若函数 sin cos f x x a x 在27,36上是严格单调函数,则实数a 的取值范围为.12.设 2log f x x ax b (0a ),记函数 y f x 在区间 ,1t t (0t )上的最大值为 ,t M a b ,若对任意b R ,都有 ,1t M a b a ,则实数t 的最大值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.下列函数中既是奇函数又是增函数的是().A 2f x x ;.B 2f x x ;.C ln f x x ;.D x f x e .14.“ P A B P A P B ”是“事件A 与事件B 互相独立”的().A 充分不必要条件;.B 必要不充分条件;.C 充要条件;.D 既不充分也不必要条件.15.设点P 是以原点为圆心的单位圆上的动点,它从初始位置 01,0P 出发,沿单位圆按逆时针方向转动角(02)后到达点1P ,然后继续沿单位圆按逆时针方向转动角4到达2P .若点2P 的横坐标为35,则点1P 的纵坐标为().A 10;.B 5;.C 5;.D 10.16.,5AC ,点P 在ABC Q ,都存在点P ,满足.A 12三、17.(1)(2)A ,求事件A 发生如图,在三棱锥A BCD 中,平面ABD 平面BCD ,AB AD ,O 为BD 的中点.(1)求证:AO CD ;(2)若BD DC ,BD DC ,AO BO ,求异面直线BC 与AD 所成的角的大小.18题图汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图1,某汽车四轮中心分别为A 、B 、C 、D ,向左转向,左前轮转向角为 ,右前轮转向角为 ,转向中心为O .设该汽车左右轮距AB 为w 米,前后轴距AD 为l 米.(1)试用w 、l 和 表示tan ;(2)如图2,有一直角弯道,M 为内直角顶点,EF 为上路边,路宽均为3.5米,汽车行驶其中,左轮A 、D 与路边FS 相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角 的值始终为30 ;②设转向中心O 到路边EF 的距离为d ,若OB d 且OM OD ,则汽车可以通过,否则不能通过;③ 1.570w , 2.680l .问题*:可否选择恰当转向位置,使得汽车通过这一弯道?第19题图1第19题图2已知椭圆22:142x y ,1F 、2F 为 的左、右焦点,点A 在 上,直线l 与圆22:2C x y 相切.(1)求12AF F 的周长;(2)若直线l 经过 的右顶点,求直线l 的方程;(3)设点D 在直线2y 上,O 为原点,若OA OD ,求证:直线AD 与圆C 相切.若函数 y f x 与 y g x 满足:对任意12,x x R ,都有 1212f x f x g x g x ,则称函数 y f x 是函数 y g x 的“约束函数”.(1)若 2f x x ,判断函数 yg x 的奇偶性,并说明理由;(2)若 3f x ax x (0a ), sing x x ,求实数a 的取值范围;(3)若 y g x 为严格减函数, 01f f ,且函数 y f x 的图像是连续曲线,求证:y f x 是 0,1上的严格增函数.参考答案和评分标准一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. {}1,3;2.2;3. ()0,1;4. 2;5.12;6. 80;7.14;8. 130;9.()0,1,1−;10.[)2,−+∞;11. ⎡⎢⎣;12.13.11解:()cos sin f x x a x '=−,因为()0f π'<,所以()y f x =在27,36ππ⎛⎫⎪⎝⎭上是严格减函数, 当27,36x ππ⎛⎫∈ ⎪⎝⎭时,cos sin 0x a x −<恒成立,所以1tan 0a x −>在27,36ππ⎛⎫ ⎪⎝⎭上恒成立,因为我tan x ⎛∈ ⎝是,所以a ≤≤ 12解:设2log u x ax b =++,因为[],1x t t ∈+,所以()()22log log 11t at b u t a t b ++≤≤++++ 所以()()(){}22,max log ,log 11t M a b t at b t a t b =++++++()()()()()()()()2222log 11loglog 11log 2t a t b t at b t a t b t at b ++++++++++++−++=()()()()()2222log 11loglog 1log 2122t a t b t at b t t aa ++++−+++−+≥=≥+得103t <≤二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.A ;14.C ;15. D ;16.B16解:该几何体由一下几部分组成:一个底面与ABC 平行高为2的三棱柱;底面为半径为1的半圆,高分别3、4、5的三个圆柱;一个半径为1的球.所以该几何体的体积为()4226234512233πππ⨯++++=+三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.BD17.(本题满分14分,第1小题满分6分,第2小题满分8分).已知等差数列{}n a 的前n 项和为n S ,公差2d =. (1)若10100S =,求{}n a 的通项公式;(2)从集合{}123456,,,,,a a a a a a 中任取3个元素,记这3个元素能成等差数列为事件A ,求事件A 发生的概率()P A .解:(1)因为()1112n S na n n d =+−,所以1011090100S a =+=, ……..2分得11a =, …….4分 所以()1121n a a n d n =+−=−. …….6分(2)随机实验样本空间中样本点的个数为3620C =, ……..3分 事件A 所含样本点分两类,公差为d 的有4个,公差为2d 的有2个, ……..6分 所以事件A 发生的概率()632010P A ==. …….8分 18.(本题满分14分,第1小题满分6分,第2小题满分8分).如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)求证:AO CD ⊥;(2)若BD DC ⊥,BD DC =,AO BO =,求异面直线BC 与AD 所成的角的大小.(1)证明:因为AB AD =,O 为BD 的中点, 所以AO DB ⊥, …….2分 因为平面ABD ⊥平面BCD ,所以AO ⊥平面BCD , …….4分因为CD ⊂平面BCD ,所以AH CD ⊥. …….6分 (2)由(1)知AO ⊥平面BCD ,作//OE CD ,因为CD BD ⊥,所以OE BD ⊥,进而可以OE 、OD 、OA 分别为x 轴、y 轴和z 轴正方向,建立坐标系,因为AO BO =,BD DC =,所以可设()0,0,A a ,()0,,0B a −,()0,,0D a ,()2,,0C a a , …..6分 因为()2,2,0BC a a =,()0,,AD a a =− 设异面直线BC 与AD 所成的角为θ,则12121cos 2n n n n θ⋅==,所以60θ=︒ ……8分 19.(本题满分14分,第1小题满分6分,第2小题满分8分).汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图,某汽车四轮中心分别为A 、B 、C 、D ,向左转向,左前轮转向角为α,前右轮转向角为β,转向中心为O. 设该汽车左右轮距AB 为w 米,前后轴距AD 为l 米.(1)试用w 、l 和α表示tan β; (2)如图2,有一直角弯道,M 为内直角顶点,EF 为上路边,路宽均为3.5米,汽车行驶其中,左轮A 、D 与路边FS 相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角α的值始终为30︒;②设转向中心O 到路边EF 的距离为d ,若OB d <且OM OD <,则汽车可以通过,否则不能通过;③ 1.570w =, 2.680l =.问题*:可否选择恰当转向位置,使得汽车通过这一弯道?解:(1)由已知AOD α∠=,tan BOC β∠=, …….2分 所以tan l OD α=,tan lOC w α=+,……..4分 进而tan tan llw βα=+. …….. 6分(2)以EF 和FS 分别为x 轴和y轴建立坐标系, 则()3.5, 3.5M −−. 4.642tan lOD α===, 6.766OB ==,……..2分设(),O a b ()0,0a b <<,2 6.642a =−=−,d b =−,OM ==, ……..4分由OM OD <,得()29.872 3.521.548b ++<,进而 6.9170.83b −<<−, 由OB d <,得 6.766b <−,…….6分所以当 6.917 6.765b −<<时,OB d <且OM OD <,此时汽车可以通过弯道. 答:选择恰当转向位置,汽车可以通过弯道. …….8分 20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分).xD C BA B C S F E C D B A已知椭圆22142x y Γ+=:,1F 、2F 为Γ的左、右焦点,点A 在Γ上,直线l 与圆22:2C x y +=相切.(1)求△12AF F 的周长;(2)若直线l 经过Γ的右顶点,求直线l 的方程;(3)设点D 在直线2y =上,O 为原点,若OA OD ⊥,求证:直线AD 与圆C 相切.解:(1)设椭圆Γ的聚焦为2c ,长轴长为2a ,短轴长为2b , 则24a =,22b =,所以22c =, ……..2分 所以1224AF AF a +==,122F F c ==得△12AF F的周长为4+. ……..4分 (2)椭圆Γ的右顶点为()2,0,所以可设直线l 的方程为()2y k x =−, ……..2分 因为圆222x y +=与直线l 相切,= ……..4分解得2k =±,直线l的方程为)22y x =±−. …….6分(3)设()00,A x y ,(),2D m ,因为OA OD ⊥,所以0020mx y +=, …….2分当0m x =时,2020x y +=, 由2200142x y +=,得01y =−,0x = 直线AD方程为x =22:2C x y +=相切, …….4分 当0m x ≠时,直线AD 的方程为()0000002222y y x my y x m x x m x m x m−−−=−+=+−−− 则原点O 到直线AD 的距离为d =, …….6分因为02y m x =−,2200142x y +=,所以2216844422202040020202020200200=+++=++++=x x x x x x y y x x y x d . 此时直线AD 与圆22:2C x y +=相切. ……8分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分).若函数()y f x =与()y g x =满足:对任意12,R x x ∈,都有()()()()1212f x f x g x g x −≥−,则称函数()y f x =是函数()y g x =的“约束函数”.已知函数()y f x =是函数()y g x =的“约束函数”.(1)若()2f x x =,判断函数()y g x =的奇偶性,并说明理由; (2)若()()30f x ax x a =+>,()sin g x x =,求实数a 的取值范围;(3)若()y g x =为严格减函数,()()01f f <,且函数()y f x =的图像是连续曲线,求证:()y f x =是()0,1上的严格增函数.证明:(1)函数()y g x =为偶函数. ……2分 因为对任意R x ∈,都有()()()()f x f x g x g x −−≥−−, 所以()()()220g x g x x x −−≤−−=,得()()g x g x −=,所以()y g x =为偶函数. ………4分 (2)解:设12x x <因为()y f x =是R 上的严格增函数,所以()()12f x f x <, 进而()()()()1221g x g x f x f x −≤−,所以()()()()1122f x g x f x g x +≤+,()()()()1122f x g x f x g x −≤−, 设()()()u x f x g x =+,()()()v x f x g x =−,则()y u x =与()y v x =均为R 上的严格增函数, …….3分()23cos 0u x a x x '=++≥,()23cos 0v x a x x '=+−≥恒成立因为230x ≥,cos 1x −≥−,所以23cos 1a x x a +−≥−,得1a ≥, 当1a ≥时,()23cos 0u x a x x '=++≥恒成立,所以1a ≥. ………..6分 (3)设12x x <,因为()y g x =是严格减函数,所以()()12g x g x >, 而()()()()2112f x f x g x g x −≥−,所以()()120f x f x −> 所以对任意12x x <,都有()()12f x f x ≠(*) ……2分 ①首先证明,当01x <<时,()()()01f f x f <<, 假设存在001x <<,且()()01f f x <,设()()()1h x f x f =−,则()00h <,()00h x >, 所以存在()300,x x ∈,使得()30h x =, 得()()31f x f =,与结论*矛盾, 所以不存在001x <<,使得()()01f f x <同理也不存在001x <<,使得()()00f x f <,所以当01x <<时,()()()01f f x f <<. ……5分 ②再证明,当1201x x <<<时,()()12f x f x <, 假设存在1201x x <<<,使得()()12f x f x >, 则()()()()2101f f x f x f <<<设()()()2h x f x f x =−,则()00h <,()10h x >, 所以存在()300,x x ∈,使得()30h x =, 得()()32f x f x =,与结论*矛盾,所以假设不成立,即对任意()12,0,1x x ∈,都有()()12f x f x < 所以函数()y f x =是区间()0,1上的增函数 ……8分。
2024长春高三一模试卷数学

长春市2024年高三第一次模拟考试数学试卷第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合20,{2}3x A x B x x x +⎧⎫=≥=>⎨⎬-⎩⎭,则()UA B = ð()A.{2x x ≤-或3}x >B.{23}x x <≤C.{23}x x -<≤ D.{23}x x <<2.已知复数z 满足()34i 7i z +=+,则z =()A.1B.C.D.3.在ABC 中,若4AB AC AP += ,则PB =()A.3144AB AC -B.3144AB AC-+C.1344AB AC-+D.1344AB AC -4.新课程改革后,普通高校招生方案规定:每位考生从物理、化学、生物、地理、政治、历史六门学科中随机选三门参加考试,某省份规定物理或历史至少选一门,那么该省份每位考生的选法共有()A .14种B.15种C.16种D.17种5.已知直线l 过抛物线C :24y x =的焦点且与C 交于A ,B 两点,线段AB 的中点关于y 轴的对称点在直线2x =-上,则AB =()A.3B.4C.5D.66.已知π2sin 128α⎛⎫+= ⎪⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.116B.23C.12D.15167.2023120222023112023log ,20222,202a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为()A.a c b >>B.b a c>> C.c b a>> D.a b c>>8.半径为R 的球面上有,,,A B C D 四点,且直线,,AB AC AD 两两垂直,若ABC ,ACD △,ADB △的面积之和为72,则此球体积的最小值为()A.64πB.2563π C.144πD.288π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图,则下列说法错误的是()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差10.已知函数()sin (010)6f x x πωω⎛⎫=+<< ⎪⎝⎭,且()3f x f x π⎛⎫-=- ⎪⎝⎭,则()A.06f π⎛⎫= ⎪⎝⎭B.()f x 的图象关于直线6x π=对称C.若()()()12120f x f x x x ==≠,则12x x -是25π的整数倍D.()f x 在06,π⎡⎤⎢⎥⎣⎦上不单调11.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++ ,若()01f '=,则()A.{}lg n a 为单调递增的等差数列B.01q <<C.11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列 D.使得1n T >成立的n 的最大值为612.已知函数()21xx x f x e+-=,则下列结论正确的是()A.函数()f x 存在两个不同的零点B.函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D.若[),x t ∈+∞时,()2max 5f x e=,则t 的最小值为2第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.已知(2,),(1,3)a m b ==- ,若a b ⊥,则m =___________.14.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,l 为双曲线的一条渐近线,F 到直线l,过F 且垂直于x 轴的直线交双曲线C 于A 、B 两点,若AB 长为10,则C 的离心率为________.15.若圆22:1024880C x y x y +-++=关于直线260ax by ++=对称,则过点(,)a b 作圆C 的切线,切线长的最小值是________.16.已知函数()f x 是R 上的奇函数,函数()g x 是R 上无零点的偶函数,若()0f π=,且()()()()f x g x f x g x ''>在(,0)-∞上恒成立,则()0()f xg x <的解集是___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{}n a 的公差不为0,且满足21421234,4a a a a a a a =++=+.(1)求{}n a 的通项公式;(2)求证:1223111114n n a a a a a a ++++< .18.在△ABC 中,a ,b ,c 分别是内角A ,B ,C的对边,且:2a b =2sin B A =.(1)求角B 的大小;(2)若2a =,求△ABC 的面积.19.在如图所示的四棱锥P ABCD -中,四边形ABCD 为矩形,PA ⊥平面ABCD ,E 为PD的中点.(1)证明://PB 平面ACE ;(2)若1PA AD ==,2AB =,求二面角E AC B --的余弦值.20.“学习强国”平台自上线以来,引发社会各界广泛关注,在党员干部中更是掀起了一股学习热潮.该平台以全方位、多维度、深层次的形式,展现了权威、准确、生动、有力的“视听盛宴”,为广大党员干部提供了便捷的学习平台、自我提升的“指南针”、干事创业的“加油站”.某单位为调查工作人员学习强国的情况,随机选取了400人(男性、女性各200人),记录了他们2021年年底的积分情况,并将数据整理如下:积分性别2000~3000(分)3001~4000(分)4001~5000(分)5001~6000(分)>6000(分)男性8060302010女性206010020(1)已知某人积分超过5000分被评定为“优秀员工”,否则为“非优秀员工”,补全下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关;优秀员工非优秀员工总计男性女性总计(2)以样本估计总体,以频率估计概率,从已选取的400人中随机抽取3人,记抽取的3人中属于“非优秀员工”的人数为X ,求X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++.()20P K k ≥0.100.050.0250.0100k 2.7063.8415.0246.63521.已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C 的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.22.已知函数2()ln(1)()f x x a x a =--∈R .(1)讨论函数()f x 的单调区间;(2)若函数()f x 在2x =处取得极值,对x (1,+)∀∈∞,1()ln 1x f x bx x-≤++恒成立,求实数b 的取值范围.数学试卷答案第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.【9题答案】【答案】B【10题答案】【答案】AD【11题答案】【答案】BCD【12题答案】【答案】ABC第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分,共20分.【13题答案】【答案】23【14题答案】【答案】【15题答案】【答案】12【16题答案】【答案】(,1)(0,1)-∞- 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)2n a n =;(2)证明略.【18题答案】【答案】(1)4B π=;(2)212ABC S =+ 或212-.【19题答案】【答案】(1)证明略(2)23-【20题答案】【答案】(1)列联表略,没有90%以上的把握认为“评定类型”与“性别”有关(2)分布列略,数学期望为218【21题答案】【答案】(1)22163x y +=,离心率为22;(2)证明略.【22题答案】【答案】(1)当0a =时,()f x 在(1,+)∞上单调递增;当0a ≠时,()f x 在21(1,1a +上单调递增,在21(1+,+)a ∞上单调递减.(2)211,e ⎡⎫-+∞⎪⎢⎣⎭。
2024届上海市松江区高三一模数学试题及答案

上海市松江区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.5一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知全集为R ,集合1P x x ,则集合P.2.双曲线221x y 的右焦点坐标是.3.4.5.6.7.8.1人连续参9.2A ,则边长b10. 12,1,3x x ,使11. 2x f x2,则 2023f.12.已知正四面体A BCD 的棱长为,空间内任意点P 满足2PB PC ,则AP AD的取值范围是.第14题图第17题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.英国数学家哈利奥特最先使用“ ”和“ ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.对于任意实数a 、b 、c 、d ,下列命题是真命题的是().A 若22a b ,则a b ;.B 若a b ,则ac bc ;.C 若a b ,c d ,则ac bd ;.D 若a b ,c d ,则a c b d .14.如图所示的茎叶图记录了甲、乙两支篮球队各6名队员某场比赛的得分数据(单位:分).则下列说法正确的是().A 甲队数据的中位数大于乙队数据的中位数;.B 甲队数据的平均值小于乙队数据的平均值;.C 甲数据的标准差大于乙队数据的标准差;.D 乙队数据的第75百分位数为27.15.函数y .A .C 16.;②曲线M .A 三、17.//AB .(1)(2)CD 45CDA ,求二面角P CE A 的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知数列 n a 为等差数列, n b 是公比为2的等比数列,且223344a b a b b a .(1)证明:11a b ;(2)若集合1,150k m M k b a a m ,求集合M 中的元素个数.19.(本题满分14分,第1小题满分6分,第2小题满分8分)为了鼓励居民节约用气,某市对燃气收费实行阶梯计价,普通居民燃气收费标准如下:第一档:年用气量在0310 (含)立方米,价格为a 元/立方米;第二档:年用气量在310520 (含)立方米,价格为b 元/立方米;第三档:年用气量在520立方米以上,价格为c 元/立方米.(1)请写出普通居民的年度燃气费用(单位:元)关于年度的燃气用量(单位:立方米)的函数解析式(用含a 、b 、c 的式子表示);(2)已知某户居民2023年部分月份用气量与缴费情况如下表,求a 、b 、c 的值.已知椭圆2222:1y x a b (0a b )的离心率为2,其上焦点F 与抛物线2:4K x y 的焦点重合.(1)求椭圆 的方程;(2)若过点F 的直线交椭圆F 于点A 、B ,同时交抛物线K 于点C 、D (如图1所示,点C 在椭圆与抛物线第一象限交点上方),试比较线段AC 与BD 长度的大小,并说明理由;(3)若过点F 的直线交椭圆 于点A 、B ,过点F 与直线AB 垂直的直线EG 交抛物线K 于点E 、G(如图2所示),试求四边形AEBG 面积的最小值.第20题图1第20题图2已知函数 y f x ,记 sin f x x x ,x D .(1)若 0,2D ,判断函数的单调性;(2)若0,2D,不等式 f x kx 对任意x D 恒成立,求实数k 的取值范围;(3)若D R ,则曲线 y f x 上是否存在三个不同的点A 、B 、C ,使得曲线 y f x 在A 、B 、C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.松江区2023学年度第一学期期末质量监控试卷高三数学答案一、填空题1、{}|1x x <(或(),1−∞)2、(2,0) 34、05、17− 6、 7、10 8、359、 10、[]7,8− 11、1− 12、4⎡−+⎣二、选择题:DDCC17、(1)证明:因为PA ⊥底面ABCD ,CE ⊂平面ABCD ,所以PA CE ⊥.………2分 因为,//,AB AD CE AB CE AD ⊥⊥所以. ………………………2分 又,PAAD A =所以CE ⊥平面PAD .……………………2分注:建立空间直角坐标系证明,相应给分.(2)因为PA ⊥底面ABCD ,所以PE 在平面ABCD 上的投影是AE ,由(1)可知CE AE ⊥,由三垂线定理可得,CE PE ⊥. 所以,二面角P CE A −−的平面角为PEA ∠.……………2分 在Rt ECD ∆中,DE CD =cos 451,sin 451,CE CD ⋅︒==⋅︒=又因为1,//AB CE AB CE ==,所以四边形ABCE 为矩形. ………2分 所以2BC AE ==,所以1115(23)13326P ABCD ABCD V S PA PA −=⋅=⨯+⨯⋅=梯形,所以1PA =………2分 在Rt PAE ∆中,1tan 2PA PEA AE ∠==,所以1arctan 2PEA ∠=. 即:二面角P CE A −−的大小为1arctan2. ………2分18、(1)证明:设数列{}n a 的公差为d ,则1111111122428(3)a db a d b a d b b a d +−=+−⎧⎨+−=−+⎩ ………2分即1112250d=b a d b =⎧⎨+−⎩ ………2分可解得,112db a ==,所以原命题得证. ………2分 (2)由(1)知112db a ==,所以111112(1)k k m b a a a a m d a −=+⇔⨯=+−+ ……2分因为10a ≠,所以[]221,50k m −=∈,解得22log 5027.64k ≤≤+≈ ………4分所以满足等式的解2,3,4,5,6,7k =.故集合M 中的元素个数为6. ………2分前5个月燃气总费用:168+240+198+174+183=963,由(1)中函数解析式,计算可得:9633103(320310)b =⨯+−, 所以 3.3b =. . ……… 4分又9月份,10月份,12月份的燃气费均价分别为:3.3,3.38,4.2均不同,所以12月份为第三档,264.64.263c ==. . ……… 2分 解法二:1月份,5月份,9月份,10月份,12月份的燃气费均价分别为:3,3.05,3.3,3.38,4.2均不同.所以1月份为第一档,5月份为第一档和第二档,10月份与12月份不同,则12月份为第三档,10月份与9月份不同,10月份为第二档与第三档,9月份为第二档.从而得到3=a ,3.3=b ,2.4=c . . ………8分 20、解:(1)由题意得(0,1)F ,即:1c = ,又2c a =,所以a = . ……… 2分 由222a b c −=,得21b = ,所以椭圆的方程为 2212y x += . . ……… 2分(2)由题意得过点F 的直线AB 的斜率存在,设直线AB 方程为1y kx =+, 设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:()222210k x kx ++−=, 则12222k x x k +=−+,12212x x k=−+, 所以)2212k A k B +==+. . ……… 2分抛物线K 的方程为:24x y =, 联立214y kx x y=+⎧⎨=⎩,消去y 得:2440x kx −−=, 所以()241CD k ==+. . ……… 2分所以()()AC BD AC AD BD AD CD AB −=+−+=−())()(2222222212421410k k k k k k++=+−++=+>,即AC BD >. . ……… 2分 (3)设()11,A x y ,()22,B x y ,()55,E x y ,()66,G x y , 当直线AB 的斜率存在且不为零时, 设直线AB 方程为()10y kx k =+≠,则直线EG 方程为11y x k =−+,由(2)的过程可知:)2212kk AB ++=,2141EG k ⎛⎫=+ ⎪⎝⎭, . ……… 1分所以))()222222211111412222AEBGk k k S AB EG k k k ++⎡⎤⎛⎫=⋅=⨯⨯+= ⎪⎢⎥⎭⎣⎦+⎝+)()()222222111111k k k +==−−++ . ……… 2分因为211k +>,所以()()2210,11k ∈+,()()22110,11k−∈+,()22111AEBG S k =>−+. ……… 2分当直线AB 的斜率不存在时,AB =,4EG =,所以11422AEBG S AB EG =⋅=⨯=; . (2)分 综上所述:AEBG S ≥AEBG 面积的最小值为. . ……… 1分 21、解:(1)因为'()1cos 0f x x =+≥,当且仅当在x π=时,'()0f x =,…… 2分 所以函数()y f x =在上是增函数.(区间开闭都对). ……… 2分[0,2]π(2)由题意得,(1)sin k x x −<,于是sin 1xk x−<. 令sin ()xh x x=,则2cos sin '()x x x h x x −=, . ……… 2分令()cos sin u x x x x =−,则'()sin 0,(0,]2u x x x x π=−<∈,所以()u x 在(0,]2π上是严格减函数,于是()(0)0,(0,]2u x u x π<=∈.. ……… 2分由于2cos sin '()0,(0,]2x x x h x x x π−=<∈,于是()h x 在(0,]2π上是严格减函数, 所以min 2()()2h x h ππ==,因此21k π−<,即21k π<+. . ……… 2分(3)设11(,)A x y 、22(,)B x y 、33(,)C x y ,则曲线在A B C 、、三点处的切线分别为直线 11111:(1cos )cos sin l y x x x x x =+−+,22222:(1cos )cos sin l y x x x x x =+−+, 33333:(1cos )cos sin l y x x x x x =+−+.因为直线123,,l l l 互相重合,所以123cos cos cos x x x ==,且111cos sin x x x −+222cos sin x x x =−+333cos sin x x x =−+. . ……… 2分 因为123cos cos cos x x x ==,所以12sin sin x x =±,23sin sin x x =±,31sin sin x x =±. ①若12sin sin x x =−,23sin sin x x =−,31sin sin x x =−. 则1sin 0x =,2sin 0x =,3sin 0x =, 于是112233cos cos cos x x x x x x −=−=−, 因为123cos cos cos 10x x x ===±≠,所以123x x x ==,与A B C 、、三点互不重合矛盾. . ………3分 ②若12sin sin x x =,23sin sin x x =,31sin sin x x =中至少一个成立, 不妨设12sin sin x x =成立,则1122cos cos x x x x =, 若12cos cos 0x x =≠,则12x x =,矛盾,舍去,于是12cos cos 0x x ==,12sin sin 1x x ==±, . ……… 2分所以满足要求的切线方程为1y x =+或1y x =−.. ……… 1分解法2:假设存在三个不同点112233(,),(,),(,)A x y B x y C x y 在曲线()y f x =上满足条件,则111222333sin ,sin ,sin y x x y x x y x x =+=+=+,且123,,x x x 互不相同。
2025届浙江省台州市高三一模数学试卷(含答案)

2025届浙江省台州市高三一模数学试卷2024.11本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知tan 2α=,则cos 2α的值为( )A B .45C .35D .35−2.椭圆221:194x y E +=与椭圆222:1(04)94x y E k k k+=<<−−的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等3.若复数z 是方程2250x x −+=的一个虚根,则z z +=( )A .−2B .2C .4i −D .4i4.已知集合{}{}223,23xAx xx Bx x =+<=+<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知变量x 与y 的成对样本数据具有线性相关关系,由一元线性回归模型2,()0,(),Y bx a e E e D e σ=++ ==根据最小二乘法,计算得经验回归方程为ˆˆ1.6yx a =+,若10x =,15y =,则ˆa =( ) A .6.6B .5C .−1D .−146.已知()f x 是定义在R 上的奇函数,当(0,)x ∈+∞时,3()log f x x =,则(9)f −=( ) A .−3B .−2C .2D .37.已知球O 的半径为3,P 是球O 表面上的定点,S 是球O 表面上的动点,且满足()20SO SP OP +⋅=,则线段OS 轨迹的面积为( )A .B .C .D .8.台州某校为阳光体育设计了一种课间活动,四位同学(两男两女)随机地站到4×4的方格场地中(每人站一格,每格至多一人),则两个男生既不同行也不同列,同时两个女生也既不同行也不同列的概率是( )A .2465B .1235C .2165D .3391二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列选项正确的是( )A .若随机变量1~(6,)3XB ,则4()3D X =B .若随机变量~(6,4)X N ,则()6E X =C .若随机变量X 服从0—1分布,且1(1)3P X ==,则1()3D X =D .若机变量X 满足22426(),0,1,2k kC C P X k k C −⋅===,则2()3E X =10.已知函数()2sin sin ,f x a x x a R =−−∈,且0a ≠,则下列选项正确的是( ) A .()f x 的最小正周期为πB .()f x 的图象关于直线π2x =对称 C .1212,,()()4x x R f x f x ∀∈−≤D .(1,3),()a f x ∃∈在[0,π2]上有两个不同的零点 11.已知棱长为3的正四面体1,,,,[0,1]2A BCD AE AD BF BC EM EF λµλµ−===∈,则下列选项正确的是( )A .当12µ=时,0EF BC ⋅=B .当12µ<时,EF <C .当EF = λµ+的最大值为43D .当EF = 时,则2AM 的最大值为非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛” 的最上层有1个球,第二层有3个球,第三层有6个球,…,设从上到下各层球的个数构成一个数列{}n a ,则10a = ▲ .13.若1()1x xe f x ax e −=++在R 上单调递减,则实数a 的最大值为 ▲ .14.已知圆22:0C x y Dx Ey +++=,其中0D <,若圆C 上仅有一个点到直线20x +−=的距离为1,则ED的值为 ▲ ;圆C 的半径取值可能为 ▲ (请写出一个可能的半径取值). 四、解答题:本大题共5小题,共77分。
韶关市高三数学一模试卷

韶关市高三数学一模试卷一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母代号涂在答题卡上。
)1. 下列函数中,为奇函数的是:A. y = x^2B. y = x^3C. y = x^2 + 1D. y = x^3 - 12. 已知函数f(x) = 2x + 1,求f(-1)的值:A. -1B. 1C. 3D. -33. 函数y = 3x - 2的图象与x轴的交点坐标为:A. (0, -2)B. (2/3, 0)C. (-2/3, 0)D. (0, 2/3)4. 若a > 0,b > 0,且a + b = 1,则ab的最大值为:A. 1/4B. 1/2C. 1/3D. 15. 已知数列{an}满足a1 = 1,an = 2an-1 + 1,求a3的值:A. 7B. 9C. 11D. 136. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角为:A. 30°B. 45°C. 60°D. 90°7. 已知复数z = 1 + i,求|z|的值:A. √2B. 2C. √3D. 18. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求圆心坐标:A. (3, -4)B. (3, 4)C. (-3, 4)D. (-3, -4)二、填空题(本大题共4小题,每小题5分,共20分。
请将答案直接写在答题卡上。
)9. 已知函数f(x) = x^2 - 4x + c,若f(x)在x = 2处取得最小值,则c的值为________。
10. 已知等差数列{an}的首项a1 = 3,公差d = 2,求数列的第5项a5的值:________。
11. 已知直线l的方程为y = 2x + 3,求直线l与x轴的交点坐标:________。
12. 已知函数y = x^3 - 6x^2 + 9x + 1,求函数的极值点:________。
山东省枣庄市2024届高三下学期一模数学试卷(含解析)

山东省枣庄市2024届高三下学期一模数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合,,则( )A. B. C. D.2.某儿童医院用甲、乙两种疗法治疗小儿消化不良.采用有放回简单随机抽样的方法对治疗情况进行检查,得到两种疗法治疗数据的列联表:的独立性检验(已知独立性检验中),则可以认为( )A.两种疗法的效果存在差异B.两种疗法的效果存在差异,这种判断犯错误的概率不超过0.005C.两种疗法的效果没有差异D.两种疗法的效果没有差异,这种判断犯错误的概率不超过0.0053.已知,,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.在平面直角坐标系中,已知,,P 为圆上动点A.34B.40C.44D.485.已知圆台的上、下底面半径分别为1和3,侧面展开图是半个圆环,则圆台的侧面积为( ){}3log 0M x x =<11N x y x ⎧⎫==⎨⎬-⎩⎭()M N =R ð(),1-∞(],1-∞()(),00,1-∞ ()(],00,1-∞ 0.005=2χ0.0057.879x =0a >0b >2a b +>222a b +>xOy ()3,0A -()1,0B 22:(3)(3)1C x y -+-=A. B. C. D.6.下列命题错误的是( )A.若数据,,,,的标准差为S ,则数据,,,,的标准差为B.若,C.若,,则D.若X 为取有限个值的离散型随机变量,则7.在侧棱长为2的正三棱锥中,点E 为线段上一点,且,则以A 为球8.已知F 为抛物线的焦点,的三个顶点都在E 上,P 为的中点,且A.4B.5C.二、多项选择题9.已知函数,则( )A.的最大值为2B.在上单调递增C.在上有2个零点D.把10.已知,,则( )A.若,则 B.若D.若11.将数列中的所有项排成如下数阵:6π16π26π32π1x 2x 3x ⋅⋅⋅n x 13x 23x 33x ⋅⋅⋅3n x 3S ()4,X B p ~()D X =()272128X ==()21,X N σ~(0)0.75P X >=(02)0.5P X <<=()()22E X E X ≥⎡⎤⎣⎦A BCD -BC AD AE ⊥2:4E y x =ABC △AB 2CF FP =()ππsin 2cos 236f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭()f x ()f x ππ,86⎡⎤-⎢⎥⎣⎦()f x []0,π(f x 1z 2z ∈C 12z z 20≠21z z =21z =21z z +=-120z z =2z ≠{}n a从第2行开始每一行比上一行多两项,且从左到右均构成以2为公比的等比数列;第1列数成等差数列.若,则( )A. B.C.位于第45行第88列D.2024在数阵中出现两次三、填空题12.的展开式中的系数为_______________.(用数字作答)13.已知为偶函数,且,则__________________.14.盒子内装有编号为1,2,3,…,10的10个除编号外完全相同的玻璃球.从中任取三球,则其编号之和能被3整除的概率为__________________.四、解答题15.在(1)求C ;(2)若,,是边上的高,且16.如图,在四棱锥中,底面为正方形,平面,与底面所成的角为,E 为的中点.(1)求证:平面;(2)若,G 为的内心,求直线与平面所成角的正弦值.17.已知.123456789a a a a a a a a a ⋅⋅⋅125,,,a a a ⋅⋅⋅2102,8a a ==11a =-92168i i a ==∑2024a ()5()x y x y +⋅-33x y ()2f x +()()26f x f x ++=-()2027f =ABC △sin A =8a =5b =CH AB CH mCA =+ P ABCD -ABCD PA ⊥ABCD PD 45︒PD AE ⊥PCD 2AB =BCD △PG PCD ()21ln ,2f x x ax x a =++∈R(1)讨论的单调性;(2)若,,求a 的取值范围.18.有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第次答题后游戏停止的概率为.①求;②是否存在最大值?若存在,求出最大值;若不存在,试说明理由.19.在平面直角坐标系中,椭圆(1)求C 的方程;(2)已知直线与圆相切,且与C 相交于M ,N 两点,F 为C 的右焦点,求的周长L 的取值范围.()f x ()0,x ∀∈+∞()311e 12xf x ax x ax ⎛⎫++≤++ ⎪⎝⎭()*,5n n n ∈≥N n a n a n a xOy 2222:1(x y C a b a b +=>>1x =y kx m =+222:O x y b +=FMN △参考答案1.答案:D解析:由,可得,所以,即,对于函数,解得或,所以,所以,所以.故选:D.2.答案:C解析:零假设为:疗法与疗效独立,即两种疗法效果没有差异.根据列联表中的数据,,根据小概率值的独立性检验,没有充分证据推断不成立,因此可以认为成立,即认为两种疗法效果没有差异.故选:C.3.答案:A解析:若,,,则,充分性成立;若,可能,此时,所以必要性不成立.综上所述,“”是“”的充分不必要条件.故选:A.4.答案:B解析:设,3log 0x <33log log 1x <01x <<{}{}3log 001M x x x x =<=<<y =+010x x ≥-≠01x ≤<1x >[)()10,11,1N x y x ⎧⎫===+∞⎨⎬-⎩⎭ (){},01N =-∞R ð()()(],00,1M N =-∞R ð0H 20.0054.8817.879x χ≈<=0.005α=0H 0H 0a >0b >2a b +>2221()22a b a b +≥+>222a b +>a =0.1=2a b +<2a b +>222a b +>(,P x y ()()2222223122410x y x y x y x +++-+=+++()22218x y ⎡⎤=+++⎣⎦的距离的平方的两倍加八,,.故选:B.5.答案:B解析:圆台的上底面圆半径,下底面圆半径,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:,解得,所以圆台的侧面积.故选:B.6.答案:D解析:数据,,,,的标准差为S ,则数据,,,,的标准差为,故A 正确;,,,则,故C 正确;X 为取有限个值的离散型随机变量,则,故D 错误.()1,0-1514=-=224840⨯+=1r '=3r =()2π3π2π1πl x x ⎧⨯=+⎨⨯=⎩24x l =⎧⎨=⎩()()ππ1+3416πS r r l '=+=⨯=1x 2x 3x ⋯n x 13x 23x 33x ⋯3n x 3S =~(4,)X B p ()D X =(1)p p -=(1)p p -=()2222243(2)C (1)61616P X p p p p ⎛⎫==-=-=⨯=⎡⎤ ⎪⎣⎦⎝⎭2~(1,)X N σ(0)0.75P X >=(02)2(01)2[(0)(1)]2(0.750.5)0.5P X P X P X P X <<=<<=>->=⨯-=22()()[()]0D X E X E X =-≥故选:D.7.答案:C解析:取中点F ,连接、,则有,,又,、平面,故平面,又平面,故,又,,、平面,故平面,又、平面,故,,由正三棱锥的性质可得、、两两垂直,故的交线长为:,即与该三棱锥三个侧面交线长的和为故选:C.8.答案:B解析:设、、,由可得,由,P 为的中点,则有,即,即,故,,又,此时点C 在原点.BC AF DF AF BC ⊥DF BC ⊥AF DF F = AF DF ⊂ADF BC ⊥ADF AD ⊂ADF BC AD ⊥AD AE ⊥BC AE E = BC AE ⊂ABC AD ⊥ABC AC AB ⊂ABC AD AC ⊥AD AB ⊥AD AB AC AF ==ABC ππ2=3=()11,A x y ()22,B x y ()33,C x y 2:4E y x =()1,0F 2CF FP =AB 2CF FP FA FB ==+ 0FA FB FC ++= 1233x x x ++=1233x x x +=-121232522p pFA FB x x x x x +=+++=++=-30x ≥35505x -≤-=故选:B.9.答案:AC解析:函数.选项A :,,故最大值为2,A 正确;选项B :不单调递增,故B 错误;选项C :以及时,即在上有2个零点,故C 正确;选项D :,不关于原点对称,故D 错误.故选:AC .10.答案:ABD解析:设.对于A :若可得对于B :若,则,即,得或选项C :令、,则,,()πππππsin 2cos 2sin 2cos 236332f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++-=+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()πππsin 2sin 22sin 2333f x x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭x ∈R ()f x ππ,86x ⎡⎤∈-⎢⎥⎣⎦π23x ≤+≤()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭[0,πx ∈π23x ≤+≤ππ3x +=π22π3x +=x =x =()0f x =[]0,π(f x ()ππ2sin 22cos 236g x x x ⎛⎫=++= ⎪⎝⎭12i,i(,,,z a b z c d a b c d =+=+∈R i a b =-i c d =-z ()()2222i i z c d c d c d =+-=+12z z z =2212z z =22120z z -=()()12120z z z z +-=12z z =12z z =-11i z =+21i z =-122z z +=122i z z -=,错误;故选:ABD 11.答案:ACD解析:由第1列数,,,,成等差数列,设公差为d ,又由,,可得,,解得,,则第一列的通项公式为,又从第2行开始每一行比上一行多两项,且从左到右均构成以2为公比的等比数列,可得,所以A 正确,B 错误;又因为每一行的最后一个数为,,,,且,可得是的前一个数,且在第45行,因为这一行共有个数,则在第45行的第88列,所以C 正确;由题设可知第i 行第j 个数的大小为,令,若,则即;若,则即;若,则,无整数解.故D 正确.故答案为:ACD.12.答案:0解析:因为,其中展开式的通项为,所以的展开式含的项为,21z z +=-()()121i 1i 2z =+-=1a 2a 5a 10a 22a =108a =12a d +=138a d +=11a =-3d =()11334k a k k =-+-⨯=-239248510204080169a a a +++=+++++++= 1a 4a 9a 16a2452025=2024a 2025a 2025a 245189⨯-=2024a ()1342j i --⨯()1334220242532j i --⨯==⨯1j =3i 42024-=i 676=2j =3i 4506-=i 170=3j =3i 4253-=()555()()()x y x y x x x y y y +⋅--=+-()5x y -()515C r r rr T x y -+=-()05,r r ≤≤∈N ()5()x y x y +⋅-33x y ()()3232233332335555C C C C 0x x y y x y x y x y -+-=-+=即的展开式中的系数为0.故答案为:0.13.答案:-3解析:因为为偶函数,所以,又,所以,因为,所以,所以,所以函数为周期函数,周期为,所以,由,可得,由,可得,所以,所以,故答案为:-3.解析:依题意,问题相当于从1,2,3,…,10的10个数中任取3个,这3个数的和能被3整除的概率,显然试验含有的基本事件总数为,它们等可能,10个数中能整除3的有3,6,9;除以3余数是1的有1,4,7,10;除以3余数是2的有2,5,8,取出的3个数的和能被3整除的事件含有的基本事件数有,所以.15.答案:(1)()5()x y x y +⋅-33x y ()2f x +()()22f x f x +=-+()()26f x f x ++=-()()26f x f x -++=-()()26f x f x ++=-()()426f x f x +++=-()()4f x f x +=()f x 4()()()202731f f f ==-()()26f x f x -++=-()()116f f +=-()()26f x f x ++=-()()116f f +-=-()()113f f =-=-()20273f =-310C 120=A 33111343342C C C C C 42++=42()120P A ==π3C =解析:(1)又因为A ,C 为的内角,所以,所以.所以,(2)方法一 :,,,,所以,,由题意知,所以,即.所以方法二 :中,由余弦定理得,所以.又因为,所以所以所以.445=ABC △sin tan A ===ABC △(0,πA ∈π0,2⎛⎫ ⎪⎝⎭sin 0,cos 02CA ≠≠2sin 2C =122C ===8a =5b =π3C =πcos cos 58cos 203CA CB CA CB C ab C ⋅=⋅⋅==⨯⨯= 2225CA b == 2264B a C ==CH AB ⊥0CH AB ⋅=()()()()()222025640mCA nCB CB CA m n CB CA mCA nCB m n m n +⋅-=-⋅-+=--+= 544m n ==ABC △2222212cos 85285492c a b ab C =+-=+-⨯⨯⨯=7c =11sin 22ABC S ab C c CH ==⋅△sin ab C CH c===AH ===()5445494949CH CA AH CA CB CA CA CB =+=+-=+由平面向量基本定理知,16.答案:(1)证明见解析解析:(1)因为平面,平面,所以,因为与平面所成的角为,平面,所以,且,所以,又E 为的中点,所以,因为四边形为正方形,所以,又,,,平面,所以平面,因为平面,所以,因为,,平面,所以平面.(2)因为底面为正方形,G 为的内心,所以G 在对角线上.如图,设正方形的对角线的交点为O ,所以,,所以,所以,44,49m n ===PA ⊥ABCD CD ⊂ABCD PA CD ⊥PD ABCD 45︒PA ⊥ABCD 45PDA ∠=︒45PDA APD ∠=∠=︒PA AD =PD AE PD ⊥ABCD CD AD ⊥CD PA ⊥PA AD A = PA AD ⊂PAD CD ⊥PAD AE ⊂PAD CD AE ⊥PD CD D = PD CD ⊂PCD AE ⊥PCD ABCD BCD △AC OG GF =CG =))1,221CO CG OG OG AC CO OG =+=+==+)21AG AO OG CO OG OG OG =+=+=+=所以,又因为,所以.由题意知,,两两垂直,以,,所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.所以,由(1)知,所以,,所以.又因为平面,所以平面的一个法向量为.设直线与平面所成角为,则17.答案:(1)答案见解析(2)解析:(1)由题意知定义域为,且令,AG AC =2AB =2AG =AB AD AP AB AD AP A xyz -)GAP AD =()0,0,2P ()0,2,0D ()0,1,1E )2PG =- AE ⊥PCD PCD ()0,1,1AE =PG PCD θsin cos ,AE θ=〈 3a ≤()f x ()0,+∞()11f x ax x =='++()21h x ax x =++①当时,,,所以在上单调递增.②当时,,记的两根为,,则.当时,,在上单调递增,当时,,在上单调递减.综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减.(2)方法一:,化简得.设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,又,所以,当且仅当取等号,令,因为在上单调递增,所以在上单调递增.又因为,所以存在唯一,使得①,所以,当且仅当时取等号.①当时,成立.②当时,由①知,.所以与恒成立矛盾,不符合题意.综上.方法二 :0a ≥()0h x >()0f x '>()f x ()0,+∞0a <Δ140a =->()0h x =1x 2x 1x =2x =120x x >>10x x <<()0f x '>()f x ()10,x 1x x >()0f x '<()f x ()1,x +∞0a ≥()f x ()0,+∞0a <()f x ⎛ ⎝⎫+∞⎪⎪⎭()311e 12x f x ax x ax ⎛⎫++≤++ ⎪⎝⎭3ln 3ln 1e e x x x x ax x +++≤=()e 1x g x x =--()e 1x g x '=-0x >()0g x '>()g x ()0,+∞0x <()0g x '<()g x (),0-∞()00g =e 1x x ≥+0x =()ln 3t x x x =+ln ,3y x y x ==()0,+∞()t x ()0,+∞()1130,1ln303t t ⎛⎫=>=-< ⎪⎝⎭01,13x ⎛⎫∈ ⎪⎝⎭()0003ln 0t x x x =+=3ln 3e e ln 31x x x x x x +=≥++0x x =3a ≤3ln 3e e ln 31ln 1x x x x x x x ax +=≥++≥++3a >0003ln 300e e e 1x x x x +===0000ln 1ln 311x ax x x ++>++=03000e ln 1x x x ax <++3ln 1e x x ax x ++≤3a ≤不等式,可化为,所以令则.令,则.所以在上单调递增.又,所以,使,所以在上单调递减,在上单调递增.由得,即设,,则所以在上单调递增.由,所以,且所以,所以.()311e 12x f x ax x ax ⎛⎫++≤++ ⎪⎝⎭3ln 1e x x ax x ++≤3ln e x x a x ≤-()3ln 1e x x m x x x=--()2332221ln 13e ln 3e xxx x x m x x x x -+=-+='()233e ln x n x x x =+()()313e 230x n x x x x=++>'()n x ()0,+∞()()33e 3111113e ln13e 0,e ln lne ln303333n n ⎛⎫=+=>=+=-< ⎪⎝⎭01,13x ⎛⎫∃∈ ⎪⎝⎭()00n x =()m x ()00,x ()0,x +∞()00n x =032003e ln 0x x x +=030000ln 13e ln ex x x x x =-=()e x x x ϕ=()0,x ∈+∞()()e e 1e 0x x x x x x ϕ=+=+>'()e x x x ϕ=()0,+∞030013eln ex x x =()0013ln x x ϕ⎛⎫= ⎪⎝⎭03ln x =3=-0301e x x =()()0300min 00ln 1e 3x x m x m x x x ==--=3a ≤(2)①,②存在,最大值解析:(1)记“此人三次答题后,乙罐内恰有红、黑各一个球”,“第i 次摸出红球,并且答题正确”,;“第j 次摸出黑球,并且答题正确”,;“第k 次摸出红球或黑球,并且答题错误”,,所以.又所以同理:所以.(2)①第n 次后游戏停止的情况是:前次答题正确恰好为4次,答题错误次,且第n 次摸出最后一球时答题正确.所以.②由①知,,解得,解得.所以,所以的最大值是411C2nn n a -⎛⎫= ⎪⎝⎭8935256a a ==M =i A =i 1,2,3=j B =1,2,3j =k C =1,2,3k =123123123123123123M A B C B A C A C B B C A C A B C B A =+++++()13152P A =⨯=()212142B A =⨯=()312112C A B =⨯=()()()()()()12312312121312P A B C P A B P C A B P A P B A P C A B =⋅=⋅⋅3111042=⨯⨯=()()()()()123123123123123380P B A C P A C B P B C A P C A B P C B A =====()()12339668040P M P A B C =⨯=⨯=1n -5n -4544111111CC 2222n nn n n a ---⎛⎫⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭411C 2nn n a -⎛⎫= ⎪⎝⎭()()()1441!11C 4!4!221!1C 4!5!2n nn n n n n n +-⎛⎫⨯ ⎪-⎝⎭===-⎛⎫⎪-⎝⎭1≥n ≤1<9n >567891011a a a a a a a <<<>>=>⋅⋅⋅n a 89a a ==(2)解析:(1)由题意可知,点在椭圆上,则有..(2)由题意知,,设,,由与圆,即.由消去y 并整理得.该方程的判别式,由韦达定理得所以21y +=[]4,8⎛⎝22221e a b ⎧==⎪⎪⎪⎨⎪⎪⎝⎭+=⎪⎩224,1b ==21y +=0k ≠)F()11,M x y ()22,N x y y kx m =+22:O x y +=1=221m k =+22,14y kx m x y =+⎧⎪⎨+=⎪⎩()()222148410k x kmx m +++-=()()22222Δ164116411480k m k k k ⎡⎤=+-=+-+=>⎣⎦()2121222418,1414m km x x x x k k -+=-==++MN ===2==-2)124L MN MF NF x x =++=+显然,下面对的符号进行讨论:①当时,令,则且代入(*)化简得因为,所以,解得,当且仅当时取等号.②当时,.综上,周长L 的取值范围为.28414km k ⎫=+--⎪+⎭4=0km ≠km 0km >44L =+=214k t +=1t >2k =4L =+1t >101t<<48L <≤3t =0km <4L =FMN △[]4,8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013学年第一学期徐汇区学习能力诊断卷
数学学科(理科) 2014.1
一. 填空题:(本题满分56分,每小题4分) 1.计算:210
lim
______323
n n n →∞+=+.
2.函数sin 2cos 2y x x =的最小正周期是_______________.
3.计算:12243432⎛⎫⎛⎫
= ⎪⎪⎝⎭⎝⎭
_______________.
4.已知3sin x =
,,2x ππ⎛⎫
∈ ⎪⎝⎭
,则x = .(结果用反三角函数值表示) 5.直线1:(3)30l a x y ++-=与直线2:5(3)40l x a y +-+=,若1l 的方向向量是2l 的法向量,则实数=a
.
6. 如果11111
()12312
n f n n n =+
+++++++L L (*n N ∈)
那么(1)()f k f k +-共有 项. 7.若函数()f x 的图象经过(0,1)点,则函数(3)f x +的反函数的图象必经过点_______. 8.某小组有10人,其中血型为A 型有3人,B 型4人,AB 型3人,现任选2人,则此2人是同
一血型的概率为__________________.(结论用数值表示)
9.双曲线2
2
1mx y +=的虚轴长是实轴长的2倍,则m =____________.
10.在平面直角坐标系中,动点P 和点()2,0M -、()2,0N 满足||||0MN MP MN NP ⋅+⋅=u u u u r u u u r u u u u r u u u r
,则动
点(),P x y 的轨迹方程为__________________.
11.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y .已知这组数据的平均数为 10,方差为2,则x y -的值为___________________.
12.如图所示,已知点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边
分别交于M 、N 两点,且,AM x AB AN y AC ==u u u u r u u u r u u u r u u u r ,则xy
x y
+的值为
_________________.
13.一个五位数,,,abcde a b b c d d e <>><满足且,(37201,45412a d b e >>如),则称这个五位数符合“正弦规律”.那么,共有_______个五位数符合“正弦规律”.
14.定义区间],[],(),,[),(d c 、d c d c 、d c 的长度均为)(c d c d >-.已知实数,().a b a b >则满足
x b x a x 的11
1≥-+-构成的区间的长度之和为_______.
二.选择题:(本题满分20分,每小题5分)
15.直线(0,0)bx ay ab a b +=<<的倾斜角是 --------------------------------( )
(A)arctan
a b π- (B)arctan b a π- (C)arctan()a b - (D)arctan()b a
- 16.为了得到函数R x x y ∈+=),63sin(2π
的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点
-----------------------------------------------------------------------------------------------------------------( )
(A )向右平移
6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (B )向左平移
6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
(C )向右平移
6π
个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(D )向左平移
6
π
个单位长度,再把所得各点的横坐标缩短到原来的3
1
倍(纵坐标不变)
17.函数()f x x x a b =++是奇函数的充要条件是----------------------------------------------( ) (A )0ab = (B )0a b += (C )2
2
0a b += (D )a b =
18.已知集合()(){},M x y y f x =
=,若对于任意()1
1
,x y M ∈,存在()2
2
,x y M ∈,使得
12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:
①()1,M x y y x ⎧⎫
==
⎨⎬⎩
⎭
; ②(){},sin 1M x y y x ==+}; ③(){}2,log M x y y x =
=;
④(){}2x
M x,y |y e ==-.
其中是“垂直对点集”的序号是 ( ) (A ) ①② (B ) ②③(C ) ①④ (D ) ②④
三. 解答题:(本大题共5题,满分74分)
19.(本题满分12分)
在ABC ∆中,,BC a AC b ==,a b 、是方程2
20x -+=的两个根,且0
120A B +=。
求ABC ∆的面积及AB 的长.
20.(本题满分14分,第(1)小题7分,第(2)小题7分) 已知函数()()21,65f x x g x x x =-=-+-. (1)若()()g x f x ≥,求x 的取值范围; (2)求()()g x f x -的最大值.
21.(本题满分14分;第(1)小题5分,第(2)小题9分)
某种海洋生物身体的长度()f t (单位:米)与生长年限t (单位:年) 满足如下的函数关系:()4
10
12
t f t -+=
+.(设该生物出生时0t =) (1) 需经过多少时间,该生物的身长超过8米;
(2) 设出生后第0t 年内,该生物长得最快,求()
00t t N *∈的值.
22.(本题满分16分;第(1)小题4分,第(2)小题5分,第(3)小题7分)
给定椭圆22
22:1(0)x y C a b a b
+=>>,称圆心在坐标原点O C 的“伴
随圆”,已知椭圆C 的两个焦点分别是12(F F .
(1)若椭圆C 上一动点1M 满足1112||||4M F M F +=u u u u u r u u u u u r
,求椭圆C 及其“伴随圆”的方程;
(2)在(1)的条件下,过点(0,)(0)P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随
圆”所得弦长为P 点的坐标; (3)已知()cos 3
,(,0,)sin sin m n mn m n θθπθθ
+=-
=-≠∈,是否存在,a b ,使椭圆C 的“伴随圆”
上的点到过两点2
2
(,),(,)m m n n 的直线的最短距离min d b =.若存在,求出,a b 的值;
若不存在,请说明理由.
23.(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)
称满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (2,3,4,)n =L 阶“期待数列”: ①1230n a a a a ++++=L ;②1231n a a a a ++++=L .
(1)若等比数列{}n a 为2k (*k N ∈)阶“期待数列”,求公比q 及{}n a 的通项公式;
(2)若一个等差数列{}n a 既是2k (*k N ∈)阶“期待数列”又是递增数列,求该数列的通项公式; (3)记n 阶“期待数列”{}i a 的前k 项和为(1,2,3,,)k S k n =L :
(ⅰ)求证:1
||2
k S ≤
; (ⅱ)若存在{1,2,3,,}m n ∈L 使1
2
m S =
,试问数列{}k S 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效一、填空题(本大题共14题,每题4分,满分56分)
1. 2. 3.
4. __ 5. _ 6.
7. __ 8. _ 9.
10. 11. 12.
13. 14.
二、选择题(本大题共4题,满分20分。
本大题必须使用2B铅笔填涂) 15.[ A ] [ B ] [ C ] [ D ] 16.[ A ] [ B ] [ C ] [ D ] 17.[ A ] [ B ] [ C ] [ D ] 18.[ A ] [ B ] [ C ] [ D ]。