平行四边形单元测试卷
八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
人教版八年级下册数学 第18章 平行四边形 单元测试卷

人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
《第18章 平行四边形》单元测试卷(1)

《第18章平行四边形》单元测试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.102.(3分)如图,在菱形ABCD中,AC、BD相交于点O,F为AB的中点,且DF⊥AB,若AC=6,则DF的长为()A.2B.3C.3D.43.(3分)如图,在正方形ABCD中,点A的坐标是(﹣3,2),点D的坐标是(﹣1,0),则C点的坐标是()A.(1,2)B.(2,2)C.(3,2)D.(2,1)4.(3分)如图,四边形ABED是平行四边形,点C在BE的延长线上,DE=DC,∠C=75°,则∠B等于()A.80°B.75°C.70°D.60°5.(3分)要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张6.(3分)下列说法不正确的是()A.两组对角分别相等的四边形是平行四边形B.一组邻边都相等的四边形是菱形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形7.(3分)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为()A.a>b>c B.a<b<c C.a=b=c D.a>c>b8.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD 为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠29.(3分)已知长方形ABCD,AB=3,AD=4,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为()A.1B.2C.D.10.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.24二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)12.(3分)如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.13.(3分)如图,在四边形ABCD中,AD与BC不平行,AB=CD.AC,BD是四边形ABCD 的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③EG=(BC﹣AD);④HF平分∠EHG.其中正确的是.14.(3分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为.15.(3分)如图,将长方形纸片ABCD沿BD折叠,得到△BDC1,C1D与AB交于点E,若∠1=35°,则∠2的度数是.16.(3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当点B在ON上移动时,点A随之移动,AB=2,BC=1,运动过程中,点D到点O的最大距离为.三.解答题(共5小题)17.如图,在正方形ABCD中,BE平分∠DBC交CD于点E,延长BC到F,使CF=CE,连接DF交BE的延长线于点G.(1)求∠BGF的度数;(2)求证:DE=CE.18.如图,四边形ABCD是平行四边形,BE∥DF,BE、DF分别交AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD是菱形时,请判断四边形BEDF的形状,并证明你的结论.19.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,DE交边BC于点F.(1)求证:四边形BECD为平行四边形;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.20.已知:如图,在平行四边形ABCD中,E、F分别为AB、CD的中点,G、H分别为DE、BF的中点.(1)试判断四边形EHFG的形状,并证明;(2)若∠ABC=90°,试判断四边形EHFG的形状并加以证明.21.如图,▱ABCD中,E是AD的中点,△BCE是等边三角形.求证:四边形ABCD是矩形.。
2020年北师大版八年级数学第二学期 第6章 平行四边形 单元测试卷 (解析版)

八年级(下)数学第6章平行四边形单元测试卷一.选择题(共10小题)1.平行四边形一定具有的性质是()A.邻边相等B.邻角相等C.对角相等D.对角线相等2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是()A.10B.11C.12D.以上都有可能3.从五边形的一个顶点出发可以连接的对角线条数为()A.1B.2C.3D.44.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE DF=B.//AF CE C.AE CF=D.BAE DCF∠=∠5.如图,在平行四边形ABCD中,AB AC⊥,若8AB=,12AC=,则BD的长是()A.22B.16C.18D.206.如图所示,点D,E,F分别是()ABC AB AC∆>各边的中点,下列说法错误()A.12AD BC=B.12EF BC=C.EF与AD互相平分D.DEF∆的面积是ABC∆面积的1 47.如图,ABCDY的周长为32,对角线AC、BD相交于点O,点E是CD的中点,14BD=,则DOE∆的周长为()A .14B .15C .18D .218.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s二.填空题(共6小题) 11.八边形内角和度数为 .12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n =13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 .14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .15.如图,在平行四边形ABCD 中,213AB =,4AD =,AC BC ⊥.则BD = .16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 .三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数. 18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF . (1)求证:四边形ABFD 是平行四边形; (2)求证:BF DC =.21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =. (1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式; (3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD . (1)求证:四边形ACED 是平行四边形;(2)若2AC=,4CE=,求四边形ACEB的周长.24.如图,在平面直角坐标系中,点A,B的坐标分别是(3,0)-,(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCODY.在线段OP延长线上一动点E,且满足PE AO=.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?参考答案一.选择题(共10小题)1.平行四边形一定具有的性质是( ) A .邻边相等B .邻角相等C .对角相等D .对角线相等【解答】解:A 、平行四边形的邻边不相等,故此选项错误; B 、平行四边形邻角互补,故此选项错误; C 、平行四边形的对角相等,故此选项正确;D 、平行四边形的对角线不相等,故此选项错误;故选:C .2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是( ) A .10B .11C .12D .以上都有可能【解答】解:Q 内角和是1620︒的多边形是1620211180+=边形, 又Q 多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形. 综上原来多边形的边数可能为10、11、12边形, 故选:D .3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .4【解答】解:n Q 边形(3)n >从一个顶点出发可以引(3)n -条对角线, ∴从五边形的一个顶点出发可以画出532-=(条)对角线.故选:B .4.平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得到四边形AECF 一定为平行四边形的是( ) A .BE DF =B .//AF CEC .AE CF =D .BAE DCF ∠=∠【解答】解:如图,连接AC 与BD 相交于O , 在ABCD Y 中,OA OC =,OB OD =,要使四边形AECF 为平行四边形,只需证明得到OE OF =即可;A 、若BE DF =,则OB BE OD DF -=-,即OE OF =,故本选项不符合题意;B 、//AF CE 能够利用“角角边”证明AOF ∆和COE ∆全等,从而得到OE OF =,故本选项不符合题意;C 、若AE CF =,则无法判断OE OE =,故本选项符合题意;D 、BAE DCF ∠=∠能够利用“角角边”证明ABE ∆和CDF ∆全等,从而得到DF BE =,然后同A ,故本选项不符合题意; 故选:C .5.如图,在平行四边形ABCD 中,AB AC ⊥,若8AB =,12AC =,则BD 的长是( )A .22B .16C .18D .20【解答】解:Q 四边形ABCD 是平行四边形,12AC =, 162OA AC ∴==,2BD OB =, AB AC ⊥Q ,8AB =,228610OB ∴=+=,220BD OB ∴==.故选:D .6.如图所示,点D ,E ,F 分别是()ABC AB AC ∆>各边的中点,下列说法错误( )A .12AD BC =B .12EF BC =C .EF 与AD 互相平分 D .DEF ∆的面积是ABC ∆面积的14【解答】解:A 、由于点D 是BC 的中点,所以12BD BC =,只有当BD AD CD ==时,结论12AD BC =成立,故本选项符合题意. B 、根据中位线定理,12EF BC =.故本选项不符合题意; C 、根据中位线定理,//AF ED ,//AE FD ,四边形AEDF 为平行四边形,对角线EF 与AD 互相平分.故正确;D 、因为DFE ∆和ABC ∆的各边对应成比例,为1:2,而且每组对应点所在的直线都经过同一个点,对应边互相平行,是位似图形. 故选:A .7.如图,ABCD Y 的周长为32,对角线AC 、BD 相交于点O ,点E 是CD 的中点,14BD =,则DOE ∆的周长为( )A .14B .15C .18D .21【解答】解:Q 四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,172OB OD BD ===, ABCD Q Y 的周长为32, 16CD BC ∴+=,Q 点E 是CD 的中点,12DE CD ∴=,OE 是BCD ∆的中位线,12OE BC ∴=, 1()82DE OE CD BC ∴+=+=, DOE ∴∆的周长7815OD DE OE =++=+=;故选:B .8.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定【解答】解:Q 四边形ABCD 是平行四边形, AB DC ∴=,CMB ∆Q 的面积为12S DC =g 高,ADM ∆的面积为112S MA =g 高,CBM ∆的面积为212S BM =g 高, 而它们的高都是等于平行四边形的高, 1212S S AD ∴+=g 高12BM +g 高1()2MA BM =+g 高12AB =g 高12CD =g 高S =, 则S ,1S ,2S 的大小关系是12S S S =+. 故选:A .9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-【解答】解:连接OB 和AC 交于点M ,过点M 作ME x ⊥轴于点E ,过点B 作CB x ⊥轴于点F ,如下图所示:Q 四边形ABCD 为平行四边形,132ME BF ∴==,122OE OF ==, ∴点M 的坐标为(2,3),Q 直线3y kx k =+将ABCO Y 分割成面积相等的两部分, ∴该直线过点M ,323k k ∴=+,35k ∴=. 故选:A .10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s【解答】解:设运动时间为xs ,则753CP x =+-,BQ x =, Q 四边形PQBC 为平行四边形, CP BQ ∴=, 123x x ∴-=, 124x ∴=, 3x ∴=,故选:A .二.填空题(共6小题)11.八边形内角和度数为 1080︒ . 【解答】解:(82)180********-︒=⨯︒=︒g . 故答案为:1080︒.12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n = 8 【解答】解:Q 每个内角都相等,并且是它外角的3倍, 设外角为x ,可得:3180x x +=︒,解得:45x =︒,∴边数360458=︒÷︒=.故答案为:8.13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 9 .【解答】解:设这个多边形是n 边形.依题意,得36n -=,解得9n =.故该多边形的边数是9.故答案为:9.14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 45︒ .【解答】解:Q 四边形ABCD 是平行四边形,120ABC D ∴∠=∠=︒,//AB CD ,18060BAD D ∴∠=︒-∠=︒,AE Q 平分DAB ∠,60230BAE ∴∠=︒÷=︒,AE AB =Q ,(18030)275ABE ∴∠=︒-︒÷=︒,45EBC ABC ABE ∴∠=∠-∠=︒;故答案为:45︒.15.如图,在平行四边形ABCD 中,13AB =,4AD =,AC BC ⊥.则BD = 10 .【解答】解:Q 四边形ABCD 是平行四边形,4BC AD ∴==,OB OD =,OA OC =,AC BC ⊥Q ,∴由勾股定理得:2222(213)46AC AB BC =-=-=,132OC AC ∴==, Q 在Rt BCO ∆中,90BCO ∠=︒,2222345OB OC BC ∴=+=+=,210BD OB ∴==,故答案为:10.16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 (6,3) .【解答】解:(4,0)A Q ,4OA ∴=,Q 四边形OABC 是平行四边形,4OA BC ∴==,(2,3)C Q ,(6,3)B ∴,故答案为(6,3).三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【解答】解:设这个多边形的边数为n ,则(2)180360(122)180n -⨯︒+︒=-⨯︒,解得:10n =,答:这个多边形的边数为10.18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.【解答】证明:ADB CBD ∠=∠Q ,//AD BC ∴,DAE BCF ∴∠=∠,在ADE ∆和CBF ∆中DAE BCF AED CFB DE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴∆≅∆,AD BC ∴=,∴四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.【解答】证明:ABC ∆Q 是等边三角形,AC BC AB ∴==,60ACB ∠=︒;Q 将AC 绕点E 旋转ED CE ∴=,EF AE =EDC ∴∆是等边三角形,DE CD CE ∴==,60DCE EDC ∠=∠=︒,FD AC BC ∴==,ABC ∴∆、AEF ∆、DCE ∆均为等边三角形,60CDE ABC EFA ∴∠=∠=∠=︒,//AB FD ∴,//BD AF ,∴四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF DC =.【解答】证明:(1)DE Q 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =EF DE =Q2DF DE ∴=AB DF ∴=,且//AB DF∴四边形ABFD 是平行四边形;(2)Q 四边形ABFD 是平行四边形AD BF ∴=,且AD CD =BF DC ∴=21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =.(1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.【解答】(1)证明:连接BD ,交AC 于O ,如图所示:Q 四边形ABCD 是平行四边形,OB OD ∴=,OA OC =,AE CF =Q ,OA AE OC CF ∴-=-,OE OF ∴=,∴四边形BFDE 是平行四边形;(2)解:AE CF =Q ,OE OF =,22EF AE ==,1AE CF OE OF ∴====,4AC =,3CE =,45ACB ∠=︒Q ,BE AC ⊥,BCE ∴∆是等腰直角三角形,3BE CE ∴==,Q 四边形ABCD 是平行四边形,ABCD ∴Y 的面积2ABC =∆的面积1243122AC BE =⨯⨯⨯=⨯=.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.【解答】(1)解:3∠Q 、4∠、5∠、6∠是四边形的四个内角, 3456360∴∠+∠+∠+∠=︒,34360(56)∴∠+∠=︒-∠+∠,15180∠+∠=︒Q ,26180∠+∠=︒,12360(56)∴∠+∠=︒-∠+∠,1234∴∠+∠=∠+∠;(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;(3)解:240B C ∠+∠=︒Q ,240MDA NAD ∴∠+∠=︒,AE Q 、DE 分别是NAD ∠、MDA ∠的平分线, 12ADE MDA ∴∠=∠,12DAE NAD ∠=∠, 11()24012022ADE DAE MDA NAD ∴∠+∠=∠+∠=⨯︒=︒, 180()18012060E ADE DAE ∴∠=︒-∠+∠=︒-︒=︒.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD .(1)求证:四边形ACED 是平行四边形;(2)若2AC =,4CE =,求四边形ACEB 的周长.【解答】解:(1)证明:90ACB ∠=︒Q ,DE BC ⊥,//AC DE ∴又//CE AD Q∴四边形ACED 是平行四边形.(2)Q 四边形ACED 是平行四边形. 2DE AC ∴==.在Rt CDE ∆中,由勾股定理得2223CD CE DE =-=. D Q 是BC 的中点,243BC CD ∴==.在ABC ∆中,90ACB ∠=︒,由勾股定理得22213AB AC BC =+=. D Q 是BC 的中点,DE BC ⊥,4EB EC ∴==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+.24.如图,在平面直角坐标系中,点A ,B 的坐标分别是(3,0)-,(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造PCOD Y .在线段OP 延长线上一动点E ,且满足PE AO =.(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形;(2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少?【解答】(1)证明:连接CD 交AE 于F , Q 四边形PCOD 是平行四边形,CF DF ∴=,OF PF =,PE AO =Q ,AF EF ∴=,又CF DF =,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,32OP =,3OC =, 则92OE =, 由勾股定理得,2232AC OA OC =+=, 223132CE OC OE =+=,Q 四边形ADEC 为平行四边形, ∴周长为3(3213)2623132+⨯=+.。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
第4章平行四边形单元测试卷(含解析)

浙教版八年级数学下册单元测试卷第四章平行四边形姓名:___________班级:___________学号:___________一、选择题(本大题共10小题,共30.0分)1.小斌家买了一套新房正在进行装修,星期天小斌陪父母一起到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设客厅地面(需无缝),则购买的瓷砖形状不可以是()A. 三角形地砖B. 正方形地砖C. 正六边形地砖D. 正五边形地砖2.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A. 35°B. 40°C. 50°D. 30°3.已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个4.学习了平行四边形的相关知识后,小明采用下列方法钉制了一个平行四边形框架:如图,将两根木条AC、BD的中点重叠并用钉子固定,然后用木条将AB、BC、CD、DA分别钉起来.此时四边形ABCD即为平行四边形,这样做的依据是()A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A. 2B. 5C. 7D. 96.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A. 有一个内角小于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 每一个内角都大于60°7.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3√3,则B′D的长度为()A. 6√3B. 9√3C. 6D. 98.已知点D与点A(−5 , 0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A. 172√2 B. 132√2 C. 13 D. 129.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为ℎ1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为ℎ2,则下列结论正确的是A. ℎ1 =ℎ2 B. ℎ1=2ℎ2 C. 2ℎ1 =ℎ2 D. ℎ1.ℎ2大小不确定10.如图,在平行四边形ABCD中,∠C=120º,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A. 1B.C.D.二、填空题(本大题共8小题,共24.0分)11.一个多边形的内角和与某一个外角的度数总和为1350°,则这个多边形的边数是________。
人教版四年级上册数学第五单元《平行四边形和梯形》达标测试卷(含参考答案)

人教版四年级上册数学第五单元《平行四边形和梯形》达标测试卷一、单选题1.图中有()个平行四边形。
A.4 B. C.52.两条直线相交,如果其中一个角是90度,那么其他三个角都是()。
A.锐角B.直角C.钝角3.生活中,人们运用平行四边形的()生产电动大门。
A.稳定性B.平衡性C.易变形性4.下图中与AE互相平行的线段有()条。
A.1 B.2 C.35.在同一平面内,有两条直线分别都与同一条直线互相垂直,这两条直线()A.互相垂直B.互相平行C.相交二、判断题6.过直线外一点做这条直线的平行线,可以做无数条。
()7.在同一个平面内互相垂直的两条直线一定不互相平行。
()8.两条直线相交构成的4个角中如果有一个直角,那么其它3个角也是直角。
()9.平行四边形具有稳定性。
()10.在同一平面内,所画的两条平行线延长后可以相交。
()三、填空题11.如果两条直线相交,其中一个角是90°,那么其它三个角都是角,这两条直线互相。
12.长方形的长和宽互相,长方形的两条长互相。
13.在同一平面内,两条直线的位置关系主要是两种,分别是和。
14.将一张圆形纸片连续对折两次后展开,这两条折痕互相。
15.下图是由边长为5厘米和3厘米的两个正方形组成的,找一找图中梯形有个,梯形BCHG的高是厘米。
16.正方形相对的两条边互相。
17.两条直线相交成时,这两条直线叫做互相垂直。
四、解决问题18.如图,煤气工人要从M点处修煤气管道到对面的楼房,要使管道长度最短,请你画出管道的位置。
19.一块平行四边形的菜地,相邻两边的长分别是30米和25米,这块菜地周长是多少米?20.李爷爷家门前有一个平行四边形的鱼塘,鱼塘两条邻边的长分别是80米和60米,李爷爷每天绕鱼塘走3圈,他每天绕鱼塘走多少米?21.一个梯形的下底长度是上底的3倍,如果将上底延长6cm,梯形就变成平行四边形,这个梯形原来的上底和下底分别是多少?22.一个平行四边形的一条边长15厘米,比它的邻边短4厘米.这个平行四边形的周长是多少厘米?23.用两个完全一样的等腰梯形拼成一个平行四边形,已知梯形的上底是5厘米,下底是8厘米,腰长6厘米,拼成的平行四边形的周长是多少厘米?参考答案1.B2.B3.C4.C5.B6.×7.√8.√9.×10.×11.直;垂直12.垂直;平行13.相交;平行14.垂直15.3;316.垂直且相等17.直角18.解:19.解:(30+25)×2=55×2=110(米)答:这块菜地的周长是110米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形练习卷
一.选择题(共12小题)
1.下列说法不正确的是()
A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等2.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:
①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,
能使四边形AECF是平行四边形的条件有()
A.1个B.2个C.3个D.4个
3.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP
相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC
间的距离为()
A.4B.5C.6D.7
4.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()
A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD
5.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()
A.2B.2C.3D.3
6.如图,在△ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE ⊥AB于点E,DF⊥BC于点F,则EF的最小值为()
A.2.4B.3C.4.8D.5
7.如图,在△ABC中,∠ACB=90°,AC=8,BC=6,点D为斜边AB上的中点,则CD为()
A.10B.3C.5 D.4
8.如图,矩形ABCD的对角线AC=8cm,∠BOC=120°,则BC
的长为()
A.2cm B.4cm C.4cm D.8cm
9.如图,在矩形OABC中,点B的坐标是(1,3),则A、C两点间的距离是()
A.4 B.C.D.2
10.矩形ABCD中,AB=6,BC=8,则点A到BD的距离是()
A.4B.4.6C.4.8D.5
11.矩形具有而平行四边形不一定具有的性质是()
A.对边平行且相等B.对角相等C.对角线互相平分D.对角线相等12.下列说法中能判定四边形是矩形的是()
A.有两个角为直角的四边形B.对角线互相平分的四边形
C.对角线相等的四边形D.四个角都相等的四边形
二.填空题(共6小题)
13.在平面直角坐标系上,有点A(﹣2,﹣2),B(2,2),C(0,4),当点D的坐标为时,四边形ABCD是矩形.
14.如果四边形ABCD的对角线AC,BD相等,且互相平分于点O,则四边形ABCD是形,如果∠AOB=60°,则AB:AC=.
15.在平行四边形ABCD中,∠A=90°,AB=7cm,AD=6cm,则S□ABCD=.16.如图,A,B两点被池塘隔开,在池塘外选取点O,连接OA,OB,并分别取OA,OB 的中点M,N,若测得MN=50m,则A,B两点间的距离是m.
17.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠ABC=60°,则DE=m.
18.如图,矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为点E.若OE=1,BD=2.则CE=.
19.如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.
(1)求证:四边形BEDF是平行四边形;
(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.
20.如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.
(1)求证:四边形ADFE是矩形;
(2)连接OF,若AD=6,EC=4,∠ABF=60°,求OF的长度.
21.如图,在直角坐标系中,▱ABCD的顶点A,B,D的坐标是A(﹣1,0),B(0,﹣),D(0,2).
(1)求点C的坐标;(2)判断▱ABCD是不是矩形,并给出证明.
22.如图,在△ABC中,AB=AC,AD是BC边的中线,AG平分△ABC的外角∠BAF,BE ⊥AG,垂足为E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB于点O,若BC=8,AO=,求△ABC的面积.。