三角形外角和的性质
三角形的外角和

9.1.2 三角形的外角和知识回顾1.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角和 .(2)三角形的一个外角大于任何一个与它不相邻的内角 .2.三角形的外角和定理:在三角形的每一个顶点取一个外角,所得的和是三角形的外角和,三角形的外角和等于360 °.典例讲解考点1.利用三角形的外角性质进行计算例1:一个零件如图所示,按规定∠A等于90°,∠B和∠C应分别等于32和21°,检验工人量得∠BDC等于148°,就断定这个零件不合格,这是为什么?解:连结AD并延长则∠1=∠3+∠C,∠2=∠4+∠B∴∠BDC=∠1+∠2=∠3+∠C+∠4+∠B=∠C+∠B+∠CAB∵工人测得∠BDC=148o而∠A+∠B+∠C按规定为143o即∠BDC=143o∴不合格。
考点2.利用三角形的外角进行大小比较例2.如图,CE为ΔABC的外角平分线,交BA的延长线于E,求证:∠BAC>∠B解析∵CE为ΔABC的外角平分线∴∠ACE=∠ECD ∵∠BAC>∠ACE ∴∠BAC>∠ECD ∵∠ECD>∠B ∴∠BAC>∠B规律与方法:有关三角形中角的大小比较常用方法是利用三角形的一个外角大于与它不相邻的任一内角这一性质.考点3.利用三角形的外角和进行计算例3. 如图,点D,E,F分别是△ABC的边BC,AC,AB上的点,则∠1+∠2+∠3+∠4+∠5+∠6等于( )A.180°B.240°C.360°D.540°解析C规律与方法:利用三角形的一个外角等于与它不相邻的两个内角的和,将多个内角的和进行转化,再利用三角形的外角和求解.课堂演练1. (2011潼南)如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B= .70○2.如图,AD∥BC,BD平分∠ABC,且,则__35°.3.(2011怀化)如图1所示,∠A、∠1、∠2的大小关系是( ) BA. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠14.(2011绵阳) 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为().CA.75 B.95 C.105 D.120BAO5.如图,已知△ABC中,BE,CF分别是△ABC的两条高且相交于点D,(1)若∠A=70°,求∠BDC的度数;(2)若∠BDC=120°,求∠A的度数.答案:110°,60°6. (2011济南)(1)如图1,△ABC中,∠A = 60°,∠B︰∠C = 1︰5.求∠B的度数.∠B = 20°课外延伸一、选择题1. (2011新疆生产建设兵团)如图,AB∥CD,AD和BC相交于O点,∠A=40°,∠AOB=75°.则∠C等于( ) BA.40° B. 65° C.75° D.115°2. 一个三角形的两个内角是55°和65°,这个三角形的外角不可能是( D )A.115°B.120°C.125°D.130°3. (2011崇左)如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A.60° B.33° C.30° D.23°4. (2011济宁)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( )BA. 直角三角形B. 锐角三角形[来源:]C. 钝角三角形D. 等边三角形5. (2011菏泽)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠等于( ) DA.30° B.45° C.60° D.75°30°45°二、填空题6. (2011上海)如图,点B、C、D在同一条直线上,CE//AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.54°7. 如图,把∠1,∠2,∠3按由小到大的顺序排列是__∠1<∠2<∠3 .8. 三角形的一个外角等于邻内角的4倍,等于一个不邻内角的2倍,则此三角形各角度数分别是__36°、72°、72°_.9、(2011鄂州)如图,△ABC的外角∠ACD的平分线CP的内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=_______________.50°10.如图,AB//CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=_______60___°.三、简答题11. 如图,在五角星中,∠A+∠B+∠C+∠D+∠E的度数是多少?180°12. 如图,已知D为内一点,求证:.延长BD交AC于E,∠BDC>∠BEC>∠A13. 如图所示,已知CE是∠ACD的角平分线,∠ECD=50°,∠ABC=40°,求∠A的度数.答案:60°(1)一变:如图所示,CE是∠ACD的角平分线,AF∥CE,∠ECD=50°∠ABC=40°,求∠BAF的度数.(2)二变:如图所示,CE是∠ACD的角平分线,F是CA延长线上的一点,FG∥CE且交AB于点G,已知∠ECD=50°,∠ABC=40°,求∠FGA 的度数.答案:(1)10°,(2)10°14. 如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°;(1)求∠BAE的度数;(2)求∠DAE的度数;(3)如果只知道∠B–∠C= 40°,你能得出∠DAE的度数吗?如果能求出∠DAE的度数(1)30°,(2)20°、(3)能,20°探究创新15. (2011青海)认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图11-1,在△ABC中,O是∠AB C与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线探究2:如图11-2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图11-3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .(1)探究2结论:∠BOC=理由如下:∵ BO和CO分别是∠ABC和∠ACD的角平分线∴(2)探究3:结论∠BOC=90°-。
初中数学 什么是三角形的内角和外角

初中数学什么是三角形的内角和外角初中数学中,三角形的内角和外角是几何学中重要的概念。
它们描述了三角形内部和外部角度的关系。
本文将详细介绍三角形的内角和外角的定义、性质和计算方法。
一、三角形的内角三角形的内角是指三角形内部的角度。
对于任意一个三角形ABC,它有三个内角,分别为∠A、∠B和∠C。
三角形的内角性质:1. 内角和等于180度:三角形的三个内角的和等于180度,即∠A + ∠B + ∠C = 180°。
2. 锐角三角形:如果三角形的三个内角都小于90度,则称该三角形为锐角三角形。
3. 直角三角形:如果三角形的一个内角等于90度,则称该三角形为直角三角形。
4. 钝角三角形:如果三角形的一个内角大于90度,则称该三角形为钝角三角形。
二、三角形的外角三角形的外角是指一个三角形的某一个内角的补角。
对于三角形ABC,可以通过延长一条边来形成一个外角。
三角形的外角性质:1. 外角等于两个不相邻内角之和:对于三角形ABC,外角∠D等于不相邻的两个内角之和,即∠D = ∠B + ∠C。
2. 三角形的三个外角的和等于360度:三角形的三个外角的和等于360度,即∠D + ∠E + ∠F = 360°。
三、三角形内角和外角的计算方法1. 已知两个内角求第三个内角:如果已知三角形的两个内角,可以通过内角和等于180度的性质求得第三个内角。
2. 已知一个内角和一个外角求第三个内角:如果已知三角形的一个内角和一个外角,可以通过外角等于两个不相邻内角之和的性质求得第三个内角。
3. 已知一个内角和一个外角求其他两个外角:如果已知三角形的一个内角和一个外角,可以通过外角等于两个不相邻内角之和的性质求得其他两个外角。
总结:本文详细介绍了初中数学中三角形的内角和外角的定义、性质和计算方法。
三角形的内角和为180度,可以用于判断三角形的性质和分类。
三角形的外角是某一个内角的补角,可以用于计算三角形其他角度的信息。
三角形性质和判定定理

三角形性质和判定定理三角形是平面几何中最基本的图形之一,具有丰富的性质和判定定理。
本文将对三角形的性质和判定定理进行论述,探究其数学本质和应用。
1. 三角形的定义三角形是由三条线段组成的闭合图形,其中每条线段都是连接两个非共线点的直线段。
三角形可分为等边三角形、等腰三角形、直角三角形等各种类型。
2. 三角形的性质2.1 三角形的内角和定理三角形的内角和等于180度。
设三角形的三个内角分别为A、B、C,可以得出以下等式:A + B + C = 180度。
2.2 三角形的外角性质三角形的外角等于其余两个内角的和。
如果外角为θ,则有:θ = A + B 或θ = B + C 或θ = A + C。
2.3 三角形的边长关系三角形的两边之和大于第三边,两边之差小于第三边。
设三角形的三个边分别为a、b、c,则有以下不等式成立:a + b > c,a + c > b,b+ c > a;a - b < c,a - c < b,b - c < a。
三角形的内角与其对边之间存在一定的关系。
设三角形的三个内角分别为A、B、C,对边分别为a、b、c,则有以下关系成立:a/sinA = b/sinB = c/sinC。
3. 三角形的判定定理3.1 三边长度判定定理如果三角形的三边长度分别为a、b、c,满足a + b > c,a + c > b,b +c > a,则可以构成一个三角形。
3.2 两边夹角与第三边关系判定定理如果已知三角形的两边长度分别为a、b,夹角为θ,则可以根据余弦定理判断第三边的长度。
余弦定理表达式为:c^2 = a^2 + b^2 -2abcosθ。
3.3 两边夹角与第三边夹角关系判定定理如果已知三角形的两边长度分别为a、b,夹角分别为A、B,则可以根据正弦定理判断第三边夹角的大小。
正弦定理表达式为:sinC/a = sinA/b = sinB/c。
三角形外角定律

三角形外角定理
三角形外角定理:三角形的任意一个外角等于和它不相邻的两个内角之和。
在△ABC中,∠1+∠2+∠3=180°。
三角形内角和定理:三角形的内角和等于18 0°。
也可以用全称命题表示为:∀△ABC,∠1+∠2+∠3=180°。
任意n边形的内角和公式为θ=180°·(n-2)。
其中θ是n边形内角和,n是该多边形的边数。
从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°。
三角形外角的性质
1、三角形的一个外角等于与它不相邻的两个内角和;
2、三角形的一个外角大于与它不相邻的任一内角;
3、三角形的外角和为360°。
三角形的外角和它的性质

布置作业
教科书习题 11.2第6、8题.
概念: 三角形的一边与另一边的 延长线组成的角,叫做三角形 的外角.
B
A CD
探索与证明三角形的外角的性质
A
B
CD
特征: (1). 顶点在三角形的一个顶点上. (2). 一条边是三角形的一边. (3). 另一条边是三角形某条边的延长线. 实际上三角形的一个外角, 就是三角形一个内角的邻补角。
动手试一试: 画图并思考:画一个△ABC,你能画出它的所 有外角吗?请动手试一试.同时,想一想 △ABC的外角一共有几个?
(2)、三角形的外角和等于它内角和 的2倍。( ) (3)、三角形的一个外角等于两个内 角的和。( )
(4)、三角形的一个外角等于与它不 相邻的两个内角的和。( )
(5)、三角形的一个外角大于任何一 个内角。( )
(6)、三角形的一个内角小于任何一 个与它不相邻的外角。( )
课堂练习
40o
练习 如图,D是△ABC 的BC 边上一点,∠ B =
课堂练习
练习3 如图,说出图形中∠ 1 和∠2 的度数:
80°
60°
2 1
(1)
2
1 30°
40°
(2)
1
2 40°
(3)
运用三角形的外角的性质
例 如图,∠BAE,∠CBF,∠ACD 是△ABC 的
三个外角,它们的和是ห้องสมุดไป่ตู้少?
E
A
1
B2 F
3
CD
判断题: (1)、三角形的外角和是指三角形 所有外角的和。( )
归纳:
探索与证明三角形的外角的性质
三角形的内角和与外角性质

三角形的内角和与外角性质三角形是几何学中最基本的形状之一,由三条边和三个内角组成。
本文将探讨三角形的内角和与外角性质。
一、三角形的内角和性质三角形的内角和指的是三个内角的度数之和。
根据平面几何的基本原理,任何三角形的内角和都等于180度,即∠A + ∠B + ∠C = 180°。
根据三角形的内角和定理,我们可以得出以下结论:1. 锐角三角形:三个内角都小于90度的三角形属于锐角三角形。
对于锐角三角形,∠A + ∠B + ∠C = 180°,且三个内角的度数之和小于180度。
2. 直角三角形:直角三角形的其中一个内角是90度,剩余两个内角的度数之和等于90度。
即∠A + ∠B + ∠C = 180°,其中∠C = 90°。
3. 钝角三角形:三个内角中至少有一个大于90度的三角形属于钝角三角形。
对于钝角三角形,∠A + ∠B + ∠C = 180°,且三个内角的度数之和大于180度。
以上是关于三角形的内角和性质的基本原理。
接下来,我们将讨论与之相对应的三角形的外角性质。
二、三角形的外角性质三角形的外角是指一个三角形的任意一个内角的补角。
根据三角形的内角和性质,我们可以得出如下结论:1. 锐角三角形的外角性质:对于锐角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。
其中∠D = 180° - ∠A,∠E = 180° - ∠B,∠F = 180° - ∠C。
2. 直角三角形的外角性质:对于直角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。
其中∠D = 90° - ∠A,∠E = 90° - ∠B,∠F = 90° - ∠C。
3. 钝角三角形的外角性质:对于钝角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。
三角形的外角性质

三角形的外角性质三角形是几何学中最基本的图形之一,由三个不共线的点和它们之间的边构成。
在三角形中,有一些特殊的角称为外角。
本文将详细介绍三角形外角的性质。
一、外角的定义外角是指一个三角形的其中一个内角的补角,也就是与该内角相邻且不在同一条直线上的角。
在任何三角形中,每个内角都对应着一个唯一的外角。
二、三角形外角的性质1. 外角和内角关系在任何三角形中,一个外角等于另外两个不相邻的内角的和。
换句话说,三角形的一个外角等于其余两个内角的和。
例如,在三角形ABC中,∠A是一个外角,它等于∠B和∠C的和(∠A = ∠B + ∠C);同样地,∠B是一个外角,它等于∠A和∠C的和(∠B = ∠A + ∠C);∠C也是一个外角,它等于∠A和∠B的和(∠C = ∠A + ∠B)。
2. 外角和直角在三角形中,三个外角的和恒等于直角(90度)。
也就是说,三个外角的度数之和总是等于90度。
证明:设三角形ABC的三个外角分别为∠A、∠B、∠C,根据三角形的内角和定理可知∠A + ∠B + ∠C = 180度。
根据外角的定义可知∠A = ∠B + ∠C。
将∠A代入前一个等式中得到∠B + ∠C + ∠B +∠C = 180度,整理得到2∠B + 2∠C = 180度,化简得到∠B + ∠C =90度。
3. 外角与内角的关系在同一个三角形中,一个内角的外角与其他两个内角之和相等。
也就是说,一个内角的外角等于其他两个内角的和。
例如,在三角形ABC中,∠A对应的外角是∠D,∠B对应的外角是∠E,∠C对应的外角是∠F。
根据外角的定义可知∠D = ∠B + ∠C,∠E = ∠A + ∠C,∠F = ∠A + ∠B。
4. 外角的性质总结根据上述讨论,我们可以总结出三角形外角的性质:- 一个三角形的外角等于其余两个内角的和。
- 三个外角的和等于90度(直角)。
- 同一个三角形中,一个内角的外角等于其他两个内角的和。
结论:本文详细介绍了三角形外角的性质,包括外角的定义、外角和内角的关系、外角和直角的关系以及外角与内角的关系。
三角形的内角和定理与外角性质

三角形的内角和定理与外角性质三角形是几何学中最基本的图形之一,其内角和定理与外角性质是我们在学习三角形时必须了解和掌握的重要概念。
本文将详细介绍三角形的内角和定理以及外角性质,帮助读者建立对三角形性质的深入理解。
一、三角形的内角和定理在讨论三角形的内角和定理之前,首先需要了解一个基本概念,即内角。
三角形的内角是指三条边所夹的角,分别记为角A、角B和角C,对应三条边分别为边a、边b和边c。
根据三角形的定义,三个内角的和总是等于180度,即有以下内角和定理:角A + 角B + 角C = 180度这一定理是三角形性质的基础,通过它我们可以推导出其他三角形性质和定理。
二、三角形的外角性质除了内角和定理,三角形还具有一些重要的外角性质。
三角形的外角是指一个三角形的一个内角的补角,即与之相邻的两个内角的和等于180度。
下面我们将介绍三角形外角性质的几个重要定理:1. 外角定理三角形的任一外角等于其不相邻的两个内角的和。
设三角形的一个外角为角D,则有以下等式成立:角D = 角A + 角B 或角D = 角A + 角C 或角D = 角B + 角C通过外角定理,我们可以通过已知的内角信息推导出三角形的外角。
2. 外角和定理三角形的三个外角的和等于360度。
设三角形的外角分别为角D、角E和角F,则有以下等式成立:角D + 角E + 角F = 360度外角和定理是三角形外角性质的一个重要推论,通过它我们可以验证一个三角形是否是合理的。
三、应用举例为了更好地理解三角形的内角和定理与外角性质,下面我们来应用这些概念解决一个具体问题。
假设有一个三角形ABC,其角A为90度,角B为30度,我们需要求解角C和角D的度数。
根据内角和定理,我们知道角A + 角B + 角C = 180度,可以得出:90度 + 30度 + 角C = 180度,进一步计算可得角C = 60度。
接下来,我们根据外角和定理计算角D的度数。
由于三角形的三个外角的和等于360度,我们可以得出:角D + 90度 + 30度 = 360度,进一步计算可得角D = 240度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形外角和的性质
三角形是我们学习数学的基础概念之一,它有着许多有趣的性质和特点。
其中之一就是三角形外角和的性质。
本文将详细介绍三角形外角和的概念、计算方法以及相关的数学定理。
一、三角形外角的定义和性质
在了解三角形外角和之前,我们首先需要了解三角形外角的定义和性质。
三角形外角是指三角形的一个内角的补角。
具体来说,如果我们把三角形的两个内角的补角相加,所得的和就是这个三角形的一个外角。
三角形外角的性质有以下几点:
1. 三角形外角和等于360度
三角形的三个外角的和等于360度。
这是因为一个平面内的角度和为360度,在三角形中,三个外角恰好占满这个角度和。
2. 三角形外角和与角点不相邻的内角之和相等
三角形外角和等于三角形中与角点不相邻的内角之和。
也就是说,如果我们将三角形的一个内角分解为该三角形另外两个角,则这两个角的和等于三角形的一个外角,即三角形外角和。
二、计算三角形外角和的方法
计算三角形外角和的方法主要有以下两种:
1. 直接相加法
直接相加法是最简单的计算三角形外角和的方法。
我们只需要将三角形的三个外角的度数相加即可得到三角形外角和。
根据三角形外角和等于360度的定理,这些外角度数之和始终等于360度。
2. 计算角点不相邻的内角之和法
计算三角形外角和的另一种方法是计算角点不相邻的内角之和。
首先,我们将三角形的一个内角分解为该三角形另外两个角,然后计算这两个角的度数之和,即可得到三角形外角和。
这种方法更适用于已知三角形的内角度数的情况。
三、三角形外角和的数学定理
关于三角形外角和的数学定理有以下两个重要定理:
1. 第一外角定理
第一外角定理指出,一个三角形的一个外角等于它所对应的两个内角之和。
也就是说,如果我们将三角形的一个外角分解为该三角形另外两个角,则这两个角的和等于这个外角的度数。
2. 第二外角定理
第二外角定理指出,一个三角形的两个外角之和等于第三个外角的度数。
也就是说,如果我们将三角形的两个外角的度数相加,所得的和等于这个三角形的另外一个外角的度数。
综上所述,我们详细介绍了三角形外角和的概念、计算方法以及相关的数学定理。
通过研究三角形外角和的性质,我们可以更好地理解三角形的特点,并在解题中运用相应的知识。
希望本文对你对三角形外角和的理解有所帮助。