5G:非正交多址技术(NOMA)的性能优势
noma原理

noma原理Noma原理是一种用于无线通信的算法,它的全称是Non-orthogonal Multiple Access,意为非正交多路访问。
Noma原理可以帮助提高无线通信的效率和容量,同时减少功耗等问题。
下面将介绍Noma原理的几个重要特点和应用场景。
一、特点1. 非正交多址:Noma原理允许多个用户同时使用同一频率和时间资源,而不需要像传统的TDMA、FDMA、CDMA等技术一样进行频率和时间划分。
2. 超密集:Noma原理在使用相同频段的情况下,可以支持更多的用户接入,从而提高了网络的容量。
3. 非对等服务:Noma原理通过给不同的用户分配不同的功率和速率,以满足不同用户的需求,这种非对等服务模式可以应用于各种场景。
4. 算法复杂度低:Noma原理的处理复杂度较低,能够满足现有的无线通信系统的要求。
二、应用场景1. 5G通信:5G网络是一个高密度的网络,需要支持大量设备的同时接入,而Noma原理能够提高网络的容量和覆盖范围,因此能够对5G网络的建设起到积极的促进作用。
2. 物联网:物联网需要支持大量设备的同时接入,这正是Noma原理的强项,因此可以被广泛应用于物联网场景中。
3. 多用户信道:在有多个用户接入的情况下,Noma原理可以提高系统的容量和效率,以达到更好的性能。
4. 再生能源:再生能源的发电机组通常需要通过无线通讯系统进行监测和控制,而Noma原理能够提高通讯效率和容量,因此是再生能源监测的一个较好的选择。
总之,Noma原理是一种新的无线通信技术,它能够提高网络的容量和效率,同时支持多种应用场景。
虽然它还存在一些技术上的挑战,但随着无线通信技术的发展,Noma原理将会得到更加广泛的应用和推广。
面向5G的非正交多址接入技术

面向5G的非正交多址接入技术董园园;张钰婕;李华;王春雷;刘晓菲;戴晓明【摘要】在频谱资源受限的情况下,非正交多址接入(non-orthogonal multiple access,NOMA)技术由于其良好的过载性能而受到广泛关注.首先,提出了基于复杂度受限的NOMA理论设计模型;接着,对目前主流的NOMA技术方案进行了研究分析,并针对每种方案给出了其设计原理;进一步,设计了基于期望值传播(expectation propagation,EP)的低复杂度接收机;最后,通过仿真比较了NOMA 与传统正交多址接入(orthogonal multiple access,OMA)技术的性能.结果表明,NOMA较传统的OMA技术能够显著提升系统容量和误码率(block error rate,BLER)性能.【期刊名称】《电信科学》【年(卷),期】2019(035)007【总页数】10页(P27-36)【关键词】资源受限;非正交多址接入;复杂度受限;低复杂度接收机【作者】董园园;张钰婕;李华;王春雷;刘晓菲;戴晓明【作者单位】北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083【正文语种】中文【中图分类】TP393多址接入技术是无线通信系统网络升级的核心问题,决定了网络的容量和基本性能,并从根本上影响系统的复杂度和部署成本[1]。
从1G到4G无线通信系统,大都采用了正交多址接入(orthogonal multiple access,OMA)方式来避免多址干扰,其接收机复杂度相对较低,但限制了无线通信资源的自由度(degree of freedom,DoF)[2]。
浅析非正交多址接入技术

浅析非正交多址接入技术作者:王波梅晓莉来源:《卷宗》2015年第04期摘要:网络正以超乎我们想象的速度向前发展着,当人们刚刚享受4G网络带给我们便利的时候,5G正在实验室里孕育,相信不久的将来,5G会为我们带来更大的冲击。
虽然现在5G的很多关键技术还没有定论,但普遍认为非正交多址接入(NOMA)将是未来5G理想的多址接入复用技术。
关键词:5G;非正交多址接入(NOMA)1 非正交多址接入(NOMA)技术产生背景IMT-2020(5G)推进组《5G愿景与需求白皮书》中提出,5G定位于频谱效率更高、速率更快、容量更大的无线网络,其中频谱效率相比4G需要提升5~15倍。
在频谱资源紧缺的今天,作为一项潜在的5G关键技术,能很好地提高频谱效率的非正交多址接入(NOMA)越来越受到人们的关注。
2 非正交多址接入(NOMA)基本思想我们知道3G采用直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用Rake接收器,由于其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)来解决手机和小区之间的远-近问题。
而4G网络则采用正交频分多址(OFDM)技术,OFDM不但可以克服多径干扰问题,而且和MIMO技术配合,极大的提高了数据速率。
由于多用户正交,手机和小区之间就不存在远-近问题,快速功率控制就被舍弃,而采用AMC(自适应编码)的方法来实现链路自适应。
NOMA希望实现的是,重拾3G时代的非正交多用户复用原理,并将之融合于现在的4G OFDM技术之中。
从2G,3G到4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA在OFDM的基础上增加了一个维度——功率域。
新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。
NOMA的基本思想是在发送端采用非正交传输,主动引入干扰信息,在接收端通过串行干扰删除(SIC)实现正确解调。
《5G非正交多址接入技术 理论 算法与实现》读书笔记思维导图

第9章 硬件损伤
011 NOMA传输技术及性 能
012
第10章 非理想CSI硬 件损伤下行NOM...
目录
013 第11章 基于能量收 集的硬件损伤多中继 N...
015 关于本书
014 缩略语对照表 016 内容简介
《5G非正交多址接入技术理论算法与实现》从理论研究、标准化、实际实现角度出发,详细介绍了NOMA/ 协作NOMA的基本理论及影响其性能的硬件损伤问题。主要围绕硬件损伤协作通信中继选择方案及性能、无人机 NOMA传输性能、非完美CSI协作NOMA及基于能量收集协作NOMA系统衰落性能进行研究,详细分析了影响 NOMA系统性能的硬件损伤因素,为NOMA系统设计及标准化提供理论指导。为便于研究,本书提供了衰落信道 生 成 M AT L A B 代 码 。
7.7 单小区最大化折 中的功率分配
7.8 多小区最大公平 的功率分配
7.9 本章小结 参考文献
第8章 理想硬件单小区上行 NOMA的功率...
0 1
8.1 研究 背景
0 2
8.2 上行 NOMA系 统模型
0 4
8.4 最大 化能量效率 的功率分配
0 6
参考文献
0 3
8.3 最大 化权重和速 率的功率分 配方案
04
第2章 NOMA的基 本原理
06 第4章 硬件损伤和非 完美CSI对多中继网...
目录
07 第5章 理想硬件无人 机NOMA协作通信 性...
第6章 理想硬件单小
08 区下行两用户簇 NOM...
第7章 理想硬件下行
09 多用户簇NOMA的 功...
第8章 理想硬件单小
010 区上行NOMA的功 率...
非正交多址技术

非正交多址技术非正交多址技术(Non-Orthogonal Multiple Access,NOMA)是一种新型的多址技术,它采用功率调制的方式,将多个用户的发射信号合并到一起,通过空时分集和带宽分配的方法在用户机上进行分离,使多个用户可以使用同一个信道、共用同一段时间和频段,从而实现性能增加,功效提高。
1. 工作原理NOMA的工作原理主要是通过功率调制来实现不同用户的信号合成,基于发送用的的功率差异,把归一化的比特序列按不同的功率值发送,接收端则可以根据收到的信号利用空时分集技术将不同用户间的信号分离出来,最终实现多址的传输。
2. 优势(1)提高系统容量:由于NOMA采用了空时分集技术,可以把不同用户的信号合成到一起发出,利用较小的带宽容量,可以提供大量的用户容量,大大提高系统的容量效率。
(2)功效提高:较其他多址技术,NOMA能够提高不同用户之间无线信道下的功效,由于采用了功率调制,可以对多个用户的发射功率进行更精细的调节,最终提高信道的功效。
(3)较好的业务可扩展性:NOMA可以进行动态的分配方法,根据业务的不同,可以调节用户间的信号聚合程度,以实现发射功率的优化,从而实现不同业务的扩展。
3. 缺点(1)复杂的接收结构:要实现NOMA多址传输,接收端需要建立较复杂的结构,其中需要采用SIC技术,用以实现比较精确的空时分集,而这部分增加了接收端的复杂度。
(2)受功率差异制约:NOMA的信号分离依赖于不同用户的发射功率差异,如果这个发射功率差距太小,则不存在足够的发射功率差异,从而不能有效的实现信号分离,这也有可能影响系统的效率。
4. 应用NOMA可以应用于移动通信、宽带接入等,可以有效地提高不同用户之间的连接容量,降低用户之间的无线信道功效,有效地满足无线信道容量和功效之间双重要求。
目前,NOMA已经应用在5G移动通信系统,未来也会用于更多的现代通信系统,以满足动态变化的应用环境。
5G通信网络中的非正交多址技术研究

5G通信网络中的非正交多址技术研究随着技术的不断发展和社会的进步,无线通信的需求越来越迫切。
为了更好地满足人们对高速、高容量、低延迟的通信需求,5G通信网络成为业界关注的焦点。
在5G通信网络中,非正交多址技术(Non-Orthogonal Multiple Access,NOMA)应运而生,成为提高系统容量和频谱效率的重要手段。
本文将对5G通信网络中的非正交多址技术进行研究,并探讨其在未来通信系统中的应用。
首先,我们需要了解非正交多址技术的基本原理。
在传统的多址技术中,用户通过时分多址(Time Division Multiple Access,TDMA)或频分多址(Frequency Division Multiple Access,FDMA)来共享无线资源。
而在非正交多址技术中,多个用户在同一个时间和频率资源上同时进行传输,通过采用功率域多址(Power Domain Multiple Access,PDMA)或码域多址(Code Domain Multiple Access,CDMA)等技术手段实现。
非正交多址技术具有许多优势。
首先,它可以提高系统容量和频谱效率。
由于多个用户同时传输,频谱资源得到了更充分的利用,从而提高了系统的总体容量。
其次,非正交多址技术在保证频谱效率的同时,可以较好地满足不同用户的通信需求。
通过控制不同用户的发送功率和码率,可以根据用户的要求提供不同的服务质量。
此外,在非正交多址技术中,用户之间的相互干扰可以通过适当的信号处理技术进行抑制,从而减小系统的总体干扰。
非正交多址技术在5G通信网络中有多种应用场景。
首先,非正交多址技术可以用于提高物联网(Internet of Things,IoT)设备的连接密度。
由于IoT设备数量庞大,传统的多址技术往往难以满足其连接需求。
而采用非正交多址技术可以允许多个IoT设备同时传输数据,从而有效提高连接密度。
其次,非正交多址技术还可以用于提供定位服务。
5G:非正交多址技术(NOMA)的性能优势

5G:非正交多址技术(NOMA)的性能优势移动通信技术发展到今天,频谱资源也变得越来越紧张了。
同时,为了满足飞速增长的移动业务需求,人们已经开始在寻找既能满足用户体验需求又能提高频谱效率的新的移动通信技术。
在这种背景下,人们提出了非正交多址技术(NOMA)。
非正交多址技术(NOMA)的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。
虽然,采用SIC技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率。
用提高接收机的复杂度来换取频谱效率,这就是NOMA技术的本质。
NOMA的子信道传输依然采用正交频分复用(OFDM)技术,子信道之间是正交的,互不干扰,但是一个子信道上不再只分配给一个用户,而是多个用户共享。
同一子信道上不同用户之间是非正交传输,这样就会产生用户间干扰问题,这也就是在接收端要采用SIC技术进行多用户检测的目的。
在发送端,对同一子信道上的不同用户采用功率复用技术进行发送,不同的用户的信号功率按照相关的算法进行分配,这样到达接收端每个用户的信号功率都不一样。
SIC接收机再根据不同户用信号功率大小按照一定的顺序进行干扰消除,实现正确解调,同时也达到了区分用户的目的,如图1所示。
图1:下行链路中的NOMA技术原理总的来说,NOMA主要有3个技术特点:1、接收端采用串行干扰删除(SIC)技术。
NOMA在接收端采用SIC技术来消除干扰,可以很好地提高接收机的性能。
串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。
与正交传输相比,采用SIC技术的NOMA的接收机比较复杂,而NOMA技术的关键就是能否设计出复杂的SIC接收机。
随着未来几年芯片处理能力的提升,相信这一问题将会得到解决。
非正交多址接入通信系统性能分析

非正交多址接入通信系统性能分析作者:李伟琪王浩贾子彦来源:《软件导刊》2019年第04期摘要:为解决5G时代频谱资源紧张问题,非正交多址接入技术(Non-Orthogonal Multiple Assess,NOMA)成为最佳选择。
对NOMA技术基本原理及关键技术如功率复用叠加编码技术和串行干扰消除(Successive Interference Cancellation,SIC)技术进行了阐述。
研究了下行链路中基于功率域NOMA通信系统的误码性能,得到合适的功率分配比范围。
在此基础上加入Turbo码,并对加入Turbo码后的NOMA系统误码性能进行了比较分析。
关键词:非正交多址接入技术;功率复用;叠加编码;串行干扰消除;Turbo码;误码性能DOI:10. 11907/rjdk. 182311中图分类号:TP393 文献标识码:A 文章编号:1672-7800(2019)004-0163-050 引言随着移动用户数量的急剧增加和物联网的高速发展,面向2020年的第五代移动通信系统(5G)研究已在全球展开。
2013年,中国成立了IMT-2020(5G)推进组,发布了《5G愿景与需求白皮书》,提到了相关的关键技术指标及8个具有代表性的5G应用场景[1-2]。
2015年,由全球八大移动通信运营商成立的NGMN发布了《5G白皮书》[3],为保证5G运行提供基础设施、服务平台以及终端功能。
目前,5G研究的关键技术[4-6]有大规模天线阵列、超密集组网、全频谱接入、新型网以及新型多址接入技术等。
其中,新型多址接入技术有华为提出的基于多维调制和稀疏码扩频的稀疏码分多址接入(Sparse Code Multiple Access,SCMA)技术[7],中兴提出的基于复数多元码及增强叠加编码的多用户共享接入(Multi-UserSharedAccess,MUSA)技术[8],大唐提出的基于非正交特征图样的图样分割多址接入(Pattern Division Multiple Access,PDMA)技术[9],以及日本NTT; DoCoMo公司研究的功率域非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术[10-11]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5G:非正交多址技术(NOMA)的性能优势
移动通信技术发展到今天,频谱资源也变得越来越紧张了。
同时,为了满足飞速增长的移动业务需求,人们已经开始在寻找既能满足用户体验需求又能提高频谱效率的新的移动通信技术。
在这种背景下,人们提出了非正交多址技术(NOMA)。
非正交多址技术(NOMA)的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。
虽然,采用SIC技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率。
用提高接收机的复杂度来换取频谱效率,这就是NOMA技术的本质。
NOMA的子信道传输依然采用正交频分复用(OFDM)技术,子信道之间是正交的,互不干扰,但是一个子信道上不再只分配给一个用户,而是多个用户共享。
同一子信道上不同用户之间是非正交传输,这样就会产生用户间干扰问题,这也就是在接收端要采用SIC技术进行多用户检测的目的。
在发送端,对同一子信道上的不同用户采用功率复用技术进行发送,不同的用户的信号功率按照相关的算法进行分配,这样到达接收端每个用户的信号功率都不一样。
SIC接收机再根据不同户用信号功率大小按照一定的顺序进行干扰消除,实现正确解调,同时也达到了区分用户的目的,如图1所示。
图1:下行链路中的NOMA技术原理
总的来说,NOMA主要有3个技术特点:
1、接收端采用串行干扰删除(SIC)技术。
NOMA在接收端采用SIC技术来消除干扰,可以很好地提高接收机的性能。
串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。
与正交传输相比,采用SIC技术的NOMA的接收机比较复杂,而NOMA技术的关键就是能否设计出复杂的SIC接收机。
随着未来几年芯片处理能力的提升,相信这一问题将会得到解决。
2、发送端采用功率复用技术。
不同于其他的多址方案,NOMA 首次采用了功率域复用技术。
功率复用技术在其他几种传统的多址方案没有被充分利用,其不同于简单的功率控制,而是由基站遵循相关的算法来进行功率分配。
在发送端中,对不同的用户分配不同的发射功率,从而提高系统的吞
吐率。
另一方面,NOMA在功率域叠加多个用户,在接收端,SIC 接收机可以根据不同的功率区分不同的用户。
3、不依赖用户反馈CSI。
在现实的蜂窝网中,因为流动性、反馈处理延迟等一些原因,通常用户并不能根据网络环境的变化反馈出实时有效的网络状态信息。
虽然在目前,有很多技术已经不再那么依赖用户反馈信息就可以获得稳定的性能增益,但是采用了SIC技术的NOMA方案可以更好地适应这种情况,从而NOMA技术可以在高速移动场景下获得更好的性能,并能组建更好的移动节点回程链路。
从上面的描述中我们也可以看出,NOMA虽然是一种新的技术,但是也融合了一些3G和4G的技术和思想。
例如,OFDM是在4G 中用到的,而SIC最初是在3G中用到的。
那么与传统的CDMA(3G)和OFDM(4G)相比,NOMA的性能又有哪些优势呢?
3G的多址技术采用的是直序扩频码分多址(CDMA)技术,采用非正交发送,所有用户共享一个信道,在接收端采用RAKE接收机。
非正交传输有一个很严重的问题,就是远近效应,在3G中,人们采用功率控制技术在发送端对距离小区中心比较近的用户进行功率限制,保证在到达接收端每个用户的功率相当。
4G的多址技术采用的是基于OFDM的正交频分多址(OFDMA)技术,不同用户之间采用正交传输,所以远近效应不是那么明显,功率控制也不再是必需的了。
在链路自适应技术上,4G采用了自适应编码(AMC)技术,可以根据链路状态信息自动调整调制编码方式,从而给用户提供最佳的传输速度,但是在一定程度上要依赖用户反馈
的链路状态信息,如图2所示。
图2:各种多址方式的技术方案
跟CDMA和OFDMA相比,NOMA子信道之间采用正交传输,不会存在跟3G一样明显的远近效应问题,多址干扰(MAI)问题也没那么严重;由于可以不依赖用户反馈的CSI信息,在采用AMC和功率复用技术后,应对各种多变的链路状态更加自如,即使在高速移动的环境下,依然可以提供很好地速率表现;同一子信道上可以由多个用户共享,跟4G相比,在保证传输速度的同时,可以提高频谱效率,这也是最重要的一点。
虽然5G的具体技术标准目前还没有制定,但是从国际的一些主要研究组织发布的研究状况来看,频谱效率将是5G重点关注的一个方向。
从这一点来看,既能满足移动业务速率需求又能提高频谱效率的非正交多址技术(NOMA)很可能将被5G采用为新的多址技术。