面向5G的非正交多址接入技术(NOMA)浅析

合集下载

noma原理

noma原理

noma原理Noma原理是一种用于无线通信的算法,它的全称是Non-orthogonal Multiple Access,意为非正交多路访问。

Noma原理可以帮助提高无线通信的效率和容量,同时减少功耗等问题。

下面将介绍Noma原理的几个重要特点和应用场景。

一、特点1. 非正交多址:Noma原理允许多个用户同时使用同一频率和时间资源,而不需要像传统的TDMA、FDMA、CDMA等技术一样进行频率和时间划分。

2. 超密集:Noma原理在使用相同频段的情况下,可以支持更多的用户接入,从而提高了网络的容量。

3. 非对等服务:Noma原理通过给不同的用户分配不同的功率和速率,以满足不同用户的需求,这种非对等服务模式可以应用于各种场景。

4. 算法复杂度低:Noma原理的处理复杂度较低,能够满足现有的无线通信系统的要求。

二、应用场景1. 5G通信:5G网络是一个高密度的网络,需要支持大量设备的同时接入,而Noma原理能够提高网络的容量和覆盖范围,因此能够对5G网络的建设起到积极的促进作用。

2. 物联网:物联网需要支持大量设备的同时接入,这正是Noma原理的强项,因此可以被广泛应用于物联网场景中。

3. 多用户信道:在有多个用户接入的情况下,Noma原理可以提高系统的容量和效率,以达到更好的性能。

4. 再生能源:再生能源的发电机组通常需要通过无线通讯系统进行监测和控制,而Noma原理能够提高通讯效率和容量,因此是再生能源监测的一个较好的选择。

总之,Noma原理是一种新的无线通信技术,它能够提高网络的容量和效率,同时支持多种应用场景。

虽然它还存在一些技术上的挑战,但随着无线通信技术的发展,Noma原理将会得到更加广泛的应用和推广。

面向5G的非正交多址接入技术

面向5G的非正交多址接入技术

面向5G的非正交多址接入技术董园园;张钰婕;李华;王春雷;刘晓菲;戴晓明【摘要】在频谱资源受限的情况下,非正交多址接入(non-orthogonal multiple access,NOMA)技术由于其良好的过载性能而受到广泛关注.首先,提出了基于复杂度受限的NOMA理论设计模型;接着,对目前主流的NOMA技术方案进行了研究分析,并针对每种方案给出了其设计原理;进一步,设计了基于期望值传播(expectation propagation,EP)的低复杂度接收机;最后,通过仿真比较了NOMA 与传统正交多址接入(orthogonal multiple access,OMA)技术的性能.结果表明,NOMA较传统的OMA技术能够显著提升系统容量和误码率(block error rate,BLER)性能.【期刊名称】《电信科学》【年(卷),期】2019(035)007【总页数】10页(P27-36)【关键词】资源受限;非正交多址接入;复杂度受限;低复杂度接收机【作者】董园园;张钰婕;李华;王春雷;刘晓菲;戴晓明【作者单位】北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083【正文语种】中文【中图分类】TP393多址接入技术是无线通信系统网络升级的核心问题,决定了网络的容量和基本性能,并从根本上影响系统的复杂度和部署成本[1]。

从1G到4G无线通信系统,大都采用了正交多址接入(orthogonal multiple access,OMA)方式来避免多址干扰,其接收机复杂度相对较低,但限制了无线通信资源的自由度(degree of freedom,DoF)[2]。

浅析非正交多址接入技术

浅析非正交多址接入技术

浅析非正交多址接入技术作者:王波梅晓莉来源:《卷宗》2015年第04期摘要:网络正以超乎我们想象的速度向前发展着,当人们刚刚享受4G网络带给我们便利的时候,5G正在实验室里孕育,相信不久的将来,5G会为我们带来更大的冲击。

虽然现在5G的很多关键技术还没有定论,但普遍认为非正交多址接入(NOMA)将是未来5G理想的多址接入复用技术。

关键词:5G;非正交多址接入(NOMA)1 非正交多址接入(NOMA)技术产生背景IMT-2020(5G)推进组《5G愿景与需求白皮书》中提出,5G定位于频谱效率更高、速率更快、容量更大的无线网络,其中频谱效率相比4G需要提升5~15倍。

在频谱资源紧缺的今天,作为一项潜在的5G关键技术,能很好地提高频谱效率的非正交多址接入(NOMA)越来越受到人们的关注。

2 非正交多址接入(NOMA)基本思想我们知道3G采用直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用Rake接收器,由于其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)来解决手机和小区之间的远-近问题。

而4G网络则采用正交频分多址(OFDM)技术,OFDM不但可以克服多径干扰问题,而且和MIMO技术配合,极大的提高了数据速率。

由于多用户正交,手机和小区之间就不存在远-近问题,快速功率控制就被舍弃,而采用AMC(自适应编码)的方法来实现链路自适应。

NOMA希望实现的是,重拾3G时代的非正交多用户复用原理,并将之融合于现在的4G OFDM技术之中。

从2G,3G到4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA在OFDM的基础上增加了一个维度——功率域。

新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。

NOMA的基本思想是在发送端采用非正交传输,主动引入干扰信息,在接收端通过串行干扰删除(SIC)实现正确解调。

《5G非正交多址接入技术 理论 算法与实现》读书笔记思维导图

《5G非正交多址接入技术 理论 算法与实现》读书笔记思维导图

第9章 硬件损伤
011 NOMA传输技术及性 能
012
第10章 非理想CSI硬 件损伤下行NOM...
目录
013 第11章 基于能量收 集的硬件损伤多中继 N...
015 关于本书
014 缩略语对照表 016 内容简介
《5G非正交多址接入技术理论算法与实现》从理论研究、标准化、实际实现角度出发,详细介绍了NOMA/ 协作NOMA的基本理论及影响其性能的硬件损伤问题。主要围绕硬件损伤协作通信中继选择方案及性能、无人机 NOMA传输性能、非完美CSI协作NOMA及基于能量收集协作NOMA系统衰落性能进行研究,详细分析了影响 NOMA系统性能的硬件损伤因素,为NOMA系统设计及标准化提供理论指导。为便于研究,本书提供了衰落信道 生 成 M AT L A B 代 码 。
7.7 单小区最大化折 中的功率分配
7.8 多小区最大公平 的功率分配
7.9 本章小结 参考文献
第8章 理想硬件单小区上行 NOMA的功率...
0 1
8.1 研究 背景
0 2
8.2 上行 NOMA系 统模型
0 4
8.4 最大 化能量效率 的功率分配
0 6
参考文献
0 3
8.3 最大 化权重和速 率的功率分 配方案
04
第2章 NOMA的基 本原理
06 第4章 硬件损伤和非 完美CSI对多中继网...
目录
07 第5章 理想硬件无人 机NOMA协作通信 性...
第6章 理想硬件单小
08 区下行两用户簇 NOM...
第7章 理想硬件下行
09 多用户簇NOMA的 功...
第8章 理想硬件单小
010 区上行NOMA的功 率...

非正交多址技术

非正交多址技术

非正交多址技术非正交多址技术(Non-Orthogonal Multiple Access,NOMA)是一种新型的多址技术,它采用功率调制的方式,将多个用户的发射信号合并到一起,通过空时分集和带宽分配的方法在用户机上进行分离,使多个用户可以使用同一个信道、共用同一段时间和频段,从而实现性能增加,功效提高。

1. 工作原理NOMA的工作原理主要是通过功率调制来实现不同用户的信号合成,基于发送用的的功率差异,把归一化的比特序列按不同的功率值发送,接收端则可以根据收到的信号利用空时分集技术将不同用户间的信号分离出来,最终实现多址的传输。

2. 优势(1)提高系统容量:由于NOMA采用了空时分集技术,可以把不同用户的信号合成到一起发出,利用较小的带宽容量,可以提供大量的用户容量,大大提高系统的容量效率。

(2)功效提高:较其他多址技术,NOMA能够提高不同用户之间无线信道下的功效,由于采用了功率调制,可以对多个用户的发射功率进行更精细的调节,最终提高信道的功效。

(3)较好的业务可扩展性:NOMA可以进行动态的分配方法,根据业务的不同,可以调节用户间的信号聚合程度,以实现发射功率的优化,从而实现不同业务的扩展。

3. 缺点(1)复杂的接收结构:要实现NOMA多址传输,接收端需要建立较复杂的结构,其中需要采用SIC技术,用以实现比较精确的空时分集,而这部分增加了接收端的复杂度。

(2)受功率差异制约:NOMA的信号分离依赖于不同用户的发射功率差异,如果这个发射功率差距太小,则不存在足够的发射功率差异,从而不能有效的实现信号分离,这也有可能影响系统的效率。

4. 应用NOMA可以应用于移动通信、宽带接入等,可以有效地提高不同用户之间的连接容量,降低用户之间的无线信道功效,有效地满足无线信道容量和功效之间双重要求。

目前,NOMA已经应用在5G移动通信系统,未来也会用于更多的现代通信系统,以满足动态变化的应用环境。

非正交多址技术

非正交多址技术

5G:非正交多址接入(NOMA)与串行干扰删除(SIC)在频谱资源紧缺的今天,作为一项潜在的5G关键技术,能很好地提高频谱效率的非正交多址接入(NOMA)越来越受到人们的关注。

NOMA的基本思想是在发送端采用非正交传输,主动引入干扰信息,在接收端通过串行干扰删除(SIC)实现正确解调。

虽然采用SIC接收机会提高设计接收机的复杂度,但是可以很好地提高频谱效率,NOMA的本质即为通过提高接收机的复杂度来换取良好的频谱效率。

作为一项多用户检测技术,SIC早在第三代移动通信技术(CDMA)中被采用。

SIC在性能上与传统检测器相比有较大提高,而且在硬件上改动不大,从而易于实现。

串行干扰删除(SIC)的基本原理是逐步减去最大信号功率用户的干扰,SIC 检测器在接收信号中对多个用户逐个进行数据判决,判决出一个用户就同时减去该用户信号造成的多址干扰(MAI),按照信号功率大小的顺序来进行操作,功率较大信号先进行操作。

这样一直进行循环操作,直至消除所有的多址干扰为止。

SIC 检测器的每一级只检测一个信号,因此K 个用户就需要K 级判决。

各用户的操作顺序是根据其功率值排列进行的,功率越大的信号越先处理,因为最强的用户越容易捕获。

每级输出的是功率最大用户的数据判决和去除该用户造成的MAI 以后的接收信号,这样可以将多址干扰降到最低,并且信号越弱获益越大,大大增加了检测的可靠性。

多级结构将上一级的输出信号作为下一级的输入信号,重复“检测、估计、检测……”的循环操作,逐步消除接收信号中的多址干扰。

SIC检测器的结构框图如图1所示。

图1例如,在一个由3个用户共享的子信道上,叠加后的信号为x=x(1)+x(2)+x(3)其中,x(i)(i=1,2,3)分别代表3个用户信号,其中,信号功率x(1)<x(2)<x(3),为了简单起见。

在接收端,接收信号y(i)=h(i)x+w(i)其中,h(i)是信道系数,w(i)是信道高斯白噪声和小区干扰。

面向全双工协作通信的NOMA技术研究

面向全双工协作通信的NOMA技术研究

面向全双工协作通信的NOMA技术研究面向全双工协作通信的NOMA技术研究NOMA是一种非正交多址接入技术,近年来受到了广泛的关注和研究。

在传统的无线通信系统中,多个用户需要使用不同的频谱资源同时进行通信,这样就会导致频带资源利用率的下降。

而NOMA技术通过将不同用户的信号在相同的频率上进行叠加传输,从而实现多用户共享频谱资源的目的。

特别是在全双工协作通信中,NOMA技术具备很大的潜力,可以提高频谱效率和系统容量。

本文将重点介绍面向全双工协作通信的NOMA技术的研究进展和应用。

全双工协作通信是指在无线通信系统中,发送和接收信号可以同时进行。

与传统的半双工通信相比,全双工通信具有更高的频谱效率和更低的时延。

然而,全双工通信中存在信号的自干扰问题,即发送信号会对接收信号产生干扰。

为了解决这一问题,NOMA技术可以用于全双工通信系统中,通过同时传输多个用户的信号,并采用先进的信号处理算法进行分离和解码。

在全双工协作通信的NOMA系统中,多个用户可以同时发送和接收信号,在同时时隙中进行通信,因此可以充分利用频谱资源。

与传统的多址接入技术相比,NOMA技术通过使用功率分配和多重访问技术,将多个用户的信号在同一频率上进行叠加传输,从而显著提高频谱效率。

此外,NOMA技术还可以利用用户间的信道状态信息进行资源优化和分配,从而进一步提高系统性能。

在全双工协作通信的NOMA系统中,信号的解码和分离是一个重要的问题。

由于发送和接收信号在同一频率上同时传输,接收端需要通过解码算法来分离不同用户的信号。

MUD(multi-user detection)是一种常用的信号分离和解码算法,可以在接收端对接收到的混叠信号进行分离和解码。

通过结合MUD算法和NOMA技术,可以实现高效的信号分离和解码,进一步提高系统容量和频谱效率。

除了信号处理方面的研究,全双工协作通信的NOMA系统还需要考虑功率控制、资源分配和多路径干扰等问题。

在NOMA系统中,不同用户的功率控制对系统性能有较大影响。

非正交多址接入(NOMA)含代码

非正交多址接入(NOMA)含代码

NOMA原理介绍:NOMA代表"Non-Orthogonal Multiple Access",是一种多址接入技术,旨在提高无线通信系统的频谱效率和连接性能。

与传统的正交多址接入技术(如OFDMA)不同,NOMA允许多个用户在相同的时间和频率资源上传输数据,而不需要将资源划分为互不干扰的子通道。

关键特点和原理包括:1.非正交资源分配:NOMA允许多个用户共享相同的时间和频率资源,这些用户的信号可以在接收端以非正交的方式叠加。

这意味着用户之间的信号可以重叠在一起,而不会引起严重的干扰。

2.功率分配:在NOMA中,不同用户被分配不同的功率水平,以确保弱用户的信号在强用户的信号之上。

这种功率分配有助于提高系统性能,特别是在高信噪比条件下。

3.多用户检测:接收端使用多用户检测技术,例如迭代干扰取消(ICIC)或干扰消除等,来分离和解码不同用户的信号。

这需要高度复杂的信号处理算法。

4.频谱效率:NOMA可以实现较高的频谱效率,因为多个用户可以共享相同的频谱资源,提高了频谱利用率。

NOMA的应用领域包括5G和更高一代移动通信标准,以满足日益增长的设备连接和高速数据传输需求。

通过允许多个用户共享资源并使用非正交信号传输,NOMA有望提高通信系统的性能,并支持更多用户同时连接。

然而,NOMA也需要复杂的信号处理和功率分配算法,以实现最佳性能。

以下是实现NOMA原理的matlab代码:定义系统参数num_users = 2; 用户数量num_symbols = 4; 符号数量SNR_dB = 20; 信噪比(dB)生成随机数据符号user_symbols = randi([0, 1], num_users, num_symbols);创建信道h = (randn(num_users, 1) + 1i * randn(num_users, 1)) / sqrt(2); 随机复数信道增益生成非正交信号tx_signal = zeros(num_users, num_symbols);for i = 1:num_userstx_signal(i, :) = sqrt(10^(SNR_dB/10)) * user_symbols(i, :); 调整功率end合并信号composite_signal = sum(tx_signal, 1);添加噪声SNR = 10^(SNR_dB/10); 线性信噪比noise_power = 1 / (SNR * 2); 噪声功率noise = sqrt(noise_power) * (randn(1, num_symbols) + 1i * randn(1, num_symbols));接收信号received_signal = composite_signal + noise;检测和解码decoded_symbols = zeros(num_users, num_symbols);for i = 1:num_usersdecoded_symbols(i, :) = received_signal .* conj(h(i)) / (abs(h(i))^2);end显示结果disp('发送的数据符号:');disp(user_symbols);disp('接收到的数据符号:');disp(decoded_symbols);\。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Keywords:
Integrated network architecture;Cell division;Cell handover;POI;Leak cable
Hale Waihona Puke 0 前言2013 年 5 月,韩国三星电子宣布,率先开发出了首 个 5G 核心技术支撑的移动无线传输网络,在实验室实 现了 1 Gbit/s 的无线数据传输速率,是目前 LTE 最高下 行速率的 10 倍。一年后,瑞典爱立信宣布,其研发的 5G 无线技术部分在测试中,实验室理想状态下的传输 速率高达 5 Gbit/s,这意味着爱立信的 5G 无线传输速 率是目前 LTE 最高下行速率的 50 倍,标志着无线传输 速率再创新高。显然,这些研究工作仅限于 5G 系统中 无线传输的一部分,整个 5G 系统包括的技术特点和网 络架构还远非如此。也就是说,迄今为止还没有一个
本文分析了 5G 系统中 NOMA 的工作原理,尤其是 NOMA 技 术 中 的 关 键 检 测 技 术 —— 串 行 干 扰 消 除 (SIC)技术,分析了 NOMA 技术在发射端和接收端存在 的困难,指出其实现难度,为了解 5G 提供有益的帮助。
1 非正交多址技术 NOMA
NOMA 的基本思想是在发送端采用分配用户发射 功率的非正交发送,主动引入干扰信息,在接收端通过 SIC 接收机消除干扰,实现正确解调。NOMA 技术在时 域仍然可以用 OFDM 符号为最小单位,符号间插入 CP 防止符号间干扰;在频域仍然可以用子信道为最小单 位,各子信道间采用 OFDM 技术,保持子信道间互为正 交、互不干扰;每个子信道和 OFDM 符号对应的功率不 再只给一个用户,而是由多个用户共享,但这种同一子 信道和 OFDM 符号上的不同用户的信号功率是非正交 的,因而产生共享信道的多址干扰(MAI),为了克服干 扰,NOMA 在接收端采用了串行干扰消除技术进行多 用户干扰检测和删除,以保证系统的正常通信。
张长青 无线通信
面向 5G 的非正交多址接入技术(NOMA)浅析 Radio Communication
面向 5G 的
Initial Analysis of NOMA for 5G Mobile Networks
非正交多址接入技术(NOMA)浅析
张长青(中国移动通信集团湖南有限公司岳阳分公司,湖南 岳阳 414000)
Zhang Changqing(China Mobile Group Hunan Co.,Ltd.,Yueyang Branch,Yueyang 414000,China)
摘 要:
5G 是一个高速率、超带宽、低时延和超高密度连接的移动通信网络体系。作 为面向 5G 关键技术的非正交多址接入技术(NOMA),第一次将功率域由单 用户独占改为由多用户共享,使无线接入总量提高了 50%。原理的简单性 使其在 5G 应用中具有一定的竞争优势。首先介绍了 NOMA 的基本原理,而 后分析了 NOMA 的关键技术 SIC 接收机,分析了 NOMA 技术应用中的相关 困难,最后总结了 5G 应用带给人们的相关体验和 NOMA 实现存在的问题。
——————————
收稿日期:2015-09-18
权威机构对 5G 系统做出一个全面科学完整的定义,普 遍只是对 5G 系统作了愿景般的描述。
根据《5G 愿景与需求白皮书》描述,5G 具有覆盖 广、速度快、连接设备多、功耗低、时延低等特点。可为 用户提供广泛的无缝业务体验,即使在高速移动环境 下,也能实现 100 Mbit/s 以上的用户体验速率;可为用 户提供光纤般的接入速率,使用户能在局部热点地区 享受到普遍可达 1 Gbit/s 极高数据传输的体验速率;接 近“零”的时延可为用户提供在无线互联网上无人汽车 驾驶的激情体验,保证远程控制在百公里时速汽车的 时延只在几毫秒的安全响应内;低功耗多设备连接则 说明 5G 能够缔造万物互联,不仅具有无数设备的连接 能力,人与人、人与物、物与物间的通信也是如此方便 简单,使得移动通信技术能广泛地应用于工业、家庭和
邮电设计技术/2015/11 49
无线通信 张长青
Radio Communication 面向 5G 的非正交多址接入技术(NOMA)浅析
社会领域。 目前 5G 研究的关键性技术主要有大规模的 MI⁃
MO 天线阵列、全双工、编码与调制、超密集组网、非正 交多址接入(NOMA)、高频段通信、滤波器组多载波系 统(FBMC)、软 件 定 义 网 络(SDN)、网 络 功 能 虚 拟 化 (NFV)、内容分发网络(CDN)等。作为 5G 关键技术之 一,NOMA 技术在同一个子载波、同一个 OFDM 符号对 应的同一个资源单元上,根据不同的信号功率为多个 用户使用,可达到多址接入的目的。由于系统在频域 和时域上仍然保持各子载波正交和每个 OFDM 符号前 插入 CP,NOMA 技术的基础仍是成熟的 OFDM 技术, 实现难度相对较小。
关键词:
综合网络架构;小区划分;小区切换;POI;泄漏电缆 doi:10.16463/ki.issn1007-3043.2015.11.011 中图分类号:TN929.5 文献标识码:A 文章编号:1007-3043(2015)11-0049-05
Abstract:
5G is a mobile communication network system with high speed,super bandwidth,low time delay and super high density link. The NOMA,orienting 5G key technology,changes firstly the occupation of power area from single user to multi user. The total wireless access amount increases 50%. The simplification of the NOMA principle,gives the competition advantages in 5G application. It presents the basic principles of NOMA,then analyzes SIC receiver,which is the key technologies of NOMA,analyzes the related difficulty in NOMA application. Finally it concludes the related experience on 5G application and the problems on NOMA.
相关文档
最新文档