三角函数解析式

合集下载

三角函数求解析式技巧

三角函数求解析式技巧

三角函数求解析式技巧求解析式是指将一个三角函数用一个数学表达式来表示,使得对于给定的自变量值,可以得到函数的具体值。

在数学领域中,有一些常见的技巧可以用来求解三角函数的解析式。

1. 基本关系式:三角函数有着一些基本的关系式,例如:sin^2(x) + cos^2(x) = 1,用于正弦函数和余弦函数的平方和的关系;tan(x) = sin(x)/cos(x),用于正切函数和正弦函数、余弦函数的关系等。

2. 奇偶性:根据函数的奇偶性可以简化三角函数的解析式。

例如:正弦函数sin(x)是奇函数,即sin(-x) = -sin(x);余弦函数cos(x)是偶函数,即cos(-x) = cos(x);正切函数tan(x)是奇函数,即tan(-x) = -tan(x)。

3. 三角恒等式:三角恒等式是用于描述三角函数之间的等式关系的公式。

其中最常见的三角恒等式包括:和差公式:sin(a+b) = sin(a)cos(b) + cos(a)sin(b)cos(a+b) = cos(a)cos(b) - sin(a)sin(b)倍角公式:sin(2a) = 2sin(a)cos(a)cos(2a) = cos^2(a) - sin^2(a)化简同角三角函数:tan(a) = sin(a)/cos(a)cot(a) = cos(a)/sin(a)4. 双曲函数:双曲函数是与三角函数非常相关的一类函数。

其中最常见的双曲函数包括:双曲正弦函数sinh(x) = (e^x - e^(-x))/2双曲余弦函数cosh(x) = (e^x + e^(-x))/2双曲正切函数tanh(x) = sinh(x)/cosh(x)5. 泰勒级数展开:泰勒级数展开是一种通过多项式逼近三角函数的技巧。

泰勒级数展开将一个函数表示为无穷级数的形式,从而可以通过截断级数来获得函数的近似解析式。

例如,正弦函数的泰勒级数展开为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...6. 几何关系:三角函数与几何图形之间存在着密切的关系,通过观察几何图形可以得到一些三角函数的性质。

三角函数的值域与解析式

三角函数的值域与解析式

三角函数的值域与解析式三角函数是高中数学中的重要概念,它们在几何学和物理学等领域有广泛的应用。

在学习三角函数时,我们需要了解它们的值域和解析式,以便能够正确地运用它们。

本文将重点探讨正弦函数和余弦函数的值域与解析式。

一、正弦函数的值域与解析式正弦函数的解析式为:y = sin(x)正弦函数的值域是[-1, 1],即其取值范围在-1与1之间。

正弦函数的图像是一条连续的波浪线,它在x轴上是周期性的,在y轴上取值介于-1到1之间。

当x为0、π、2π及其整数倍时,正弦函数的值为0;当x为π/2、3π/2及其奇数倍时,正弦函数的值为1或-1;当x为π/4、3π/4及其奇数倍时,正弦函数的值介于0和1之间;当x为5π/4、7π/4及其奇数倍时,正弦函数的值介于-1和0之间。

根据这些特点,我们可以绘制出正弦函数的图像,并正确理解其值域。

二、余弦函数的值域与解析式余弦函数的解析式为:y = cos(x)余弦函数的值域也是[-1, 1],与正弦函数相同。

余弦函数的图像也是一条连续波浪线,但与正弦函数的图像相位差π/2,即余弦函数的图像在x轴上是正弦函数图像向左平移π/2个单位。

余弦函数的值域与正弦函数相同,当x为0、2π、4π及其整数倍时,余弦函数的值为1;当x为π、3π、5π及其奇数倍时,余弦函数的值为-1;当x为π/2、5π/2及其奇数倍时,余弦函数的值介于0和-1之间;当x为3π/2、7π/2及其奇数倍时,余弦函数的值介于-1和0之间。

理解余弦函数的值域有助于正确应用该函数解决问题。

综上所述,正弦函数和余弦函数的值域都是[-1, 1],但在特定的x取值时,它们的值会有所不同。

熟练掌握它们的值域和解析式是理解三角函数的重要一步,为应用三角函数解决实际问题打下基础。

我们可以通过反复练习和实际运用来加深对三角函数值域和解析式的理解,提高数学应用的能力。

求三角函数解析式方法总结超全面

求三角函数解析式方法总结超全面

求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。

A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。

(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。

高中数学公式大全三角函数的反函数与解析式的计算公式

高中数学公式大全三角函数的反函数与解析式的计算公式

高中数学公式大全三角函数的反函数与解析式的计算公式高中数学公式大全:三角函数的反函数与解析式的计算公式在高中数学学科中,三角函数是非常重要的内容。

三角函数的反函数也是同样重要的知识点之一。

本文将全面介绍三角函数的反函数与解析式的计算公式。

一、正弦函数的反函数与解析式的计算公式正弦函数是三角函数中最基本的函数之一。

它的定义域是实数集,值域是[-1,1]。

正弦函数的反函数被称为反正弦函数,记为arcsin(x)或sin^(-1)(x)。

反正弦函数的定义域是[-1,1],值域是[-π/2,π/2]。

计算反正弦函数的解析式公式可以表示为:arcsin(x) = y其中,-1 ≤ x ≤ 1,-π/2 ≤ y ≤ π/2。

二、余弦函数的反函数与解析式的计算公式余弦函数是另一个非常重要的三角函数。

它的定义域是实数集,值域是[-1,1]。

余弦函数的反函数被称为反余弦函数,记为arccos(x)或cos^(-1)(x)。

反余弦函数的定义域是[-1,1],值域是[0,π]。

计算反余弦函数的解析式公式可以表示为:arccos(x) = y其中,-1 ≤ x ≤ 1,0 ≤ y ≤ π。

三、正切函数的反函数与解析式的计算公式正切函数是三角函数中的另一个重要函数。

它的定义域是实数集,值域是整个实数集。

正切函数的反函数被称为反正切函数,记为arctan(x)或tan^(-1)(x)。

反正切函数的定义域是整个实数集,值域是(-π/2,π/2)。

计算反正切函数的解析式公式可以表示为:arctan(x) = y其中,-∞ < x < ∞,-π/2 < y < π/2。

四、反函数的性质反函数具有以下几个基本性质:1. 反函数与原函数的图像关于y=x对称;2. 反函数的定义域与原函数的值域相同,反之亦然;3. 如果原函数的定义域是[a,b],值域是[c,d],则反函数的定义域是[c,d],值域是[a,b];4. 如果f(x)在[a,b]上是单调递增的,则反函数在[c,d]上也是单调递增的。

求三角函数解析式的基本方法及练习题

求三角函数解析式的基本方法及练习题

求三角函数解析式的基本方法及练习题介绍三角函数解析式是数学中常见的概念之一,它能帮助我们描述和计算三角函数的值。

本文将介绍三角函数解析式的基本方法,并提供一些练题供读者练。

基本方法正弦函数(sin)正弦函数的解析式为:sin(θ) = 对边长度 / 斜边长度其中θ为角度,对边是指与角度θ相对的边长,斜边是指与角度θ相对的边的斜边长度。

余弦函数(cos)余弦函数的解析式为:cos(θ) = 邻边长度 / 斜边长度其中θ为角度,邻边是指与角度θ相邻的边长,斜边是指与角度θ相对的边的斜边长度。

正切函数(tan)正切函数的解析式为:tan(θ) = 对边长度 / 邻边长度其中θ为角度,对边是指与角度θ相对的边长,邻边是指与角度θ相邻的边长。

余切函数(cot)余切函数的解析式为:cot(θ) = 邻边长度 / 对边长度其中θ为角度,邻边是指与角度θ相邻的边长,对边是指与角度θ相对的边长。

正割函数(sec)正割函数的解析式为:sec(θ) = 斜边长度 / 邻边长度其中θ为角度,斜边是指与角度θ相对的边的斜边长度,邻边是指与角度θ相邻的边长。

余割函数(csc)余割函数的解析式为:csc(θ) = 斜边长度 / 对边长度其中θ为角度,斜边是指与角度θ相对的边的斜边长度,对边是指与角度θ相对的边长。

练题1. 求角度为30°时的sin值。

2. 求角度为60°时的cos值。

3. 求角度为45°时的tan值。

4. 求角度为60°时的cot值。

5. 求角度为30°时的sec值。

6. 求角度为45°时的csc值。

答案1. sin(30°) = 1/22. cos(60°) = 1/23. tan(45°) = 14. cot(60°) = 1/√35. sec(30°) = 26. csc(45°) = √2以上为三角函数解析式的基本方法及练习题。

【高中数学】三角函数中根据图象求解析式的几种方法

【高中数学】三角函数中根据图象求解析式的几种方法

φ<
)图象上的一部分如
2
图 3 所示,则必定有( )
(A) A=-2
π (B)ω=1 (C)φ= 3
(D)K=-2
解:观察图象可知 A=2,k=2. ∴y=2sin(ωx+φ)+2
下面用“解方程组法”求φ与ω的值.
∵ 图象过点(0,2+ 3 )、(- ,2) 6
∴ 2+ 3 =2sinφ+2


(A>0,ω>0,φ∈(0, )),求该函数的解析式.
2
解法一:观察图象易得 A=2,
Y
7π 3π ∴T=2×( 8 - 8 )=π,
2
2π ∴ω= π =2. ∴y=2sin(2x+φ).
2 3π
8 0π
8
下面用“关键点对等法”来求出
图2
1111ππ 1122
x
7π 8
X
3π φ的值,由 2× 8 +φ=π(用“第三点”) 得
∴ Asinφ= 2
(1)
3π Asin(2× 8 +φ)=0 (2)
3
由(2)得 φ=kπ- (k∈Z), 又φ∈(0, ),
4
2
π
∴只有 K=1,得φ= 4 , 代人(1)得 A=2.
π ∴所求函数解析式为 y=2sin(2x+ 4 ).
例 3.已知函数 y=Asin(ωx+φ) (A>0,ω>0,
【高中数学】三角函数中根据图象求解析式的几种方法
已知函数 y=Asin(ωx+φ)+k(A>0,ω>0)的部分图象,求其解析式,与
用“五点法”作函数 y=Asin(ωx+φ)+k的图象有着密切联系,最主要的是看

由三角函数图像求解析式(适合讲课使用)

由三角函数图像求解析式(适合讲课使用)
3
y 2
0 )的部分图像。
5 6

6
x
o
-2
求函数的振幅;
y 3
o
2 3
x
6
-3
一般可由图象上的最大值、最小值来确定|A|.
学习新知
探究二
问题2 .如图是函数 y 2 sin( x )( 0 )的部分图像。 3 y (1)求函数的周期;
y 2
7 12
如何确定的值

问题3 .如图是函数 y 2 sin( 2 x )( < ) 2 y 的部分图像 , 求 的值。 2 y
2

6 7 12
x
o x o -2

-2
题型三
由函数的图象确定函数解析式
【例 3】 (1)函数 y=Asin(ωx+φ)的部分图象如图①,则其一个 函数解析式为________.
2k ,k Z 6 2
即A( ,2 )代入y A sin( x ),得 12 2 2 sin( ) 6
3
例5 : 图中曲线是函数y A sin( x )的图像的一部分 , 求这个函数的解析式 。
2 1 O x0 Y A
21

进高考
2 f( ) f ( x) =Acos( x )的图象如图所示, 2 3,则
2009辽宁卷理
已知函数
w.w.
f (0)
=( ) 2 (A) (B) (C) (D)
3 2 3

1 2
1 2

堂检测 堂检测
1.(2009辽宁卷文)已知函数 f ( x) sin( x )( 0) 的图象如图1所示,则

三角函数的解析式与参数确定

三角函数的解析式与参数确定

三角函数的解析式与参数确定三角函数是数学中的基本概念,广泛应用于物理、工程、计算机科学等领域。

在三角函数中,解析式和参数的确定是十分重要的,它们决定了函数的性质和功能。

本文将探讨三角函数的解析式与参数的确定方法,以及它们的应用。

一、正弦函数的解析式与参数确定正弦函数的解析式为:\[ y = A\sin(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。

1. 振幅(A)的确定:振幅表示正弦函数的最大值与最小值之间的差异。

通常情况下,振幅为正数。

如果表达式中没有明确给出振幅的值,可以根据实际问题的要求或给定的条件来确定振幅的大小。

2. 周期(B)的确定:周期表示正弦函数图像上相邻两个相同值点之间的水平距离。

常见的周期为2π或π,也可根据实际问题的要求或给定条件来确定周期的值。

3. 平移量(C)的确定:平移量表示正弦函数图像上的横向平移。

平移量的正负值决定了图像的左右移动方向,根据实际问题的要求或给定条件来确定平移量的值。

4. 垂直平移(D)的确定:垂直平移表示正弦函数图像上的上下平移。

垂直平移的正负值决定了图像的上下移动方向,根据实际问题的要求或给定条件来确定垂直平移的值。

二、余弦函数的解析式与参数确定余弦函数的解析式为:\[ y = A\cos(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。

对于余弦函数的参数确定方法与正弦函数相似,具体步骤如下:1. 确定振幅(A);2. 确定周期(B);3. 确定平移量(C);4. 确定垂直平移(D)。

三、切线函数的解析式与参数确定切线函数的解析式为:\[ y = A\tan(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。

切线函数是正切函数的一个变种,在确定切线函数的参数时,需要注意以下几点:1. 振幅(A)的确定:振幅表示切线函数在一个周期内的垂直最大值和最小值之间的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数y A sin(x )的解析式
1.5
函数y A sin(x ) 的图象
振幅变换 周期变换
A 确定振幅(最值)


确定周期
称作初相位
T
2

平移(相位)变换
例1.已知函数f ( x ) A sin(x )(其中A, 0,0

2
)
1 的周期为2,并且当x 时,f ( x )取得最大值 2, 确定f ( x ). 3
例2.已知f ( x ) Asin(x )(其中A, 0, )的部分
图象如下,确定函数解 析式.
y
3
O
1
3
x
3
例3.下列函数中,图象的一部分如图的是(
A. y sin( x ) 6 C . y cos(4 x ) 3
y 1

B . y sin(2 x ) 6 D. y cos(2 x ) 6
图象如下,确定函数解 析式.
y
2
1
5 4
O x
2
由函数的单调性去取舍
例6.已知f ( x ) A sin(x )(其中A, 0,
图象如下,确定函数解 析式.
y

2
)的部分
2 1
O
4 3
1 2
3
x
例7.已知f ( x ) A sin(x ) B(其中A, 0,
图象如下,确定函数解 析式.
y

2
)的部分
2
O
1
23x小结: Nhomakorabea图象确定解析式
1. 充分利用图象的几何性质(特别是对称性) 确定正余弦型函数的平衡位置、振幅、周 期等;
2. 将给定点的坐标代入函数解析式,利用 方程思想确定相关参数(特别是 ), 注意多值的取舍(利用单调性判断), 优先选择最值点。

)


6
O
12
-1
例4. 如图,某地一天从6时到14时的温度变化曲线近似满 足函数 y A sin( x ) B ,写出这段曲线的函数表达式.
y 30
温度 / C
20 平衡位置 10
x
O
6
10
14
时间 / h
例5.已知 f ( x) A sin(x )( 其中 A, 0, )的部分 2
相关文档
最新文档