解的存在唯一性定理证明
解的存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dyf x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭逐步迫近法 微分方程(,)dyf x y dx=等价于积分方程00(,)xxy y f x y dx =+⎰取00()x y ϕ=,定义001()(,()),1,2,xn n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命题1 先证积分方程与微分方程等价:设()y x ϕ=是微分方程(,)dyf x y dx =定义于区间00x x x h ≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之亦然。
证 因()y x ϕ=是微分方程(,)dyf x y dx=的解,有 ()(,())d x f x x dxϕϕ= 两边从0x 到0x h +取定积分0000()()(,()),xx x x f x x dx x x x h ϕϕϕ-=≤≤+⎰代入初值条件00()x y ϕ=得0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰即()y x ϕ=是积分方程0000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之,则有0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰微分之()(,())d x f x x dxϕϕ= 且当0x x =时有00()x y ϕ=。
一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dxdy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一?首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式对于所有的 都成立,L 称2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dxdy+=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ϕ=h x x ≤-0且满足初始条件:这里 00)(y x =ϕ),min(Mba h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首先证明求微分方程的初值问题的解等价于求积分方程的连续解这里我们用f(x,y)=p(x)y+q(x)来[]⎰++=x x dx x q y x p y y 0)()(0替代,因此也就等价于求积分方程 的连续解,然⎰+=xx dx y x f y y 0),(0后去证明积分方程的解的存在唯一性.任取一个连续函数 代入上面的积分方程右端的y 就得)(0x ϕ到函数dx x x f y x xx ))(,()(0001⎰+≡ϕϕ显然也是连续解,如果那么就是积分方)(1x ϕ)(1x ϕ≡)(0x ϕ)(0x ϕ程的解.否则,我们又把代入积分方程右端的y 得到)(1x ϕ dxx x f y x xx ))(,()(0102⎰+≡ϕϕ如果 ,那么就是积分方程的解,否则我们继≡)(2x ϕ)(1x ϕ)(1x ϕ续这个步骤.一般地做函数 (2)dx x x f y x xx n n ))(,()(010⎰-+≡ϕϕ这样就得到连续函数序列,……)(0x ϕ)(1x ϕ)(x n ϕ如果那么就是积分方程的解,如果始终不发生这种≡+)(1x n ϕ)(x n ϕ)(x n ϕ情况,我们可以证明上面的函数序列有一个极限函数即)(x ϕ 存在因此对(2)取极限就得到)()(lim x x n n ϕϕ=∞→dxx x f y x xx n n n n ))(,(lim )(lim 010⎰-∞→∞→+=ϕϕ =dxx x f y xx n n ))(,(lim 010⎰-∞→+ϕ =dxx x f y xx ))(,(00⎰+ϕ即 dxx x f y x xx ))(,()(00⎰+≡ϕϕ这就是说是积分方程的解,这种一步一步地求出方程的解的方法)(x ϕ就成为逐步逼近法,由(2)所确定的函数称为问题(1)的n 次近)(x n ϕ似解,在定理的假设条件下以上步骤是可以实现的下面我们分四个命题来证明这个定理.命题1,设是一阶线形微分方程(1)的定义于区间)(x y ϕ=上的,且满足初始条件的解,则是积分方h x x x +≤≤0000)(y x =ϕ)(x y ϕ=程()的定义于上的连续解,反⎰+=xx dx y x f y y 0),(0h x x x +≤≤00h x x x +≤≤00之亦然.因为是一阶线形微分方程(1)的解故有)(x y ϕ=))(,()(x x f dxx d ϕϕ=两边从到x 取定积分得到0x dx x x f x x x x ))(,()()(00⎰≡-ϕϕϕhx x x +≤≤00把代上式,即有00)(y x =ϕ dx x x f y x xx ))(,()(00⎰+≡ϕϕhx x x +≤≤00因此, 是积分方程定义于上的)(x y ϕ=⎰+=xx dx y x f y y 0),(0h x x x +≤≤00连续解反之如果是积分方程的连续解,则有)(x y ϕ=⎰+=xx dx y x f y y 0),(0 (3)dx x x f y x xx ))(,()(00⎰+≡ϕϕh x x x +≤≤00微分之,得到))(,()(x x f dxx d ϕϕ=又把代入(3)得到0x x =00)(y x =ϕ因此是方程(1)的定义于 上且满足初始条件)(x y ϕ=h x x x +≤≤00的解.命题1证毕.00)(y x =ϕ现在取,构造皮卡逐步逼近函数序列如下:00)(y x =ϕ ⎪⎩⎪⎨⎧+==⎰-x x n nd f y x y x 0))(,()()(1000ξξϕξϕϕh x x x +≤≤00(n=1,2,…)(4)命题2 函数序列在上是一致收敛的{})(x n ϕh x x x +≤≤00证明:我们考虑级数 (5)[]∑∞=--+110)()()(k k k x x x ϕϕϕh x x x +≤≤00它的部分和为=[]∑=--+nk k k x x x 110)()()(ϕϕϕ)(x ϕ因此,要证明序列在上一致收敛,只需证明级数(5)在{})(x n ϕh x x x +≤≤00上一致收敛.为此,我们进行如下估计.由(4)有h x x x +≤≤00 (6))())(,()()(00001⎰-≤≤-xx x x M d f x x ξξϕξϕϕ及 ⎰-≤-xx d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ利用利普希兹条件及(6)得到⎰-≤-xx d L x x 0)()()()(0112ξξϕξϕϕϕ =ξξd x M L x x ⎰-≤0)(020)(!2x x ML-设对于正整数n,不等式nn n n x x n ML x x )(!)()(011-≤---ϕϕ成立,则有利普希兹条件,当时,有h x x x +≤≤00 ⎰-+-≤-x x n n n n d f f x x 0))(,())(,()()(11ξξϕξξϕξϕϕ⎰--≤xx n n d L 0)()(1ξξϕξϕ100)()!1()(!+-+=-≤⎰n n xx nnx x n ML d x n ML ξξ于是,由数学归纳法得知,对于所有的正整数k,有如下的估计(7)k k k k x x k ML x x )(!)()(011-≤---ϕϕh x x x +≤≤00从而可知,当时h x x x +≤≤00 (8)kk k k h k ML x x !)()(11--≤-ϕϕ(8)的右端是正项收敛级数∑∞=1!k kkk h ML的一般项,由维尔斯特拉斯判别法级数(5)在上一h x x x +≤≤00致收敛,因而序列也在上一致收敛,命题2证毕.{})(x n ϕh x x x +≤≤00命题3 是积分方程(2)的定义于上的连续解.)(x ϕh x x x +≤≤00证明: 由利普希兹条件)()())(,())(,(x x L x x f x x f n n ϕϕϕϕ-≤-以及在上一致收敛于,即知序列{})(x n ϕh x x x +≤≤00)(x ϕ{}{})(,()(x x f x f n n ϕ≡在上一致收敛于.因而对于(4)两边取极h x x x +≤≤00{})(,(x x f ϕ限,得到dxx x f y x xx n n n n ))(,(lim )(lim 010⎰-∞→∞→+≡ϕϕ =⎰-∞→+xx n n d f y 0))(,(lim 10ξξϕξ即⎰+=xx d f y x 0))(,()(0ξξϕξϕ这就是说是积分方程(2)的定义于上的连续解.命)(x ϕh x x x +≤≤00题3证毕.命题4 设是积分方程(2)的定义于上的一个连)(x φh x x x +≤≤00续解,则 , )()(x x ϕφ≡hx x x +≤≤00证明:我们首先证明也是序列的一致收敛极限函数.)(x φ{})(x n ϕ为此,从0)(y x =ϕ (n=1,2,…)⎰+=xx n d f y x 0))(,()(0ξξϕξϕ ξξφφd x f y x xx ))(,()(00⎰+≡我们可以进行如下估计)()(,()()(000x x M d f x x xx -≤≤-⎰ξξφξφϕξξφξξϕξφϕd f f x x x x ⎰-≤-0))(,())(,()()(01 ξξφξϕd L xx ⎰-≤0)()(0 200)(!2)(0x x MLd x ML xx -=-≤⎰ξξ现设,则有n n n x x n ML x x )(!)()(011-≤---φϕ ξξφξξϕξφϕd f f x x xx n n ⎰-≤--0))(,())(,()()(1 ξξφξϕd L xx n ⎰-≤-0)()(1 100)()!1()(!+-+=-≤⎰n xx Nx x n MLd x n ML ξξ故有数学归纳法得知,对于所有的正整数n,有下面的估计式(10)10)()!1()()(+-+≤-n nn x x n ML x x φϕ因此,在上有h x x x +≤≤00 (11)1)!1()()(++≤-n n n h n ML x x φϕ是收敛级数的公项,故因而1)!1(++n n h n ML 0)!1(1→+∞→+n n h n ML n 时在上一致收敛于,根据极限的唯一性,即得{})(x n ϕh x x x +≤≤00)(x φ)()(x x ϕφ≡h x x x +≤≤00命题4证毕.综合1-4,即得到一阶线性微分方程解的存在唯)()(x q y x p dxdy+=一定理的证明.。
常微分方程12解的存在唯一性

1 x2
),
y(x) 0 ,
c2
exp(
1 x2
)
,
x 0. x 0. x 0.
3
1.2.1例子和思路
例 4: 证明初值问题
dy y, dx
的解存在且惟一。
y(0) 1
(1 .2 .1)
证:若 y y(x) 是初始值问题的解, (1 .2 .1) 两端积分
y ( x ) 满足 y(x)=1+ xy(s)ds 0
y 1 , 1 x
x( ,1).
初值问题 yy2,y(0)2的解:
y
2 1 2x
.
它的存在区间为
(
1 2
,
)
例2: 初值问题 yx,y(0)a(a0)的解为: y
y a2 x2存在区间为 (a,a)
2
例3:初始值问题:
2y yx3
x0 ,
0 x0
y(0)0
有无穷多解,存在区间为: (,).
c1
exp(
x 2 (x )1 (x )x 0f(s ,1 (s )) f(s ,0 (s ))d s 13
x 2 (x )1 (x )x 0f(s ,1 (s )) f(s ,0 (s ))d s
x
L 2
其中第二个不等式由Lipschitz条件可以得到,
( 1 x) =y0+xx0 f(s,0(s))ds ( 2 x) M =y0+xx0 f(s,1(s))ds ( n x) =y0+xx0 f(s,n1(s))ds
这样就得到一个连续函数列 n ( x)
它称为 Picard迭代序列。
11
( 3 ) Picard 序列的收敛性
引理1.1 对于一切 n 和 x [x0,x0h],n(x)
一阶线性微分方程解的存在唯一性证实[解答]
![一阶线性微分方程解的存在唯一性证实[解答]](https://img.taocdn.com/s3/m/deca9e0afbd6195f312b3169a45177232f60e402.png)
一阶线形微分方程)()(x q y x p dxdy+=解的存在唯一性定理的证明摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一?首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数.函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为利普希兹常数下面我们给出一阶线形微分方程)()(x q y x p dxdy+=(1)解的存在唯一性定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0上,连续且满足初始条件:00)(y x =ϕ 这里 ),min(Mba h = ),(max y x f M = Ry x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样.现在简单叙述一下运用逐步逼近法证明定理的主要思想,首先证明求微分方程的初值问题的解等价于求积分方程[]⎰++=xx dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替代,因此也就等价于求积分方程 ⎰+=xxdx y x f y y 0),(0 的连续解,然后去证明积分方程的解的存在唯一性.任取一个连续函数)(0x ϕ 代入上面的积分方程右端的y 就得到函数dx x x f y x xx))(,()(0001⎰+≡ϕϕ 显然)(1x ϕ也是连续解,如果)(1x ϕ≡)(0x ϕ那么)(0x ϕ就是积分方程的解.否则,我们又把)(1x ϕ代入积分方程右端的y 得到dx x x f y x xx ))(,()(0102⎰+≡ϕϕ如果 ≡)(2x ϕ)(1x ϕ,那么)(1x ϕ就是积分方程的解,否则我们继续这个步骤.一般地做函数 dx x x f y x xx n n ))(,()(010⎰-+≡ϕϕ (2)这样就得到连续函数序列,)(1x ϕ…)(x n ϕ…如果≡+)(1x n ϕ)(x n ϕ那么)(x n ϕ就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ϕ即)()(lim x x n n ϕϕ=∞→ 存在因此对(2)取极限就得到dx x x f y x xx n n n n ))(,(lim )(lim 010⎰-∞→∞→+=ϕϕ=dxx x f y xx n n ))(,(lim 010⎰-∞→+ϕ=dxx x f y xx))(,(00⎰+ϕ即 dxx x f y x xx))(,()(00⎰+≡ϕϕ这就是说)(x ϕ是积分方程的解,这种一步一步地求出方程的解的方法就成为逐步逼近法,由(2)所确定的函数)(x n ϕ称为问题(1)的n 次近似解,在定理的假设条件下以上步骤是可以实现的下面我们分四个命题来证明这个定理.命题1,设)(x y ϕ=是一阶线形微分方程(1)的定义于区间h x x x +≤≤00上的,且满足初始条件00)(y x =ϕ的解,则)(x y ϕ=是积分方程⎰+=xx dx y x f y y 0),(0(h x x x +≤≤00)的定义于h x x x +≤≤00上的连续解,反之亦然.因为)(x y ϕ=是一阶线形微分方程(1)的解故有))(,()(x x f dxx d ϕϕ= 两边从0x 到x 取定积分得到dx x x f x x xx ))(,()()(00⎰≡-ϕϕϕ h x x x +≤≤00把00)(y x =ϕ代上式,即有dx x x f y x xx ))(,()(00⎰+≡ϕϕ h x x x +≤≤00因此, )(x y ϕ=是积分方程⎰+=xx dx y x f y y 0),(0定义于h x x x +≤≤00上的连续解反之如果)(x y ϕ=是积分方程⎰+=xx dx y x f y y 0),(0的连续解,则有dx x x f y x xx))(,()(00⎰+≡ϕϕ h x x x +≤≤00 (3)微分之,得到))(,()(x x f dxx d ϕϕ= 又把0x x =代入(3)得到00)(y x =ϕ因此)(x y ϕ=是方程(1)的定义于 h x x x +≤≤00上且满足初始条件00)(y x =ϕ的解.命题1证毕.现在取00)(y x =ϕ,构造皮卡逐步逼近函数序列如下:⎪⎩⎪⎨⎧+==⎰-x x n nd f y x y x 0))(,()()(1000ξξϕξϕϕ h x x x +≤≤00 (n=1,2,…)(4)命题2 函数序列{})(x n ϕ在h x x x +≤≤00上是一致收敛的证明:我们考虑级数[]∑∞=--+110)()()(k k k x x x ϕϕϕ h x x x +≤≤00(5)它的部分和为[]∑=--+nk k k x x x 110)()()(ϕϕϕ=)(x ϕ因此,要证明序列{})(x n ϕ在h x x x +≤≤00上一致收敛,只需证明级数(5)在h x x x +≤≤00上一致收敛.为此,我们进行如下估计.由(4)有)())(,()()(00001⎰-≤≤-xx x x M d f x x ξξϕξϕϕ (6)及 ⎰-≤-xxd f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ利用利普希兹条件及(6)得到⎰-≤-xx d L x x 0)()()()(0112ξξϕξϕϕϕ ξξd x M L xx⎰-≤0)(0=20)(!2x x ML-设对于正整数n,不等式n n n n x x n ML x x )(!)()(011-≤---ϕϕ成立,则有利普希兹条件,当h x x x +≤≤00时,有⎰-+-≤-xxn n n n d f f x x 0))(,())(,()()(11ξξϕξξϕξϕϕ⎰--≤xx n n d L 0)()(1ξξϕξϕ100)()!1()(!0+-+=-≤⎰n n xx nn x x n ML d x n ML ξξ于是,由数学归纳法得知,对于所有的正整数k,有如下的估计k k k k x x k ML x x )(!)()(011-≤---ϕϕ h x x x +≤≤00 (7)从而可知,当h x x x +≤≤00时kk k k h k ML x x !)()(11--≤-ϕϕ (8)(8)的右端是正项收敛级数∑∞=1!k kkk h ML的一般项,由维尔斯特拉斯判别法级数(5)在h x x x +≤≤00上一致收敛,因而序列{})(x n ϕ也在h x x x +≤≤00上一致收敛,命题2证毕.命题3 )(x ϕ是积分方程(2)的定义于h x x x +≤≤00上的连续解.证明: 由利普希兹条件)()())(,())(,(x x L x x f x x f n n ϕϕϕϕ-≤-以及{})(x n ϕ在h x x x +≤≤00上一致收敛于)(x ϕ,即知序列{}{})(,()(x x f x f n n ϕ≡在h x x x +≤≤00上一致收敛于{})(,(x x f ϕ.因而对于(4)两边取极限,得到dx x x f y x xx n n n n ))(,(lim )(lim 010⎰-∞→∞→+≡ϕϕ=⎰-∞→+xx n n d f y 0))(,(lim 10ξξϕξ即⎰+=xx d f y x 0))(,()(0ξξϕξϕ这就是说)(x ϕ是积分方程(2)的定义于h x x x +≤≤00上的连续解.命题3证毕.命题4 设)(x φ是积分方程(2)的定义于h x x x +≤≤00上的一个连续解,则)()(x x ϕφ≡ , hx x x +≤≤00证明:我们首先证明)(x φ也是序列{})(x n ϕ的一致收敛极限函数.为此,从00)(y x =ϕ⎰+=xx n d f y x 0))(,()(0ξξϕξϕ (n=1,2,…)ξξφφd x f y x xx))(,()(00⎰+≡我们可以进行如下估计)()(,()()(000x x M d f x x x x -≤≤-⎰ξξφξφϕ ξξφξξϕξφϕd f f x x xx ⎰-≤-0))(,())(,()()(01ξξφξϕd L xx⎰-≤0)()(0200)(!2)(0x x MLd x ML xx -=-≤⎰ξξ 现设n n n x x n ML x x )(!)()(011-≤---φϕ,则有ξξφξξϕξφϕd f f x x xx n n ⎰-≤--0))(,())(,()()(1ξξφξϕd L xxn ⎰-≤-0)()(1100)()!1()(!+-+=-≤⎰n xx Nx x n MLd x n ML ξξ 故有数学归纳法得知,对于所有的正整数n,有下面的估计式10)()!1()()(+-+≤-n nn x x n ML x x φϕ (10)因此,在h x x x +≤≤00上有1)!1()()(++≤-n n n h n ML x x φϕ (11)1)!1(++n n h n ML 是收敛级数的公项,故0)!1(1→+∞→+n n h n ML n 时因而{})(x n ϕ在h x x x +≤≤00上一致收敛于)(x φ,根据极限的唯一性,即得)()(x x ϕφ≡ h x x x +≤≤00命题4证毕.综合1-4,即得到一阶线性微分方程)()(x q y x p dxdy+=解的存在唯一定理的证明.。
2.2解的存在唯一性定理

常微分方程
绵阳师范学院
下面分五个命题来证明定理,为此先给出 下面分五个命题来证明定理 为此先给出 积分方程 如果一个数学关系式中含有定积分符号且在定积分符 号下含有未知函数, 则称这样的关系式为积分方程. 号下含有未知函数 则称这样的关系式为积分方程
如 : y = e + ∫ y( t )dt , 就是一个简单的积分方程 .
0
x
≤ L ∫ n (ξ ) n 1 (ξ ) dξ
x0
x
MLn ≤ n!
MLn n (ξ x0 ) dξ = ( x x0 ) n +1 , ∫x0 (n + 1)!
x
17
常微分方程
绵阳师范学院
于是由数学归纳法得知,对所有正整数 有 于是由数学归纳法得知 对所有正整数n,有 对所有正整数
则 (x, y)在 上 于 满 Lipschitz条 . f R 关 y 足 件 f (x, y1) f (x, y2 ) = f y (x, y2 +θ ( y1 y2 )) y1 y2 ≤ L y1 y2
2
常微分方程
绵阳师范学院
b (2) 定理中h = min{a , }的几何意义 M 在矩形R中有 f ( x , y ) ≤ M ,
故初值问题(2.1)的解曲线的斜率必介于 M 与M 之间,
过点( x0 , y0 )分别作斜率为 M 和M的直线,
b 当M ≤ 时(如图(a ) a 所示 ), 解y = ( x )在 x0 a ≤ x ≤ x0 + a 中有定义;
3
常微分方程
绵阳师范学院
b 而当M > 时(如图(b)所示), 不能保证解y = ( x )在 a x0 a ≤ x ≤ x0 + a中有定义;它有可能在区间内跑到矩形 b b R外去, 使得无意义, 只有当x0 ≤ x ≤ x0 + 时, 才能保 M M 证解y = ( x )在R内.
解的存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dyf x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭逐步迫近法 微分方程(,)dyf x y dx=等价于积分方程00(,)xxy y f x y dx =+⎰取00()x y ϕ=,定义001()(,()),1,2,xn n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命题1 先证积分方程与微分方程等价:设()y x ϕ=是微分方程(,)dyf x y dx =定义于区间00x x x h ≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之亦然。
证 因()y x ϕ=是微分方程(,)dyf x y dx=的解,有 ()(,())d x f x x dxϕϕ= 两边从0x 到0x h +取定积分0000()()(,()),xx x x f x x dx x x x h ϕϕϕ-=≤≤+⎰代入初值条件00()x y ϕ=得0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰即()y x ϕ=是积分方程0000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之,则有0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰微分之()(,())d x f x x dxϕϕ= 且当0x x =时有00()x y ϕ=。
解的存在唯一性定理

一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
常微分方程解的存在唯一性定理证明

常微 分方 程是 一 门应用 性较 强 的课 程 ,它在 数学 、物 理 、天 文 和工程 技术 等领 域有 着 广 泛应 用 .一 阶微 分 方程 初值 问题 解 的存 在 唯 一 性 定 理 既是 微 分 方 程 的理 论 基 础 ,又 是 常 微 分 方 程 的精 华 所 在 ,在 很 多教 材 中¨ 都 是作 为重 点章 节来 讲述 ,而且 一 阶微 分 方 程 解 的存 在 唯 一性 的应 用 也很 广泛 .此处 从 几 个 不 同
1,由敛.故由Weierstrass 0法得级 ㈤+蠢 ) ㈤]一致收敛.
命题 3 lim (t)= ( )是 积分 方程 的解 . 证 明 由于{ (t))在 【t0,to+ 】上 一致 收敛 ,令lim (t)= (t),由 Lipschitz条 件知道
= o 十I,(s, ( ))ds,£0≤t≤t0+h
to
构 造 picard序 列 { (t)},即令
(2)
收 稿 日期 :2014-08—19:修 回 日期 :2014-09—25. 基金项 目:安徽省高等学校省级 自然科学基金项 目(KJ2013B105);安徽新华 学院质量 工程 (2012jgkcx03);安徽新 华学 院
(2)函数 t,X)在 R上关于 满足 Lipschitz条件 ,即存在常数 L>0,使得对所有(t, ),(t, )∈R都有
l £ ) , )l≤L l X1-X2 l成立,则初值问题(1)在区间[t-to I≤ 上存在唯一解,其中 :min{n, ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 。
设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式
证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。
解的存在唯一性定理
利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。
一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件:
(1)、在上连续;
(2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和
有以下不等式:。
则初值问题在区间上存在唯一解, 其中
二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分 方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得
证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数
由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得 证。 现设 则在上有定义、连续且
命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛 于。 于是即 是积分方程在上的连续解。