初中数学动点最值基本模型
初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。
其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。
PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。
初中数学解题模型专题讲解42---最值系列之瓜豆原理

5 / 19
Q
A
P
O
【分析】Q 点满足(1)∠PAQ=45°;(2)AP:AQ= 2 :1,故 Q 点轨迹是个圆. 连接 AO,构造∠OAM=45°且 AO:AM= 2 :1.M 点即为 Q 点轨迹圆圆心,此时任意时 刻均有△AOP∽△AMQ.即可确定点 Q 的轨迹圆.
Q
M
P
A
O
【练习】如图,点 P(3,4),圆 P 半径为 2,A(2.8,0),B(5.6,0),点 M 是圆 P 上的 动点,点 C 是 MB 的中点,则 AC 的最小值是_______.
引例 2:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,作 AQ⊥AP 且 AQ=AP. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
Q
A
P
O
【分析】Q 点轨迹是个圆,可理解为将 AP 绕点 A 逆时针旋转 90°得 AQ,故 Q 点轨迹 与 P 点轨迹都是圆.接下来确定圆心与半径.
P F
E
B
D
C
【分析】根据△DPF 是等边三角形,所以可知 F 点运动路径长与 P 点相同,P 从 E 点
运动到 A 点路径长为 8,故此题答案为 8.
13 / 19
【2013 湖州中考】如图,已知点 A 是第一象限内横坐标为 2 3 的一个定点,AC ⊥x 轴于点 M,交直线 y=-x 于点 N,若点 P 是线段 ON 上的一个动点,∠APB=30°,
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
【思考 1】:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,以 AP 为一边作等边△APQ. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
2023年中考数学常见几何模型之最值模型胡不归问题

专题10 最值模型---胡不归问题最值问题在中考数学常以压轴题的形式考查,可将胡不归问题看作将军饮马衍生,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。
在解决胡不归问题主要依据是:①两点之间,线段最短;②垂线段最短。
【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V +的值最小.(注意与阿氏圆模型的区分)2驿道2M1)121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 2)构造射线AD 使得sin ∠DAN =k ,CH k AC=,CH =kAC ,将问题转化为求BC +CH 最小值. 3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。
【最值原理】两点之间线段最短及垂线段最短。
例1.(2022·内蒙古·中考真题)如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC .则P A +2PB 的最小值为 _____.在∠BAC 的外部作∠CAE =15°此时P A +2PB 最小,∴∠AFB ∴∠CAD =∠BAD =12BAC ∠1例2.(2022·湖北武汉·一模)如图,在ACE △中,CA CE =,30CAE ∠=︒,半径为5的O 经过点C ,CE 是圆O 的切线,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),则12OD CD +的最小值为______.//CH AB ,30CAE ∠=︒,OC OA =,sin HCD ∴∠当O ,例3.(2021·眉山市·中考真题)如图,在菱形中,,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值是______.【分析】过M 点作MH 垂直BC 于H 点,与OB 的交点为P 点,此时的长度最小为MH ,再算出MC 的长度, 在直角三角形MPC 中利用三角函数即可解得MH 【详解】过M 点作MH 垂直BC 于H 点,与OB 的交点为P 点,此时的长度最小∵菱形中,∴AB =BC =AC =10,△ABC 为等边三角形ABCD 10AB AC ==AC BD O M AC 3AM =P BD 12MP PB +12MP PB +12MP PB +ABCD 10AB AC ==∴∠PBC =30°,∠ACB =60°∴在直角△PBH 中,∠PBH =30°∴PH = ∴此时得到最小值, ∵AC =10,AM =3,∴MC =7又∠MPC =60°∴MH =MC【点睛】本题主要考查了菱形的性质与三角函数,能够找到最小值时的P 点是解题关键. 例4.(2022·山东淄博·二模)如图,在平面直角坐标系中,点A 的坐标是(0,2),点C 的坐标是(0,2)−,点(,0)B x 是x 轴上的动点,点B 在x 轴上移动时,始终保持ABP 是等边三角形(点P 不在第二象限),连接PC ,求得12AP PC +的最小值为( )A .B .4C .D .2【答案】C【分析】如图1所示,以OA 为边,向右作等边△AOD ,连接PD ,过点D 作DE ⊥OA 于E ,先求出点D 的坐标,然后证明△BAO ≌△P AD 得到∠PDA =∠BOA =90°,则点P 在经过点D 且与AD 垂直的直线上运动,当点P 运动到y 轴时,如图2所示,证明此时点P 的坐标为(0,-2)从而求出直线PD 的解析式;如图3所示,作点A 关于直线PD 的对称点G ,连接PG ,过点P 作PF ⊥y 轴于F ,设直线PD 与x 轴的交点为H ,先求出点H 的坐1PB 212MP PB +1=2MP PB MP PH MH ++=当点P运动到y轴时,如图2所示,此时点∵△ABP是等边三角形,BO⊥AP,∴例5.(2021·资阳市·中考真题)抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线上方的一点,与相交于点E ,当时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿方向平移,使点D 落在点处,且,点M 是平移后所得抛物线上位于左侧的一点,轴交直线于点N ,连结.当的值最小时,求的长. 2y x bx c =−++()()1,0,0,3B C −AC BP AC :1:2PE BE =CD D 2DD CD '=D //MN y OD 'CN 5D N CN '+MN【答案】(1);(2)或;(3). 【分析】(1)利用待定系数法即可得;(2)设点的坐标为,先利用待定系数法求出直线的解析式,再根据可得点的坐标,代入直线的解析式求解即可得;(3)先根据求出点的坐标,再根据二次函数图象的平移规律得出平移后的函数解析式,设点的坐标,从而可得点的坐标,然后根据两点之间的距离公式可得,最后根据两点之间线段最短、垂线段最短求解即可得. 【详解】解:(1)由题意,将点代入得:, 解得,则抛物线的解析式为; (2)对于二次函数,当时,,解得或,,设点的坐标为,点的坐标为, ,,解得,2y x 2x 3=−++(1,4)P (2,3)P 34P 2(,23)P a a a −++AC :1:2PE BE =E AC 2DD CD '=D MN 5D N CN '+()()1,0,0,3B C −2y x bx c =−++103b c c −−+=⎧⎨=⎩23b c =⎧⎨=⎩2y x 2x 3=−++2y x 2x 3=−++0y =2230x x −++=1x =−3x =(3,0)A ∴P 2(,23)(03)P a a a a −++<<E 11(,)E x y :1:2,(1,0)PE BE B =−1121111223102a x x a a y y −⎧=⎪+⎪∴⎨−++−⎪=⎪−⎩121213324233x a y a a ⎧=−⎪⎪⎨⎪=−++⎪⎩,设直线的解析式为, 将点代入得:,解得,则直线的解析式为,将点代入得:,解得或,当时,,此时,当时,,此时,综上,点的坐标为或;(3)二次函数的顶点坐标为,设点的坐标为,,,解得,, 则平移后的二次函数的解析式为,设直线的解析式为,将点代入得:,解得, 则直线的解析式为,设点的坐标为,则点的坐标为, 如图,连接,过点作于点,过点作于点,交于点,连接,22124(,2)3333E a a a ∴−−++AC y kx t =+(3,0),(0,3)A C 303k t t +=⎧⎨=⎩13k t =−⎧⎨=⎩AC 3y x =−+22124(,2)3333E a a a −−++22124323333a a a −++=−++1a =2a =1a =2231234a a −++=−++=(1,4)P 2a =22342233a a −++=−+⨯+=(2,3)P P (1,4)P (2,3)P 2223(1)4y x x x =−++=−−+D (1,4)D D 22(,)D x y '2,(0,3),(1,4)DD C D D C '=2212104243x y −⎧=⎪⎪−∴⎨−⎪=⎪−⎩2236x y =⎧⎨=⎩(3,6)D '∴22(3)663y x x x =−−+=−+−OD '0y k x =(3,6)D '036k =02k =OD '2y x =M 2(,63)(3)M m m m m −+−<N (,2)N m m AD 'N NF AD '⊥F C CG AD '⊥G OD 'N 'CF,轴,,, 由两点之间线段最短得:的最小值为,由垂线段最短得:当点与点重合时,取得最小值,此时点与点重合, 则点的纵坐标与点的纵坐标相等,即,解得, 则,,. 【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数图象的平移规律、垂线段最短等知识点,较难的是题(3),正确求出平移后的抛物线的解析式是解题关键. 例6.(2020·湖南·中考真题)已知直线与抛物线(b ,c 为常数,)的一个交点为,点是x 轴正半轴上的动点.(1)当直线与抛物线(b ,c 为常数,)的另一个交点为该抛物线的顶点E 时,求k ,b ,c 的值及抛物线顶点E 的坐标;(2)点D 在抛物线上,且点D 的横坐标为的最小值多时,求b 的值.【答案】(1)-2,2,-3,;(2)4或6;(3)3 (3,0),(3,6)D A 'AD x '∴⊥3FN m ∴=−35D N CN CN m CN FN CN '+==−+=+FN CN +CF F G CF CG N N 'N 'C 23m =32m =2263243MN m m m m m =−+−−=−+−233()4322=−+⨯−34=2y kx =−2y x bx c =−+0b >(1,0)A −(,0)M m 2y kx =−2y x bx c =−+0b >12b +2DM +4()1,4−【分析】(1)由题意可知直线经过,因而把代入直线即可求出k 的值,然后把代入抛物线得出含b 的代数式表达c ,再根据直线与抛物线(b ,c 为常数,)的另一个交点得出抛物线的顶点坐标E ,并代入直线,解方程即可求出b 的值,代入即可求解;(2)将点D 的横坐标代入抛物线(b ,c 为常数,),根据点A 的坐标得到含b 的代数式表达c ,求出点D 的纵坐标为,可知点D 在第四象限,且在直线的右侧,取点,过点D 作直线AN 的垂线,垂足为G ,DG 与x 轴相交于点M ,过点D 作QH ⊥x 轴于点H ,则点H,在Rt △MDH 中,可知,由题意可知点,用含b 的代数式表示m,可得方程,求解即可得出答案. 【详解】解:(1)∵直线经过,∴把代入直线,可得,解得; ∵抛物线(b ,c 为常数,)经过,∴把代入抛物线,可得,∵当直线与抛物线(b ,c 为常数,)的另一个交点为该抛物线的顶点E ,∴顶点的坐标为,把代入直线,可得,∴,解得,2y kx =−(1,0)A −(1,0)A −2y kx =−(1,0)A −2y kx =−2y xbx c =−+0b >24,24b c b ⎛⎫− ⎪⎝⎭22y x =−−12b +2y x bx c =−+0b >324b −−13,224b b ⎛⎫+−−⎪⎝⎭x b =(0,1)N 1,02b ⎛⎫+⎪⎝⎭45DMH MDH ︒∠=∠=(,0)M m 24DM +=2y kx =−(1,0)A −(1,0)A −2y kx =−02k =−−2k =−2y xbx c =−+0b >(1,0)A −(1,0)A −2y x bx c =−+1c b =−−2y kx =−2y x bx c =−+0b >E 24,24b c b ⎛⎫− ⎪⎝⎭E 24,24b c b ⎛⎫− ⎪⎝⎭22y x =−−242224b c b −−⨯−=()2412224b b b−−−−⨯−=2b =±∵,∴,∴,∴顶点的坐标为. (2)∵点D 在抛物线(b ,c 为常数,)上,且点D 的横坐标为, ∴,∵在抛物线(b ,c 为常数,)上,∴,即,∴,可知点D 在第四象限,且在直线的右侧.,∴可取点,如图2,过点D 作直线AN 的垂线,垂足为G ,DG 与x 轴相交于点M ,∴,得, 则此时点M 满足题意,过点D 作QH ⊥x 轴于点H ,则点H ,在Rt △MDH 中,可知,∴,∵点,∴,解得:,,∴,∴.0b >2b =213c =−−=−E ()1,4−2y xbx c =−+0b >12b +21122D y b b b c ⎛⎫⎛⎫=+−++ ⎪ ⎪⎝⎭⎝⎭(1,0)A −2y x bx c =−+0b >()210b c −+=+1c b =−−21131=2224D b y b b b b ⎛⎫⎛⎫=+−+−−−− ⎪ ⎪⎝⎭⎝⎭13,224b b ⎛⎫+−− ⎪⎝⎭x b =222DM AM DM ⎛⎫+=+ ⎪ ⎪⎝⎭(0,1)N 45GAM ︒∠=2AM GM =1,02b ⎛⎫+⎪⎝⎭45DMH MDH ︒∠=∠=,D DH MH M ==(,0)M m 310242b b m ⎛⎫⎛⎫−−−=+− ⎪ ⎪⎝⎭⎝⎭124b m =−24DM +=111(1)2242244b b b ⎤⎤⎛⎫⎛⎫⎛⎫−−−++−−= ⎪ ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎦⎦3b =【点睛】本题是二次函数综合题,主要考查了待定系数法求解析式、二次函数的性质、等腰三角形的性质、三角形的面积公式等知识点,解题的关键是学会使用待定系数法求出抛物线的解析式.例7.(2022·四川成都·中考模拟)6.如图,已知抛物线为常数,且与轴从左至右依次交于,两点,与轴交于点,经过点的直线与抛物线的另一交点为.(1)若点的横坐标为,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点,使得以,,为顶点的三角形与相似,求的值;(3)在(1)的条件下,设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒1个单位的速度运动到,再沿线段以每秒2个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动过程中用时最少?(2)(4)(8ky x x k =+−0)k >x A B y C B y b =+D D 5−P A B P ABC ∆k F BD AF M A AF F FD D F M解:(1)抛物线,令,解得或,,.直线经过点,,解得, 直线解析式为:.当时,,,. 点,在抛物线上,,.抛物线的函数表达式为:.即. (2)由抛物线解析式,令,得,,. 因为点在第一象限内的抛物线上,所以为钝角.因此若两个三角形相似,只可能是或. ①若,则有,如答图所示. 设,过点作轴于点,则,. ,即:,. ,代入抛物线解析式,得,整理得:, 解得:或(与点重合,舍去),.,,即. ②若,则有,如答图所示. 设,过点作轴于点,则,.,即:,. (2)(4)8ky x x =+−0y =2x =−4x =(2,0)A ∴−(4,0)B y b =+(4,0)B 40b +=b ∴BD 33y x =+5x =−y =(5D ∴−(5D −(2)(4)8k y x x =+−∴(52)(54)8k −+−−=k ∴=∴2)(4)y x x +−2y x =0x =y k =−(0,)C k ∴−OC k =P ABP ∠ABC APB ∆∆∽ABC PAB ∆∆∽ABC APB ∆∆∽BAC PAB ∠=∠21−(,)P x y P PN x ⊥N ON x =PN y =tan tan BAC PAB ∠=∠22k y x =+2k y x k ∴=+(,)2k P x x k ∴+(2)(4)8ky x x =+−(2)(4)82k kx x x k +−=+26160x x −−=8x =2x =−A (8,5)P k ∴ABC APB ∆∆∽∴AC AB AB AP ==5k =ABC PAB ∆∆∽ABC PAB ∠=∠22−(,)P x y P PN x ⊥N ON x =PN y =tan tan ABC PAB ∠=∠42k y x =+42k ky x ∴=+,代入抛物线解析式,得,整理得:, 解得:或(与点重合,舍去),. ,,,,综上所述,或(3)方法一:如答图3,由(1)知:,,如答图,过点作轴于点,则,,, ,. 过点作轴,则.过点作于点,则. 由题意,动点运动的路径为折线,运动时间:,,即运动的时间值等于折线的长度值.由垂线段最短可知,折线的长度的最小值为与轴之间的垂线段.(,)42k k P x x ∴+(2)(4)8ky x x =+−(2)(4)842k k kx x x +−=+24120x x −−=6x =2x =−A (6,2)P k ∴ABC PAB ∆∆∽AB CBAP AB=∴=k =0k >k ∴=k =k =(5D −22−D DN x ⊥N DN =5ON =459BN =+=tan DN DBA BN ∴∠===30DBA ∴∠=︒D //DK x 30KDF DBA ∠=∠=︒F FG DK ⊥G 12FG DF =M AF DF +12t AF DF =+t AF FG ∴=+AF FG +AF FG +DK x过点作于点,则,与直线的交点,即为所求之点. 点横坐标为,直线解析式为:,,. 综上所述,当点坐标为,时,点在整个运动过程中用时最少. 方法二:作,,交直线于点, ,,, 当且仅当时,最小,点在整个运动中用时为:, ,, 【点睛】本题考查单动点问题;二次函数和一次函数交点问题;曲线上点的坐标与方程的关系;勾股定理;相似三角形的判定;垂直线段最短的性质;分类思想和数形结合思想的应用.课后专项训练1.(2022·河北·九年级期中)如图,在△ABC 中,∠A =15°,AB =2,P 为AC 边上的一个动点(不与A 、C 重合),连接BP ,则AP +PB 的最小值是( )A AH DK ⊥H t AH =最小AH BD FA 2−BD 33y x =+(2)33y ∴=⨯−+=(2F ∴−F (2−M //DK AB AH DK ⊥AH BD F 30DBA ∠=︒30BDH ∴∠=︒sin302FDFH DF ∴=⨯︒=∴AH DK ⊥AF FH +M 12AF FDt AF FH =+=+:BD l y =+2X X F A ∴==−(F ∴−A.B.C.D.2【解答】解:如图,在△ABC内作∠MBA=30°过点A作AE⊥BM于点E,BM交AC于点P,∵∠BAC=15°,∴∠APE=45°∴EP=AP当BP⊥AE时,则AP+PB=PE+PB的值最小,最小值是BE的长,在Rt△ABE中,∠ABE=30°,AB=2∴BE=AB•cos30°=.∴AP+PB的最小值是.故选:B.2.(2022·江苏·九年级月考)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4∴AC=CP=2,BP=AB=4∴△ABP 是等边三角形∴∠FBH =30°∴Rt △FHB 中,FH =FB ∴当G 、F 、H 在同一直线上时,GF +FB =GF +FH =GH 取得最小值 ∵AE ⊥CD 于点G ∴∠AGC =90°∵O 为AC 中点∴OA =OC =OG =AC ∴A 、C 、G 三点共圆,圆心为O ,即点G 在⊙O 上运动 ∴当点G 运动到OQ 上时,GH 取得最小值 ∵Rt △OPQ 中,∠P =60°,OP =3,sin ∠P =∴OQ =OP =∴GH 最小值为故选:C .3.(2022·山东·九年级月考)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD +PC 的最小值是( )A .4B .2+C .D .32∵二次函数y =x 2﹣2x +c 的图象与∴二次函数的解析式为y =x 2解得x =﹣1或3,∴A (﹣1∵∠BOC =90°,∴∠OBC =∵D (0,1),∴OD =1,BD 设DH x =,则BH x =,∵DH4.(2022·重庆·九年级期中)如图所示,菱形ABCO 的边长为5,对角线OB 的长为,P为OB 上一动点,则AP +的最小值为( )A .4B .5C .D .解:如图,过点A 作AH OC ⊥于点H ,过点P 作PF OC ⊥于点F ,连接AC 交OB 于点J .四边形OABC 是菱形,AC OB ∴⊥,OJ JB ∴==,CJ ==2AC CJ ∴==,AH OC ⊥,12OC AH OB AC ∴⋅=⋅⋅,142AH ∴==,sin PF CJ POF OP OC ∴∠==,PF ∴,AP AP PF ∴+=+,AP PF AH +,4AP ∴,AP ∴+的最小值为4,故选:A .5.(2022·浙江宁波·九年级开学考试)如图,在平面直角坐标系中,一次函数y =分别交x 轴、y 轴于A 、B 两点,若C 为x 轴上的一动点,则2BC +AC 的最小值为__________.6.(2022·湖南·九年级月考)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形点E为△BCD围成的区域(包括各边)的一点过点E作EM∥AB,交直线AC于点M作EN∥AC交直线AB于点N,则AN+AM的最大值为.【解答】解:过E作EH⊥AC交AC的延长线于点H,∵EN∥AC,EM∥AB,∴四边形ANEM是平行四边形,∠HME=∠A=60°,设EM =AN =a ,AM =b ,Rt △HEM 中,∠HEM =30°,∴MH =ME =a ,∴AN +AM =a +b =MH +AM =AH ,当E 在点D 时,AH 的值最大是:3+4.5=7.5,AN +AM 的最大值为7.5,故答案为:7.5.7.(2022·湖北武汉·九年级期末)如图,▱ABCD 中60A ∠=︒,6AB =,2AD =,P 为边CD 2PB +的最小值为______.四边形8.(2022·成都市七中育才九年级期中)如图,在平面直角坐标系中,直线l 分别交x 、y 轴于B 、C 两点,点A 、C 的坐标分别为(3,0)、(0,﹣3),且∠OCB =60°,点P 是直线l 上一动点,连接AP ,则2AP PC +的最小值是______.在Rt △PCG 中,∠PCG =60°,则∠CPG =30°,1PC PG =3PC AP 9.(2022·四川自贡·一模)如图,ABC 中,10AB AC ==,tan 2A =,BE AC ⊥于点E ,D 是线段BE 上的一个动点,则CD 的最小值是__________.DH CM 即可求值.【详解】解:如图,过点∵BE AC ⊥,∴90AEB ∠=︒设AE a =,2BE a =,2AB AE =∴25a =或25−(舍弃),∴∵AB AC =,BE AC ⊥,CM ⊥DH CM ,∴45BD ,∴【点睛】本题主要考查解直角三角形,等腰三角形的性质,勾股定理,垂线段最短等,学会添加辅助线并利用转化的思想是解题的关键.10.(2022·广东·一模)已知抛物线243y x x =−+与x 轴交于A ,B 两点(A 在B 点左侧),与y 轴正半轴交于点C ,点P 是直线BC 上的动点,点Q 是线段OC 上的动点.(1)求直线BC 解析式.(2)如图①,求OP +P A 的和取最小值时点P 的坐标. 12+QC 的最小值. Rt A PB '∵B (3,0),C (0,3),∴又∠BOC =90°,∴∠OCB 由对称性可知OCP DCP ≌,OCB DCB ≌,∴∠DCB =∠OCB =45°,∠CDB =∠COB =90°,∴∠OCD =90°,∴四边形OCDB 为正方形,∴D 坐标为(又A (1,0),∴AB =2,BD =3,则AQ +QP =A Q PQ A '+≥在Rt A PB '中,∠OBP =45°为22;(4)解:如图,在x 轴负半轴上找点∴12HQ CQ =,∴12AQ +∴当A ,Q ,H 三点共线,且∵CO =3,∠COG =90°,∠∴GO =3,∠CGO =60°当AH ⊥CG 时,AH AG =11.(2022·江苏·中考模拟)如图,抛物线与直线交于,两212y x mx n =++132y x =−+A B点,交轴于,两点,连接,,已知,.(Ⅰ)求抛物线的解析式和的值;(Ⅱ)在(Ⅰ)条件下:(1)为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.(2)设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒一个单位速度运动到点,再沿线段个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动中用时最少?解:(Ⅰ)把,代入,得,解得:.抛物线的解析式为联立,解得:或,点的坐标为.如图1.,,,,,,,是直角三角形,,;(Ⅱ)方法一:(1)存在点,使得以,,为顶点的三角形与相似.过点作轴于,则.x D C AC BC(0,3)A(3,0)Ctan BAC∠P y PA P PQ PA⊥y Q P A P QACB∆PE AC DE M D DEE EA A EM(0,3)A(3,0)C212y x mx n=++31902nmx n=⎧⎪⎨⨯++=⎪⎩523mn⎧=−⎪⎨⎪=⎩∴215322y x x=−+213215322y xyx x⎧=−+⎪⎪⎨⎪=−+⎪⎩3xy=⎧⎨=⎩41xy=⎧⎨=⎩∴B(4,1)(3,0)C(4,1)B(0,3)A220AB∴=22BC=218AC=222BC AC AB∴+=ABC∴∆90ACB∴∠=︒1tan3BCBACAC∴∠===P A P Q ACB∆P PG y⊥G90PGA∠=︒设点的横坐标为,由在轴右侧可得,则.,,.若点在点的下方,①如图2①,当时,则. ,,,.. 则.把代入,得 ,整理得:解得:(舍去),(舍去). ②如图2②,当时,则.同理可得:,则, 把代入,得, 整理得:解得:(舍去),,,; 若点在点的上方,①当时,则,同理可得:点的坐标为.②当时,则.同理可得:点的坐标为,. 综上所述:满足条件的点的坐标为、,、,; 方法二:作的“外接矩形” ,易证,, 以,,为顶点的三角形与相似,或, 设,,, ①,,,, ②,,,(舍, 满足题意的点的坐标为、,、,; (2)方法一:过点作轴于,如图3.在中,,即, P x P y 0x >PG x =PQ PA ⊥90ACB ∠=︒90APQ ACB ∴∠=∠=︒G A PAQ CAB ∠=∠PAQ CAB ∆∆∽90PGA ACB ∠=∠=︒PAQ CAB ∠=∠PGA BCA ∴∆∆∽∴13PG BC AG AC ==33AG PG x ∴==(,33)P x x −(,33)P x x −215322y x x =−+21533322x x x −+=−20x x +=10x =21x =−PAQ CBA ∠=∠PAQ CBA ∆∆∽1133AG PG x ==1(,3)3P x x −1(,3)3P x x −215322y x x =−+215133223x x x −+=−21303x x −=10x =2133x =13(3P ∴14)9G A PAQ CAB ∠=∠PAQ CAB ∆∆∽P (11,36)PAQ CBA ∠=∠PAQ CBA ∆∆∽P 17(3P 44)9P (11,36)13(314)917(344)9APQ ∆AQGH AHP QGP ∆∆∽∴AP HP PQ QG=A P Q ACB ∆∴13AP HP BC PQ QG AC ===3AP HP AC PQ QG BC===2(2,253)P t t t −+(0,3)A (2,3)H t 13HP QG =232531||23t t t −−+∴=11323t ∴=21723t =3HP QG =23253||32t t t −−+∴=1211t ∴=221t =−)∴P (11,36)13(314)917(344)9E EN y ⊥N Rt ANE∆sin 452EN AE AE =⋅︒=AE =点在整个运动中所用的时间为. 作点关于的对称点,连接,则有,,,,.根据两点之间线段最短可得:当、、三点共线时,最小.此时,,四边形是矩形,,.对于, 当时,有,解得:,.,, ,,点的坐标为.方法二:作点关于的对称点,交于点,显然,作轴,垂足为,交直线于点,如图4,在中,,即, 当、、三点共线时,最小,,,,,,,,,,,, ∴M 1DE DE EN =+D AC D 'D E 'D E DE '=D C DC '=45D CA DCA ∠'=∠=︒90D CD ∴∠'=︒DE EN D E EN +='+D 'E N DE EN D E EN +='+90D CD D NO NOC ∠'=∠'=∠=︒∴OCD N '3ND OC ∴'==ON D C DC ='=215322y x x =−+0y =2153022x x −+=12x =23x =(2,0)D ∴2OD =321ON DC OC OD ∴==−=−=312NE AN AO ON ∴==−=−=∴E(2,1)D AC D 'DD 'AC M DE D E ='D N y '⊥N AC E Rt ANE∆sin 45EN AE AE =⋅︒=AE =∴D 'E N DE EN D E EN +='+(0,3)A (3,0)C :3AC l y x ∴=−+(,3)M m m ∴−+(2,0)D DM AC ⊥1DM AC K K ∴⨯=−3112m m −+∴−⨯=−−52m ∴=5(2M ∴1)2为的中点,,,.方法三:如图,5,过作射线轴,过作射线轴,与交于点. ,,.,,, ,..当且仅当时,取得最小值,点在整个运动中用时最少为: , 抛物线的解析式为,且,可求得点坐标为 则点横坐标为2,将代入,得.所以.12.(2020·四川乐山市·中考真题)已知抛物线与轴交于,两点,为抛物线的顶点,抛物线的对称轴交轴于点,连结,且,如图所示.(1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.①过点作轴的平行线交线段于点,过点作交抛物线于点,连结、,求的面积的最大值;②连结,求的最小值.【答案】(1);(2)①;②. 【分析】(1)先函数图象与x 轴交点求出D 点坐标,再由求出C 点坐标,用待定系数法设交点式,将C 点坐标代入即可求解;(2)①先求出BC 的解析式M DD '(3,1)D ∴'1Y Y E D ='=(2,1)E ∴A //AF x D //DF y DF AC E (0,3)A (3,0)C :3AC l y x ∴=−+OA OC =90AOC ∠=︒45ACO ∴∠=︒//AF OC 45FAE ∴∠=︒sin 45EF AE ∴=⋅︒∴AF DF ⊥DE EF +M 1DE t DE EF ==+215322y x x =−+(3,0)C ∴D (2,0)E 2x =:3AC l y x =−+1y =(2,1)E 2y ax bx c =++x (1,0)A −(50)B ,C x D BC 4tan 3CBD ∠=P P x BC E E EF PE ⊥F FB FC BCF ∆PB 35PC PB+241620999y x x =−++322454tan 3CBD ∠=,设E 坐标为,则F 点坐标为,进而用t 表示出的面积,由二次函数性质即可求出最大值;②过点作于,由可得,由此可知当BPH 三点共线时的值最小,即过点作于点,线段的长就是的最小值,根据面积法求高即可. 【详解】解:(1)根据题意,可设抛物线的解析式为:,∵是抛物线的对称轴,∴,又∵,∴,即,代入抛物线的解析式,得,解得 , ∴二次函数的解析式为 或; (2)①设直线的解析式为 ,∴ 解得 即直线的解析式为 ,设E 坐标为,则F 点坐标为, ∴, ∴的面积 ∴, 42033=−+y x 420,33t t ⎛⎫−+ ⎪⎝⎭241620999,t t t ⎛⎫ ⎪⎝−+⎭+BCF ∆P PG AC ⊥G 3sin 5PG PC ACD PC =⋅∠=35PC PB PG PB +=+35PC PB +B BH AC ⊥H BH 35PC PB +(1)(5)y a x x =+−CD (20)D ,4tan 3CBD ∠=tan 4CD BD CBD =⋅∠=(24)C ,4(21)(25)a =+−49a =−4(1)(5)9y x x =−+−241620999y x x =−++BC y kx b =+0542.k b k b =+⎧⎨=+⎩,4320.3k b ⎧=−⎪⎪⎨⎪=⎪⎩,BC 42033=−+y x 420,33t t ⎛⎫−+ ⎪⎝⎭241620999,t t t ⎛⎫ ⎪⎝−+⎭+22420341620428409999993EF t t t t t =−++−=−+⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭−⎝⎭BCF ∆21142840322999S EF BD t t ⎛⎫=⨯⨯=−+− ⎪⎝⎭2273()322S t =−−+∴当时,的面积最大,且最大值为; ②如图,连接,根据图形的对称性可知 ,,∴,过点作于,则在中,, ∴,再过点作于点,则, ∴线段的长就是的最小值,∵, 又∵,∴,即,∴的最小值为. 【点睛】此题主要考查了二次函数的综合题型,其中涉及了待定系数法求解析式和三角形的面积最大值求法、线段和的最值问题.解(1)关键是利用三角函数求出C 点坐标,解(2)关键是由点E 、F 坐标表示线段EF 长,从而得到三角形面积的函数解析式,解(3)的难点是将的最小值转化为点B 到AC 的距离. 13.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线72t =BCF ∆32AC ACD BCD ∠=∠5AC BC ==3sin 5AD ACD AC ∠==P PG AC ⊥G Rt PCG ∆3sin 5PG PC ACD PC =⋅∠=35PC PB PG PB +=+B BH AC ⊥H PG PH BH +≥BH 35PC PB +11641222ABC S AB CD ∆=⨯⨯=⨯⨯=1522ABC S AC BH BH ∆=⨯⨯=5122BH =245BH =35PC PB +24535PC PB +2y x bx c =−++x A ()1,0C y ()0,3B x E于点.(1)求抛物线的解析式;(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;【答案】(1);(2;(3)存在,点的横坐标分别为:2,,或. 【分析】(1)待定系数法求二次函数解析式,设解析式为将,两点代入求得,c的值即可;(2)胡不归问题,要求的值,将折线化为直线,构造相似三角形将转化为,再利用三角形两边之和大于第三边求得最值;(3)分2种情形讨论:①AB 为矩形的一条边,利用等腰直角三角形三角形的性质可以求得N 点的坐标;②AB 为矩形的对角线,设R 为AB 的中点,RN =AB ,利用两点距离公式求解方程可得N 点的坐标. F OE О'OE ()090αα︒<<︒'AE 'BE 13''BE AE +M N A B M N N 223y x x =−−+N 1−12−+12−2y x bx c =−++()1,0C ()0,3B b 13''BE AE +13'AE 13'DE 13''BE AE +12【详解】解:(1)∵过,∴∴,∴抛物线的解析式为: (2)在上取一点,使得,连接,∵对称轴.∴, ,∴,∴ ∴ ∴ 当,,三点在同一点直线上时,最小为.在中,, ∴ 即. (3)情形①如图,AB 为矩形的一条边时,联立得 2y x bx c =−++()1,0C ()0,3B 103b c c −++=⎧⎨=⎩2b =−3c =223y x x =−−+OE D 13OD OE ='AE BD 11'33OD OE OE ==3112x −+==−()1,0E −1OE ='1OE OE ==3OA ='1'3OE OD OA OE ==''DOE E OA ∠=∠''DOE E OA ∆∆∽1''3DE AE =1''''3BE AE BE DE +=+B 'E D ''BE DE +BD Rt BOD ∆13OD =3OB =3BD ===13''BE AE +2023y y x x =⎧⎨=−−+⎩31,00x x y y =−=⎧⎧⎨⎨==⎩⎩是等腰,分别过 两点作的垂线,交于点,过作轴,轴,,也是等腰直角三角形 设,则,所以代入,解得,(不符题意,舍) 同理,设,则 ,所以代入,解得,(不符题意,舍)② AB 为矩形的对角线,设R 为AB 的中点,则 , 设 ,则 整理得: 解得:(不符题意,舍),(不符题意,(3,0),3A OA ∴−=3OB =ABO ∴Rt 45BAO ∠=︒,A B AB 223y x x =−−+12,N N 12,N N 1N Q y ⊥2N P x ⊥1245QBN PAN ∴∠=∠=︒∴1BN Q △2AN P △QB m =1N Q m =1(,3)N m m −+223y x x =−−+11m =20m =∴1(1,4)N −OP n ==3PN n +2(,3)N n n −−223y x x =−−+1n 2=23n =−2(2,-5)N∴12RN AB =()3,0,()0,3A B −33(,)22R ∴−AB ==122RB AB ∴==12RN AB==2RN ∴2(,23)N x x x −−+222233()(2)()222x x x +++−=2(3)(1)0x x x x ++−=1=0x 23x =−舍),, 综上所述:点的横坐标分别为:2,,【点睛】本题考查了二次函数的性质,待定系数法求解析式,三角形相似,勾股定理,二次函数与一次函数交点,矩形的性质,等腰直角三角形性质,平面直角坐标系中两点距离计算等知识,能正确做出辅助线,找到相似三角形是解题的关键.14.(2022·广西·南宁三中一模)如图,二次函数21y ax bx =++的图象交x 轴于点()2,0A −、()10B ,,交y 轴于点C ,点D 是第四象限内抛物线上的动点,过点D 作//DE y 轴交x 轴于点E ,线段CB 的延长线交DE 于点M ,连接OM 、BD 交于点N ,连接AD .(1)求二次函数的表达式;(2)当OEM DBE S S =时,求点D 的坐标及sin DAE ∠;(3)在(2)的条件下,点P 是x 轴上一个动点,求DP 的最小值. 31=2x −+41=2x −∴N 1−12−OEM DBE S S=,∴1BE a =−,EM【点睛】主要考查了待定系数法求函数的解析式,函数图象上点的坐标特征,勾股定理,垂线段最短,轴对称的性质,以及解直角三角形的知识,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.15.(2022·广东·东莞市三模)已知,如图,二次函数2y ax bx c =++图像交x 轴于(1,0)A −,交y 交轴于点(0,3)C ,D 是抛物线的顶点,对称轴DF 经过x 轴上的点(1,0)F .(1)求二次函数关系式;(2)对称轴DF 与BC 交于点M ,点P 为对称轴DF 上一动点.①求AP 的最小值及取得最小值时点P 的坐标; ②在①的条件下,把APF 沿着x 轴向右平移t 个单位长度(04)t ≤≤时,设APF 与MBF 重叠部分面积记为S ,求S 与t 之间的函数表达式,并求出S 的最大值.则sinPH PD FDB=⋅∠=依“垂线段最短”得此时AH∵sinAH DF OBDAB DB ∠==16.(2022·天津·中考模拟)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.【答案】(1)见解析;(2)(3)AB=【解析】(1)连接OC,如图,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=OC,∴OC=,∴AB=2OC=;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图,则∠AOF=∠COF=∠AOC=(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD CD+OD)最小,此时FH=OF•sin∠FOH==6,则OF=,AB=2OF=8.∴当CD+OD的最小值为6时,⊙O的直径AB的长为8.。
初中数学动点最值基本模型

动点最值根本模型一、最值类型1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短〔或三角形三边关系〕得到结果.2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果.3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果.4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心.5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大〔小〕值.6.结合型:即以上类型的综合运用,大多为饮马+小垂【如包河一模20题】【瑶海一模第10题】、小垂+穿心【如庐阳二模第10题】、饮马+穿心【如瑶海二模第10题】饮马+转换【如蜀山二模第10题】等※二、分类例析、饮马型例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1,点P在AC上,贝U PE+PD 的最小值是.解析:如图例2:如下图,正方形ABCD的面积为12, A ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,那么这个最小值为一.换型图,P 四、转例5:如为菱形Z C = 90°, AC = 8, BC = 6,点 P 是 AB 上的任意一点, 作PD X AC 于点D , PE X CB 于点E ,连接DE ,贝U DE 的最小值为解析:如下列图三、穿心型例4:如图,在边长为4的菱形ABCD 中,N ABC=120°, M 是AD 边的中点,N 是AB 边上一动点,SA AMN 沿MN 翻折得到^A ,MN ,连接A ' C ,那么A ’ C 长度的最小值是—.解析:如下列图解析:如下列图、小垂型例3:如图,在Rt A ABC 中,D ADABCD内一点,且P到A、B两点的距离相等,假设N C=60°, CD=4,那么的最小值为解析:由于P到A、B两点的距离相等,所以P在AB的垂直平分线上,又因菱形ABCD 中N C为60°,所以4ABD为等边三角形,AB的垂直平分线经过点D,如下列图由N ADP=30度,可将PD的一半进行转换,即过点P作AD的垂线.如图,即B、P、F三点共线,且BF X AD时最短五、三边型例6:如图,N MON=90°,矩形ABCD的顶点A、B分别在边OM, ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2, BC=1,运动过程中,点D到点O的最大距离为解析:如下列图由于AB为定长,所以取其中点E,那么OE为定值,在^ODE中,DE为定值,OE为定值,根据三角形三边关系即可得到OD的最大值.例7:如图,△ABC中,N ACB=90°,BC=4, AC=8,点 D 在AC 上,且AD=6,将线段AD绕点A旋转至AD', F为BD’的中点,连结CF,那么线段CF的取值范围.解析:解法一:瓜豆原理,点F的轨迹为圆,一箭穿心便可以求出其取值范围.解法二:如下列图,取AB的中点M,连接FM,CM,由斜边上的中线等于斜边的一半得CM 为定值,由三角形中位线得FM为定值,所以在4CFM中,三边关系可得到CF的取值范围.r C例8:如图,BA=1,BC=2,以AC为一边做正方形AEDC,使E,B两点落在直线AC的两侧,当N ABC变化时,求BE的最大值.解析:将^AEB以点A中央顺时针旋转90°,得到△ACB,,如下列图所示,连接BB’,所以B' C=BE,在A BB' C中,BB'为定值,BC为定值,三角形三边关系即可得到B' C的最大值,即BE的值.6.结合型例9:如图,正方形ABCD中,AB=4, E为CD边的中点,F、G为AB、AD边上的点,且AF=2GD,连接E、DF相交于点P,当AP为最小值时,DG=解析:由AF=2GD, AD=2DE,得△AFD s^DGE.如下列图A GE X DF,那么线段AP中,A点为定点,P为动点,由N DPE为直角,所以P的轨迹为一以DE 中点为圆心的一段弧.如下列图由一箭穿心可得到AP的最小值为A,P,M三点共线,而此时,由△DMP s^FAP可得到AP=AF 即可得到结果.AG D A※三、模考分析【庐阳二模第10题】如图,在平面直角坐标系中,A(6,0),BO8),点C在y轴正半轴上, 点D 在x的正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于点E、F,那么线段EF 的最大值为如图,在平面直角坐标系中,46,0)1(0,8),点C在y轴正半轴上,点D在x的正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于点E、F,那么线段EF的最大值为解析:线段EF由于半圆的变化而变化,所以应将其作为弦的变化来看,而弦长又与弦心距存在变量之间的关系,所以首先作出弦心距.如下动图,所以当PQ最小时,EF最大.9方法一:穿心十小垂(P点为以O点圆心,OP为半径的弧上)求出OQ的最值,即PQ 的最小值,再由勾股定理和垂径定理可求得EF.方法二:三边+小垂〔三角形OPQ〕求出OQ的最值【期山二模第10题】如图,在当面直角坐标系中,觉物线f二一工工+2后工的顶点为A点,且与戈轴的正半轴交于点以P点为该抛物线对称轴上一点.那么.尸+—WP的最小值为: 2、3+2而口3+2右广3Aa 5 L . □解析:由抛物线解析式可求出点A、B的坐标分别为,所以N OAP=30°,如下列图问题是.尸+上/P,转换型最值,2即过P点作PD_L03于点D,1饮马+小垂】【瑶海二模第10题】如图,矩形ABCD中,AB=2,AD=3,点E,F分别为AD,DC边上的点, 且EF=2,点G为EF的中点,点P为BC上一动点.那么PA+PG的最小值为〔〕A.3B.4C.2J5D.5解析:由于G为EF的中点,EF=2,所以点G的轨迹为以D为圆心DG为半径的弧,【饮马+穿心】即A', P, G, D四点共线时,PA+PG最小〔PA+PG=PA' +PG+DG〕【练习1】如图,圆O的半径为13,弦AB长为24,弦CD长为10,点N为CD的中点,O 到弦AB的距离为OM,那么MN的最小值是【练习2】如图,A,B为圆O上两点,以AB边直角边作等腰直角三角形ABC,假设圆O的半径为5,那么OC的最小值为8。
初中动点最值问题题型

初中动点最值问题题型1. 什么是动点最值问题?初中数学中的动点最值问题是指给定一个动点在某个区域内移动的情况,我们需要找出在这个过程中,某个量的最大值或最小值。
这个问题涉及到数学中的函数、图像和变量的运动等概念。
2. 动点最值问题的解决思路要解决动点最值问题,我们需要经过以下几个步骤:步骤一:明确问题首先,我们需要明确问题,确定要求解的量是什么。
常见的量包括距离、时间、面积等。
步骤二:建立模型接下来,我们需要建立一个数学模型来描述动点的运动情况。
这通常涉及到函数和变量的运用。
可以根据具体情况选择直角坐标系或极坐标系来建立模型。
步骤三:求解最值通过对模型进行分析和计算,可以得到函数表达式。
然后使用数学方法求解该函数的最大值或最小值。
常见的求解方法有导数法、平方差法等。
步骤四:验证答案得到答案后,我们需要验证它是否符合实际情况。
可以通过数学推导、图像观察等方式进行验证。
3. 动点最值问题的例子下面以一个具体的例子来说明动点最值问题的解决思路:例子:一个人在河边沿着一条弯曲的小路行走,他从A点出发,经过B、C、D三个点,最后到达E点。
小路的形状如下图所示:我们需要求解以下两个问题:1.从A点到E点的最短距离是多少?2.从A点到E点经过的路径是什么?步骤一:明确问题1.最短距离2.路径步骤二:建立模型我们可以将小路看作一个连续函数,使用直角坐标系来建立模型。
假设小路的函数表达式为y = f(x)。
步骤三:求解最值1.最短距离:我们需要求解函数f(x)在区间[AB]、[BC]、[CD]和[DE]上的最小值。
2.路径:根据求解出来的最小值,可以确定经过哪些点构成了最短路径。
步骤四:验证答案1.最短距离:通过计算和比较,可以验证最小值是否正确。
2.路径:通过观察图像和计算距离,可以验证路径是否正确。
4. 总结初中动点最值问题是数学中常见的一类问题,需要运用函数、图像和变量的概念来建立模型,并通过数学方法求解最大值或最小值。
2023年中考数学常见几何模型之最值模型阿氏圆问题

专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。
【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。
如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。
例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C 为圆心、3为半径作⊙C ,P 为⊙C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为( )A .7B .C.4D.例2.(2020·广西中考真题)如图,在Rt 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF 的上任意一点,连接BP ,CP ,则BP +CP 的最小值是_____.ABC V »EF12.【分析】在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .证明,推出==,推出PT =PB ,推出PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT即可解决问题.【详解】解:在AB 上取一点T ,使得AT =1,连接PT ,P A,CT .∵P A =2.AT =1,AB =4,∴P A 2=AT •AB ,∴=, ∵∠P AT=∠P AB ,∴,∴==,∴PT =PB ,∴PB +CP=CP +PT ,∵PC +PT ≥TC ,在Rt 中,∵∠CAT =90°,AT =1,AC =4, ∴CT PB +PC ,∴PB +PC .故答.【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.例3.(2022·四川成都·模拟预测)如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC −的最大值为_______.PAT BAP V V ∽PT PB AP AB 1212124=PA ATABPA PAT BAP V V ∽PT PB AP AB 121212ACT V 1212例4.(2022·浙江·舟山九年级期末)如图,矩形ABCD 中,4,2AB AD ==,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP +的最小值为( )A BC D【点睛】本题考查矩形和圆的基本性质,相似三角形的性质和判定,解题的关键是构造相例5.(2022·广东·广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (5,3),点P 是第一象限内一动点,且135APB ∠=︒,则4PD +2PC 的最小值为_______.例6.(2021·浙江金华·一模)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又∵∠PCD=∠△∽△∴13=PDBP∴PD=13BP∴AP+13BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则1AP+PC的最小值为.(请在图3中添加相应的辅助线)2(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是»CD上一点,求2P A+PB的最小值,画出示意图并写出求解过程.例7.(2022·广东·二模)(1)初步研究:如图1,在△P AB中,已知P A=2,AB=4,Q为AB 上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,⊙A的半径为2,点P是⊙A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,∠A=60°,⊙A的半径为2,点P是⊙A上的一个动点,求2PC−PB的最大值.(3)如图,在AB 上取一点,使得AQ =1,连接AP ,PQ ,P ′,过点C 作CH 垂直AB 的延长线于点H .易得AP =2,AB 由(1)得PB =2PQ ,∴2=2PC −2PQ =2(PC −PQ ) ,∵PC −PQ ≤QC ,∴当点P 交⊙A 的点P ′时,PC −PQ 的值最大.例8.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点AB 、,则所有符合0(PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又,POD MOP POMDOP ∠=∠∴.任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC V 中,90,4,3,ACB AC BC D ∠=︒==为ABC V 内一动点,满足2CD =,利用()1中的结论,请直接写出23AD BD +的最小值.课后专项训练1.(2022·福建南平九年级期中)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则13AP+BP的最小值为()B.C.D.A.【点睛】本题考查相似三角形,解直角三角形;懂得依题意作辅助线构造相似三角形是解题的关键.2.(2022·江苏·无锡市九年级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为___.3.(2022·陕西·三模)如图,在四边形ABCD中,AB=,,设•=∠=∠=︒260AC BAC ACD=,则k的最小值为___________.AD k BD1##1−在Rt ACJ V 中,260AC CAJ =∠=︒,,∴∴AB CD ∥,∵BM CD CJ AB ⊥⊥,,∴四边形BJCM4.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点A, B ,所有满足PA PB=k ( k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB = 4 ,AB= 2AC ,则△ABC 面积的最大值为_____.5.(2022·浙江·九年级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E 分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB 的最小值为.【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.6.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG +12CG 的最小值为 _____.7.(2022·山西·九年级专题练习)如图,在ABC V 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA PC 的最小值是___________.8.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,PC的最大值为_____.点P是⊙B上的一个动点,则PD﹣129.(2022·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上A+PB的最小值为________.OP=r=12BC=2,OB=∵222OPOI==,OBOP=∴22PI OIPB OP==,∴PI10.(2022·山东·九年级专题练习)如图,在Rt ABC V 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P 为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.11.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+23PC的最小值为__,PD﹣23PC的最大值为__.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+12PC的最小值为__,PD﹣12PC的最大值为__.如图3中,在BC 上取一点6342PB BG ==Q,BC PB PBG CBP ∴V :V ,∴221PB BG ==Q,422BC PB ==,PBG CBP ∴V :V ,PG BG PC PB ∴=PD PG DG +≥Q (当且仅当G 12.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC 中,AB =12,⊙C 半径为6,P 为圆上一动点,连结AP ,BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =3,则有CD CP =CP CB=12,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,1 3AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是»CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.13.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +4PC +的最小值,12PD PC −的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC +的最小值,23PD PC −的最大值,PC 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC −的最大值.PC 的最小值PB BC2414.(2022·山东聊城·二模)如图,抛物线2y x bx c =−++经过点()4,4A −−,()0,4B ,直线AC 的解析式为162y x =−−,且与y 轴相交于点C ,若点E 是直线AB 上的一个动点,过点E 作EF x ⊥轴交AC 于点F .(1)求抛物线2y x bx c =−++的解析式;(2)点H 是y 轴上一动点,连结EH ,HF ,当点E 运动到什么位置时,四边形EAFH 是矩形?求出此时点E ,H 的坐标;(3)在(2)的前提下,以点E 为圆心,EH 长为半径作圆,点M 为E e 上以动点,求12AM CM +的最小值.15.(2022·江苏泰州·一模)如图,已知Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,E 是AB 上的一点,5BE =,点D 是线段BC 上的一个动点,沿AD 折叠ACD ∆,点C 与C '重合,连接BC '.(1)求证:AEC AC B ''∆∆∽;(2)若点F 是BC 上的一点,且BF =,①若BC F '∆与BC E '∆2)中作出折叠后的AC D '∆(保留作图痕迹,不写作法);②求32BC FC ''+的最小值.②如图,由(1)知:△AEC′∽△AC′B,∴AE ACAC AB'='=6293=,∴EC′=23BC′,∵BC′+32FC′=32(23BC′+FC′)=32(EC′+FC′),当E、C′、F三点共线时,EC′+FC′最短,即EC′+∴BC′+32FC′的最小值为32EF,在Rt△ABC中,由勾股定理得:BC=22AB AC−过点E作EG⊥CB于G,∴∠C=∠EGB=90°,∴ACBC AB AC16.(2022·广东·九年级专题练习)如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt△BEF绕点B旋转,BE=BF AE,CF.(1)求证:△ABE ≌△CBF .(2)如图2,连接DE ,当DE =BE 时,求S △BCF 的值.(S △BCF 表示△BCF 的面积)(3)如图3,当Rt △BEF 旋转到正方形ABCD 外部,且线段AE 与线段CF 存在交点G 时,若M 是CD 的中点,P 是线段DG+PG 的值最小时,求MP 的值. 【答案】(1)见解析(2)2或【分析】(1)由“SAS ”可证△ABE ≌△CBF ;(2)由“SSS ”可证△ADE ≌△ABE ,可得∠DAE =∠BAE =45°,可证AH =EH ,由勾股定理可求BE 的长,即可求解;(3)先确定点P 的位置,过点B 作BQ ⊥CF 于Q ,由勾股定理可求CE 的长,由平行线分线段成比例可求解.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°, ∵∠EBF =90°=∠ABC ,∴∠ABE =∠CBF , 又∵BE =BF ,AB =BC ,在△ABE 和△CBF 中,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ); (2)解:如图2,过点E 作EH ⊥AB 于H ,∵△ABE ≌△CBF ,∴S △ABE =S △CBF ,∵AD =AB ,AE =AE ,DE =BE ,∴△ADE ≌△ABE (SSS ), ∴∠DAE =∠BAE =45°,∵EH ⊥AB ,∴∠EAB =∠AEH =45°,∴AH =EH ,17.(2022·河北·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①12AP BP+,②2AP BP+,③13AP BP+,④3AP BP+的最小值.【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.。
中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。
动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。
四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。
一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。
而2t也就是这个点所运动的线段长。
进而能表示其他相关线段的长度。
所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。
3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。
4、难点是找等量关系这种题的难点是找到等量关系。
这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。
5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。
【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点最值基本模型
一、最值类型
1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。
2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。
[
3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。
4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。
5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。
6.结合型:即以上类型的综合运用,大多为饮马+小垂【如包河一模20题】【瑶海一模第10题】、小垂+穿心【如庐阳二模第10题】、饮马+穿心【如瑶海二模第10题】饮马+转换【如蜀山二模第10题】等
`
※二、分类例析
一、饮马型
例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ .
解析:如图
$
…
例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.
解析:如下图
)
二、小垂型
例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________.
/
解析:如下图
&
三、穿心型
;
例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____.
解析:如下图
四、转换型
¥
例5:如图,P为菱形ABCD内一点,且P到A、B两点的距离相等,若∠C=60°,CD=4,则的最小值为____________
解析:因为P到A、B两点的距离相等,所以P 在AB的垂直平分线上,又因菱形ABCD 中∠C为60°,所以△ABD为等边三角形,AB的垂直平分线经过点D,如下图由∠ADP=30度,可将PD的一半进行转换,即过点P作AD的垂线。
如图,
即B、P、F三点共线,且BF⊥AD时最短
五、三边型
.
例6:如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为________
解析:如下图因为AB为定长,所以取其中点E,则OE为定值,在△ODE中,DE为定值,OE为定值,根据三角形三边关系即可得到OD的最大值。
(
^
例7:如图,已知△ABC中,∠ACB=90°,BC=4,AC=8,点D在AC上,且AD=6,将线段AD绕点A旋转至AD’,F为BD’的中点,连结CF,则线段CF的取值范围.
解析:
解法一:瓜豆原理,点F的轨迹为圆,一箭穿心便可以求出其取值范围。
…
解法二:如下图,取AB的中点M,连接FM,CM,由斜边上的中线等于斜边的一半得CM 为定值,由三角形中位线得FM为定值,所以在△CFM中,三边关系可得到CF的取值范围.
、
例8:如图,BA=1,BC=2,以AC为一边做正方形AEDC,使E,B两点落在直线AC的两侧,当∠ABC变化时,求BE的最大值.
解析:将△AEB以点A中心顺时针旋转90°,得到△ACB’,如下图所示,连接BB’,所以B’C=BE,在△BB’C中,BB’为定值,BC为定值,三角形三边关系即可得到B’C的最大值,即BE的值.
;
6. 结合型
例9:如图,正方形ABCD中,AB=4, E为CD边的中点,F、G为AB、AD边上的点,且AF=2GD, 连接E、DF相交于点P,当AP为最小值时,DG=________
解析:由AF=2GD,AD=2DE,得△AFD∽△DGE.如下图
∴GE⊥DF, 那么线段AP中,A点为定点,P为动点,由∠DPE为直角,所以P的轨迹为一以DE中点为圆心的一段弧。
如下图
@
由一箭穿心可得到AP的最小值为A,P,M三点共线,而此时,由△DMP∽△FAP可得到AP=AF即可得到结果.
}
※三、模考分析
【庐阳二模第10题】如图,在平面直角坐标系中,A(6,0),B(0,8),点C在y轴正半轴上,点D在x的正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于点E、F,则线段EF的最大值为______如图,在平面直角坐标系中,A(6,0),B(0,8),点C在y轴正半轴上,点D在x的正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于点E、F,则线段EF的最大值为______
?
解析:线段EF由于半圆的变化而变化,所以应将其作为弦的变化来看,而弦长又与弦心距存在变量之间的关系,所以首先作出弦心距.如下动图,所以当PQ最小时,EF最大。
)
方法一:穿心+小垂(P点为以O点圆心,OP为半径的弧上)求出OQ的最值,即PQ 的最小值,再由勾股定理和垂径定理可求得EF.
方法二:三边+小垂(三角形OPQ)求出OQ的最值……
解析:由抛物线解析式可求出点A、B的坐标分别为,所以∠OAP=30°,如下图
、
¥
)
【瑶海二模第10题】如图,矩形ABCD中,AB=2,AD=3,点E,F分别为AD,DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点.则PA+PG的最小值为()
√5
解析:因为G为EF的中点,EF=2,所以点G的轨迹为以D为圆心DG为半径的弧,【饮马+穿心】即A’,P,G,D四点共线时,PA+PG最小(PA+PG=PA’+PG+DG)
|
#
¥
【练习1】如图,已知圆O的半径为13,弦AB长为24,弦CD长为10,点N为CD的中点,O到弦AB的距离为OM,则MN的最小值是________
【练习2】如图,A,B为圆O上两点,以AB边直角边作等腰直角三角形ABC,若圆O的半径为5,则OC的最小值为。