习题解答9定积分的概念与性质---定积分的换元法和分部积分法

合集下载

【2019年整理】定积分的换元法与分部积分法99169

【2019年整理】定积分的换元法与分部积分法99169

四、设 f ( x)在 a , b 上连续,
证明
b
f ( x)dx
b f (a b x)dx.
a
a
五、证明:
1 x m (1 x)n dx 1 x n (1 x)m dx .
0
0`
上页 下页 返回
六、证明:
a f ( x)dx
a
[ f (x)
f ( x)]dx,
a
0
并求
0
0
(2)设 x t dx dt,
x 0 t ,
x t 0,
0
0 xf (sin x)dx ( t) f [sin( t)]dt
0 ( t) f (sin t)dt,
上页 下页 返回
0 xf (sin x)dx 0 f (sin t)dt 0 tf (sin t)dt
解 令 u arcsin x, dv dx,
则 du dx , v x, 1 x2
1
2 arcsin xdx
0
x
arcsin
1
x2 0
1 2
0
1
1
1 2
2 6 20
1 d(1 x2 ) 1 x2
xdx 1 x2
12
1
1 x2
2
0
3 1.
12 2
上页 下页 返回
3
x
3
)dx
___________________;
2、 (1 sin3 )d ________________; 0
3、 2 2 x 2 dx _____________; 0
4、
1 (arcsin x)2
2
1
2
1 x2

定积分的换元法和分部积分法

定积分的换元法和分部积分法

10
1 1 ( x)2
d( x) 2
arcsin
x 2
1 0
π 2
2
例3
计算
02
sin6xcosxdx

02
sin6xcosxdx02
sin6xd(sinx)
π
sin
7x
2
7 0
1 7
例4
计算
1e
1 lnx x
dx

e 1
1 lnx dx x
e1(1lnx)d(1lnx)
(1
ln
1
1
解法1
2 0
arcsinxdx
02arcsixnd(x)
1 1 xdx
xarcsixn02
2 0
1 x2
1 26
1
1 2
20
1 d(1x2) 1x2
12
1
1x2
2
0
31.
12 2
解法2
1
02arcsixndx
换 元t: arcsxin
6td(sitn)
则xsin t 0
分 部 积 分
2. 第二类换元积分法
设函数 f ( x) 在区间 [a, b] 上连续 ,函数 xφ(t)
满足 (1) φ(α)a, φ(β)b
(2) φ(t)在 [α, β](或 [β, α])上具有连续
导数,且 φ(t)[a, b] ,于是
a bf(x)dx βf[φ(t)φ ](t)dt
注意: (1)换元前后,上限对上限、下限对下限;
2
t
3
2 t
3 1
8 3
例7
计算
04

数学积分第五章

数学积分第五章
xn 1
b xn x
A lim f ( i ) x i
0 i 1
n
二、定积分的定义 定义:设函数 f(x) 在闭区间 [a, b] 上有界,在 (a, b) 内任意
插入 n - 1 个分点
a x 0 x1 x 2
… xn 1 xn b
把区间 [a, b] 分成了 n 个小区间 [ x i 1 , x i ] ,其长度为
( i 1, 2 ,
… , n)
小区间的长度 x i x i x i 1 ⑵ 取近似 A i f ( i ) x i ⑶ 求和
A A i f ( i ) x i
i 1 i 1 n n
⑷ 取极限:设 为小区间长 度的最大值,则 o x0 a x 1 x 2 x i 1 i x i
b b
⑵ a [ f ( x) g ( x) ] d x a f ( x) d x a g ( x) d x ; 性质 ⑵ 可以推广到有限个可积函数的情形。 ⑶ 对任意常数 a , b , c,总有
b
b
b
a
b
f ( x) d x
a
c
f ( x) d x
c
b
f ( x) d x .
y
y f ( x)
y
y f ( x)
y
y f ( x)
。 .
o a c b x o a
。 .
.
c

.
c
b
x
o
a
b
x
三、定积分的几何意义(1)
由定积分的定义可得:
在闭区间 [a, b] 上,若函数 f ( x) 0 ,则 a f ( x ) d x 在几

定积分的换元法和分部积分法课件

定积分的换元法和分部积分法课件
常数倍性质
定积分具有常数倍性质,即对于任 意非零常数c,有c乘以被积函数的 定积分等于该常数乘以被积函数在 积分区间上的增量。
定积分的计算
直接法
直接代入被积函数进行计算,适 用于简单的被积函数和明确的积
分区间。
换元法
通过变量替换简化被积函数或积 分区间,适用于较为复杂的积分
问题。
分部积分法
通过将两个函数的乘积进行分部 积分,将一个复杂函数的积分转 化为更简单函数的积分,适用于
计算旋转体的体积
01
定积分可以用于计算旋转体的体积,例如旋转抛物面下的体积

求解平面图形的面积
02
定积分可以用于求解平面图形的面积,例如椭圆、圆、三角形
等。
求解曲线长度
03
定积分可以用于求解曲线的长度,例如圆的周长、正弦函数的
长度等。
05
定积分的应用
定积分在物理中的应用
计算物体在恒力作用下的运动轨迹
分部积分法在求解三角函数的不定积分中有着广泛的应用,例如求解$int sin x dx$或$int cos x dx$等。
求解复杂函数的不定积分
对于一些复杂函数的不定积分,分部积分法可以将其转化为简单函数的定积分 ,从而简化计算过程。例如求解$int x^2 e^x dx$等。
04
定积分的几何意义
03
分部积分法在定积分中的应用
分部积分法的定义和原理
分部积分法的定义
分部积分法是一种求解定积分的技巧 ,通过将一个不定积分转化为两个函 数的乘积的导数,从而简化计算过程 。
分部积分法的原理
基于微积分基本定理,通过将一个复 杂函数的不定积分转化为简单函数的 定积分,实现积分的求解。

微积分》第二篇第二章讲义定积分

微积分》第二篇第二章讲义定积分

dx
1 e4 1 x4 e 1 3e4 1 4 4 1 16
28
(4) 求定积分 2 xcos2xdx. 0
【解】
2
xcos2xdx
1
2 x(sin2x)dx
0
20
1 2
x
sin
2x
2 0
2 0
1
s
in
2
xdx
1 2
0
1 2
2 0
(c
os2
x)dx
1 2
0
1 cos2x 2
0 excosxdx 0 ex cosxdx
a
a
excosx 0 0 exsinxdx aa
1 eacosa 0 ex sinxdx a
37
即 0 excosxdx a
1 eacosa exsinx 0 0 excosxdx aa
1 eacosa 0 easina 0 excosxdx a
39
21
2 22 1
1 e2 1 4 24
【例7】求定积分 4 1 xex dx. 0
解: 原式
4
1dx
4 xexdx.
0
0
x 4
4
x
ex
dx.
0
0
4
xex
4 0
4 0
x
e
xdx
.
4 4e4 4 exdx 0
4 4e4 ex 4 5 5e4 0
25
课本P-274,题2,(1)—(4)
广义积分 f (x)dx收敛或存在. a 相反,如果极限 lim b f (x)dx不存在, b a
我们就称广义积分 f (x)dx发散或不存在. a 我们的目标:计算一些函数的广义积分

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法
( 2 ) න (sin )d
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0​

+ න () d
0​
= න [(−) + ()] d
0​

2 න () d , (−) = (),
=
0​
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0

1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1

第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .

第六节定积分的换元积分法和分部积分法

第六节定积分的换元积分法和分部积分法

0
0
=(e 2-1)+ 2 ex cosxdx 0
移项得
2
2 0
ex
cosxdx
=(e 2-1)
所以
2 ex cosxdx
0
=
1
2 (e 2-1)
例11 计算 4
xdx .
0 1 cos 2x
解 1 cos 2x 2cos2 x,
4
xdx
0 1 cos 2x
4
xdx
0 2cos2 x
sec t tan t
3
4 dt
.
2 3
12
思考题1解答
计算中第二步是错误的. x sect
t
2 3
,
34,
tant 0,
x2 1 tant tant.
正确解法是
2 dx
x sec t
3 4
1
sec t tan tdt
2 x x2 1
2 3
sec t
tan t
3
4 dt
b
uv
b
vdu.
a
aa
(注意与不定积分分部积分法的区别)
思考题
1.指出求 2 dx 的解法中的错误,并写出正
2 x x2 1
确的解法.
解 令 x sect, t : 2 3 , dx tan t sectdt,
34
2
2 x
dx x2 1
3 4
1
sec t tan tdt
2 3
4
0
xdtan x
2
1 2
x
tan
x
4
0
1 2
4
0

定积分第三节定积分的换元法和分部积分法

定积分第三节定积分的换元法和分部积分法

2

4
0
sin
xdx
x0 t,tx0,;dxx22t,d tt202tsitndt
42
202tdcots
2tcot0 2s202cotdst
2sint02 2
例4 计算
1 0
l(n2(1x)x2)dx.

1
0
l(n2(1x)x2)dx
01ln1 ( x)d2 1x
ln2(1xx)10012 1xdln1(x)
f[ ( t ) ] ( t ) dt
说明:
b
af(x)d x f[ ( t ) ] ( t ) dt
1) 当 < , 即区间换为[,]时,定理 1 仍成立 .
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
f[
( t ) ]
( t ) dt
b
f (x)dx
0 2 fx 1 d 0 1 x fx 1 d 1 2 x fx 1 dx
1ex1dx 21dx
0
1x
01ex1dx1121 xdx
ex 11 0ln x1 211 eln 2
二、分部积分公式
设函数u( x)、v( x)在区间a, b上具有连续
导数,则有
b
a udv
例9 计算 01xscionsx2 xdx .
解 积分区间为 0,,被积函数为 xfsixn
型,利用定积分公式⑥得
0 1 xs cix o 2x n ds x 20 1 scix o 2n xdsx
20 1c1o 2xd scoxs 2arccta oxn s 042
例11
设f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档