四年级奥数等差数列练习题-含答案
小学四年级数学奥数题100题附答案(完整版)

小学四年级数学奥数题100题附答案(完整版)题目1有一个数列:1,3,5,7,9,11,13,15,17,19。
求这个数列的和。
答案:这是一个等差数列,首项为1,末项为19,公差为2,项数为10。
根据等差数列求和公式:总和= (首项+ 末项)×项数÷2即:(1 + 19)×10 ÷2 = 100题目2小明从一楼走到三楼需要2 分钟,那么他从一楼走到六楼需要几分钟?答案:从一楼到三楼,实际上走了 2 层楼梯,用了2 分钟,所以走一层楼梯需要1 分钟。
从一楼到六楼需要走5 层楼梯,所以需要5 分钟。
题目3在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5 倍,差是多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 240,所以被减数= 240÷2 = 120。
又因为减数是差的5 倍,设差为x,则减数为5x,所以x + 5x = 120,解得x = 20,即差是20。
题目4两个数相除,商是8,余数是20,如果被除数和除数同时扩大10 倍,商是多少?余数是多少?答案:被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。
所以商还是8,余数是20×10 = 200。
题目5鸡兔同笼,共有头100 个,脚316 只,鸡兔各有多少只?答案:假设全是鸡,那么脚有100×2 = 200 只,比实际少316 - 200 = 116 只。
每把一只鸡换成一只兔,脚就多4 - 2 = 2 只。
所以兔有116÷2 = 58 只,鸡有100 - 58 = 42 只。
题目6一块长方形草地,长18 米,宽12 米,中间有一条宽2 米的小路,求草地(阴影部分)的面积。
答案:方法一:整个长方形的面积为18×12 = 216 平方米。
小路的面积为18×2 + 12×2 - 2×2 = 56 平方米。
等差数列练习题附答案

等差数列练习题附答案一、选择题1、已知等差数列{an}中,S10=120,那么a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,那么这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,那么S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.一、选择题1、已知等差数列{an}中,S10=120,则a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,则这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,则S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.1.在等差数列{an}中,已知a4=0.8,a11=2.2,求a51+a52的值。
小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学四年级奥数第4课等差数列及其应用试题附答案-精品

小学四年级上册数学奥数知识点讲解第4课《等差数列及其应用》试题附答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.例2求等差数列1,6,11,16…的第20项.例3已知等差数列2,5,8,11,14-,问例是其中第几项?例4如果一等差数列的第4项为21,第6项为33,求它的第8项.例5计算1+5+9+13+17+ (1993)例6建筑工地有一批转,码成如右图形状,最上层两块待,第2层6块砖,第3 层10块存…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,间中间一层多少块枝?这堆待共有多少块?例7求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.例8连续九个自然数的和为54,则以这九个自然数的末项作为首项的九个连续自然数之和是多少?例9100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第 1 个,第3个…第99个,再把剩下的50个数相加,得多少?例10把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?例11把27枚棋子放到7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由.答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, 98;⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示, 如:数列①中,d=2-l=3-2=4-3=-=l;数列②中,d=3-l=5-3--=13-11=2;数列⑤中,*100-95二95-90=…=75-70二5;数列⑥中,d=20-l8=18-16='-'=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22,98;⑥不是,因为第1项减去第2项不等于笫2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2 项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a,第2项记为抵,…,第n项记为an,an。
小学等差数列练习题及答案

小学等差数列练习题及答案精品文档小学等差数列练习题及答案四年级奥数上册:第四讲等差数列及其应用习题解答四年级等差数列练习题1(找出规律后填出下面数列中括号里的数:1,,,,, 11, 13,,…1,,, 10,, 16, 19,…1,,, 10, 15,,8,…l,,,,,,,,…,, 11, 19,5,, 131;59,…2.已知等差数列5,9,13,17,…,它的第15项为_______.3.已知等差数列2,7,12,…,122,这个等差数列共有_____项。
4(从25往后数18个连续的奇数,最后一个奇数是______.5(被4除余1的两位数共有____个。
6(等差数列2,5,8,11,…,共有80项,其中所有奇数的和为_____.7(一个等差数列的第2项是2.8,第3项是3.1,则这个数列的第10项是_____.8(有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。
1 / 5精品文档9(在1949,1950,1951,……,1999,2000这52个自然数中,所有偶数之和比所有奇数之和多_____。
10(某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人,每2名并列2人,每三名并列3人,……,每十五名并列15人,用最简便的方法计算出得奖的一共有______人。
11(已知等差数列5,8,11,…,它的第21项为______。
12(自1开始,每隔三个自然数写出一个自然数来,得到一个数列,这个数列的前五项是 __________________,这个数列的前50项的和是_____________。
13(所有被7除余数是1的二位数的和是_________。
14(在13和29之间插入三个数,使这五个数成等差数插入的三个数依次是_______.15(有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。
(完整版)四年级奥数等差数列练习题

等差数列例1:已知数列5,8,11,14,17……求(1)这个数列的第201项是多少?(2)176是这个数列的第几项?练1:已知数列3,9,15,21,27……求:(1)这个数列第100项是多少?(2) 147是数列的第几项?525是数列的第几项?练2:已知数列14,23,32,41 (455)求(1)这个数列共有多少项?(2)这个数列第25项是多少?第33项是多少?练3:医院为病床编号依次为8,14,20,26……,问编号为284的病床是第几张?例2:已知等差数列的末项是162,公差是7,项数是22求(1)这个等差数列的首项是几?(2)这个数列的第15项是多少?第18项呢?练1:已知等差数的公差hi5,末项是165,数列共30项(1):这个数列首项是多少?(2):这个数列第11项,第17项各是多少?练2:一个数列首项为12,第8项为96,求它的第10项?练3:被4除余1的两位数共有多少个?例3:如果一个等差数列第4项为21,第6项为33,求它的第8项?练1:如果一个等差数列第5项是19,第8项是61,求它的第11项?练2:如果一个等差数列第3项是10,第7项是26,求它的第12项?练3:如果一个等差数列第2项是10,第6项是18,求它的第110项?例4:36个学生排除一排玩报数游戏,后一个同学总比前一个多数8,已知最后一个同学报256,第一个同学是几?练1:仓库里有一叠被编上号的数,共40本,已知每个下面一本书都比上面一本书的编号多5,最后一本编号为225,问第一本编号是几?练2:学校举办运动会,共54人参加,每个人都有参赛号码,已知前一人号码比后一人的号码少4,最后一个人的号码是215,第一人的号码是多少?练3:地上将粗细均匀的圆木,堆成一堆,最上面一层有6跟圆木,每向下一层增加一根,共堆28层。
最下面一层有多少跟圆木?例5:一个九层书架最上面一层放39本书,最下面一层放15本书,已知相邻两层书相差本书相等,问第5层放了多少本书?练1:有一排用等差数列编码的彩色小旗,第1面上的号码为37,第8面小旗的编号为387,你知道第7面小旗的编码吗?练2:在124和245之间插入10个数后,使它成为等差数列,这10个数中,最小是几?最大是几?练3:游乐园的智慧梯,最高一层宽60cm,最低一级宽160cm,中间还有9级,求第5级的宽度?课后练习(1):有一个数列,2,6,10,14……104,这个数列共有多少项?(2):有一个数列,2,7,12,17……,这个数列的第100项是多少?(3):有一个数列,1,4,7,10……,求这个等差数列的第50项是多少?(4)有一个等差数列,3,7,11,15…… 359是这个数列的第几项?(5):3,9,15,21……中,381是第几项?(6):在一个等差数列中,首项=1,末项=57,公差=2,这个数列共有多少项?(7):有一列数是这样排列的,3,11,19,27,35,43,51……,求第12个数是多少?(8):在4和25中间添上6个数,变成一个等差数列,公差是多少?写出这个数列?(9):糖果生产商为机器编号,依次为1,7,13,19,25……,问第19个的编号是多少?(10):一个等差数列第5项是19,第8项是61,求它的第11项?(11):有一串数,第一个数是5,以后每个数都比前一个大5,最后一个数是90,你能算出这一串数有几个数吗?(12):有20个数,第一个数是9,以后每个数都比前一个大2,你能算出第20个数是多少吗?(13):被4除余1的两位数有多少个?(14):如果一个等差数列第20项是46,第22项是54,求第25项是多少?(15):梯子的最高一级宽30cm,最低一级宽100cm,中间还有11级,各级的宽度成等差数列,正中一级的宽度是多少?。
四年级等差数列的奥数题

等差数列的求和公式为:S=(首项+末项)×项数÷2
求首项是5,末项是93,公差是4的等差数列的和
1.求等差数列1,6,11,16…的第20项是多少?第35项是多少?251是这个等差数列的第几项?
2、已知等差数列2,5,8,11,14…,问47是其中第几项?
3、如果一等差数列的第4项为21,第6项为33,求它的第8项.
4、已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多
少?这个数列的第16项是多少?
5、小剧场共有40排座位,每一排都比前一排多2个座位,最后一排有120个
座位,第一排有多少个座位?第25排有多少个座位?
解答:
1.公差为5;
第20项为(20-1)*5+1=96;
第35项为(35-1)*5+1=171;
251是第((251-1)/5)+1=51 项
2.公差为3;
47是第((47-2)/3)+1=16项
3.公差为(33-21)/(6-4)=6;
第8项为33+(8-6)*6=45;
也可直接由33+(33-21)得出
4.令首项为x,则x+(25-1)*4=280,得首项为184;
第16项为184+(16-1)*4=244;
5.公差为2,项数为40,末项为120,
则令首项为x,有x+(40-1)*2=120,得首项为42;
第25排有座位 42+(25-1)*2=90个
6.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第()项。
等差数列练习题及答案精选全文

可编辑修改精选全文完整版等差数列练习题一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .810.已知S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .B .5C .7D .9二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = .7.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求: (1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +n a 2=错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列巩固练习
求项数、末项练习题
1、在等差数列
2、4、6、8中,48是第几项?168是第几项?
24;84
2、已知等差数列5,8,11…,求出它的第15项和第20项。
47;62
3、按照1、
4、7、10、13…,排列的一列数中,第51个数是多少?
151
4、数列3、12、21、30、39、48、57、66……
1)第12个数是多少?102
2)912是第几个数?102
5、已知数列2、5、8、11、14……,53应该是其中的第几项?
18
6、在等差数列5、10、15、20中,155是第几项?350是第几项?
31;70
7、在等差数列1、5、9、13、17……401中,401是第几项?第60项是多少?
101;237
8、在等差数列6、13、20、27……中,第几个数是1994?
285
求和练习题
9、6+7+8+9+……+74+75+76=()
2911
10、2+6+10+14+……+122+126+128=()
4160
11、1+2+3+4+……+2016+2017=()
2035153
12、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?
20400
13、3+7+11+ (99)
1683
14、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个
数列的和。
185450
15、求首项是5,末项是93,公差是4的等差数列的和。
1127
16、(2+4+6+……+2000)-(1+3+5+……+1999)=()
1000
17、1+2-3+4+5-6+7+8-9+……+58+59-60=
570
18、求1~99个连续自然数的所有数字的和。
900
19、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多
2个座位,这个剧场共有多少个座位?
1254
20、求所有除以4余1的两位数的和是多少?
1210
21、工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2排
有11个座位,第3排有12个座位……这个体育馆的12区共有多少个座位?
390。