四年级奥数找规律数列数表专题
四年级奥数数列规律总汇

寻找常见数列的排列规律可以从以下三个方面入手:一、仔细观察数据的特征(对于一些特殊数要有一定的积累,如平方数、立方数),根据数据特征极其相互之间的关系找规律。
二、对数列中相邻两个数作差或相除,根据差和商的情况找规律。
三、统筹考虑数列中相邻的三、四个数,根据它们之间的关系找规律。
《奥赛天天练》第1讲,模仿训练,练习2【题目】:按规律在“?”处填数。
【解析】:第(1)小题,仔细观察前三幅图,通过计算可找到规律:上格的数字与左下格数字之差的2倍就是右下格数字,如第一幅图中:(8-6)×2=4。
所以第四幅图中“?”处的数字为:(13-6)×2=14;第五幅图中“?”处的数字为:32-(24÷2)=20。
第(2)小题,仔细观察前两幅图,通过计算可找到规律:中间方格中的数字就等于左、上、右方三角形中三个数字连乘的积,如第一幅图中:1×4×5=2 0。
所以第三幅图中“?”处的数字为:3×5×2=30;第四幅图中“?”处的数字为:56÷(7×8)=1。
《奥赛天天练》第1讲,巩固训练,习题2【题目】:将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数的和。
如果第7个数和第8个数分别是81,131,那么第一个数是多少?【解析】:根据题意列出数列(未知数字用方框代替):□、□、□、□、□、□、81、131……“从第三个数开始,每个数恰好等于它前面两个数的和”,倒过来可以推出,这个数列中每个数等于这个数后面两个数的差。
如:第8个数等于第7个数与第6个数的和,则第6个数就等于第8个数与第7个数的差,可求出第6个数为:131-81=50。
依次倒推,可求出前面5个数。
第5个数为:81-50=31;第4个数为:50-31=19;第3个数为:31-19=11;第2个数为:19-11=8;第1个数为:11-8=3。
(完整word)四年级奥数找规律数列数表专题

数列与数表一、知识与方法归纳1、等差数列的有关知识.(1)通项公式:末项=首项+(项数-1) ×公差(2)项数=(末项-首项)÷公差+1(3)求和公式:和=(首项+末项) ×项数÷22、本讲主要包括两部分内容:规律较复杂的数列以及简单的数表二、经典例题例1.1,100,2,98,3,96,2 ,94,1,92,2 ,90,3 ,88,2,86,1, 84,…,0。
请观察数列的规律并回答一下问题:(1)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?解:例2. 1,2,3,4, 4, 5, 6, 7,7, 8,9 ,10,…,97, 98, 99, 100.请观察数列的规律并回答一下问题:(1)这个数列一共有多少个数?(2)50在数列中是第几个数?解:体验训练1 1, 2, 2, 4, 3, 6, 1, 8, 2, 10, 3, 12,…,100.观察数列的规律,请问:(1)数列中有多少个2?(2)数列中所有数的总和是多少?解:例3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数。
从这列数中取出连续的50个数,它们的和最大是多少? 解:例4. 如图所示,将从5开始的连续自然数按规律填入下面的数阵中,请问:(1)123应该排在第几列? 第1列 第2列 第3列 … (2)第2行、第20列的数是多少? 5 10 15 …6 11 16 …7 12 17 …8 13 18 …9 14 19 …解:体验训练2 将从1开始的自然数按某种规律填入方格表中,请问:(1)66在第几行、第几列?(2)第33行、第4列的数是多少?解:*例5.如图所示,将自然数有规律地填入方格表中,请问:三、内化训练1.10,2,10,4,10,6,10,8,10,10,10,12, (100)请观察数列的规律并回答以下问题:(1)这个数列中有多少项是10?(2)这个数列所有项的总和是多少?解:2.请观察由数组组成的数列:(1,2,3),(2,3,4),(3,4,5),…,(9,10,11)。
四年级奥数第1专题找规律巧填数

奥数第一专题找规律巧填数专题精析:我们把按某种规律排列的一列数叫做数列,数列中的每一个数都叫做这个数列的项,通过观察已知的项找出所给数列的规律,并依据规律填写所缺的数,就是按规律填数。
基础提炼:例1:找出下面数列的规律,并根据规律在括号里填出适当的数:(1)1,5,11,19,29,(),55;(2)6,1,8,3,10,5,12,7,(),()。
解析:(1)先计算相邻两数的差,5-1=4,11-5=6,19-11=8,29-19=10,由此可以推知这些差依次为4,6,8,10,12,14.这样()里的数应比29多12,比55少14,也就是说应该填41.(2)仅从相邻的两个数难以看出这列数的排列规律,这时不妨隔着一个数来观察,就会发现原来这列数是由两列数复合而成的,第1列数是6,8,10,12,14,每两个数的差是2,;第二列数是1,3,5,7,9,每两个数的差也是2,所以括号里应依次应填14和9.例2:根据前2个三角形里3个数的关系,在第3个、第4个三角形的空格里应填几?解析:先看第1个三角形里的3个数,试着判断它们之间存在着什么样的关系,可能的关系有6×3→18,18—4→14;6+12→18,6+8→14,接着,再来看第2个三角形里的三个数之间的关系依然符合5×3→15,15—4→11 ,所以,第3个和第4个三角形可以填出:模仿训练:练习1 在下面各数列中填入合适的数(1)9,11,15,21,29,( ),51(2)3,4,5,8,7,16,9,32,( ),( )练习2:按规律在“?”处填数。
(1)巩固训练习题1 按数列的规律在括号内填入合适的数:(1)1,4,9,16,(),();(2)11×3,23×5,35×7,47×9,(),611×13.习题2:将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数的和,如果第7个数和第8个数分别是81,131,那么第一个数是多少?拓展提高:习题1从下边表格中各数列排列的规律可以看出:(1)☆代表,△代表,(2)81排在第行第列。
(完整版)小学四年级奥数找规律

小学四年级奥数第五讲找规律(一)一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,( ) (4)1,4,9,16,25,36,( )练习3:按规律填数。
(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3) 练习4:找出排列规律,在空缺处填上适当的数。
四年级找规律题目大全

四年级找规律题目大全1.找规律:2, 4, 6, 8, 10,下一个数字是多少?答案:12。
每个数字比前一个数字多2。
2.找规律:5, 10, 15, 20,下一个数字是多少?答案:25。
每个数字比前一个数字多5。
3.找规律:3, 6, 9, 12,下一个数字是多少?答案:15。
每个数字比前一个数字多3。
4.找规律:10, 20, 40, 80,下一个数字是多少?答案:160。
每个数字是前一个数字的两倍。
5.找规律:1, 4, 9, 16,下一个数字是多少?答案:25。
每个数字是前一个数字的平方。
6.找规律:2, 4, 8, 16,下一个数字是多少?答案:32。
每个数字是前一个数字的两倍。
7.找规律:1, 3, 6, 10,下一个数字是多少?答案:15。
每个数字比前一个数字多1, 2, 3, ... 8.找规律:2, 6, 12, 20,下一个数字是多少?答案:30。
每个数字比前一个数字多2, 6, 8, ... 9.找规律:5, 9, 13, 17,下一个数字是多少?答案:21。
每个数字比前一个数字多4。
10.找规律:1, 4, 9, 16, 25,下一个数字是多少?答案:36。
每个数字是前一个数字的平方。
11.找规律:2, 5, 10, 17, 26,下一个数字是多少?答案:37。
每个数字比前一个数字多3, 5, 7, 9, ...12.找规律:3, 5, 8, 12, 17,下一个数字是多少?答案:23。
每个数字比前一个数字多2, 3, 4, 5, ...13.找规律:100, 50, 25, 12.5,下一个数字是多少?答案:6.25。
每个数字是前一个数字的一半。
14.找规律:10, 15, 25, 40, 65,下一个数字是多少?答案:105。
每个数字比前一个数字多5, 10, 15, 25, ...15.找规律:4, 7, 11, 16, 22,下一个数字是多少?答案:29。
每个数字比前一个数字多3, 4, 5, 6, ... 16.找规律:2, 4, 8, 16, 32,下一个数字是多少?答案:64。
四年级奥数专题第二讲 找规律(二)

四年级奥数专题第二讲找规律(二)【一】找规律填空。
1、2、4、8、16、、64练习(1)1、3、9、27、(2)3、6、12、24、、96【二】找规律填空。
(10,15,5)、(3、9、6)、(5、、7)练习(1)(6、1、2)、(18、3、6)、(、5、10)(2)【三】根据下表中的排列规律,在空格里填上适当的数。
10188815766练习找规律,在空格里填上适当的数。
(1)(2)【四】根据前面图形中的数之间的关系,想一想第三个图形的空格处应填什么数?练习根据前面图形中数之间的关系,想一想第三个图形的空格处应填什么数。
1、2、【五】 先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。
12345679×9= 12345679×18=12345679×27= 12345679×36=练习找规律,写得数。
(1)4×4-3×3=75×5-4×4=96×6-5×5=( )14×14-13×13=( )(2)1×1=1 11×11=121111×111=12321 1111×1111=1234321191911111111个个 =【六】 找规律计算。
(1)71-17=(7-1)×9=6×9=54(2)42-24=(4-2)×9=2×9=18(3)63-36=( - )×9= ×9=练习利用规律计算。
(1)93-39 (2)81-18 (3)72-27 (4)61-16 (5)75-57【七】计算。
(1)27×11 (2)48×11练习计算下面各题。
(1)33×11 (2)54×11 (3)75×11 (4)83×11课外作业1、200,100,50,2、3、填空。
4年级奥数数列规律和列表规律

1.填在图17-1的三个正方形内的数具有相同的规律.请你依据这个规律,确定出A,B,C.[分析与解]各方框中右上、左下、右下的数分别为1,2,3;2,3,4;3,4,5;所以B=4,C=5,A=(3+B)×C=35.2.图17-2是一个由整数组成的三角形.试研究它的组成规律,从而确定出x的数值.[分析与解]第二行起,每行都包含一个数字0,而且一行在左边,一行在右边.确切地说,偶数行的第一个数字为0,奇数行(第一行除外)地最后一个数字为0.偶数行,每一个数等于它左边地数加上它左上方地数.奇数行,每一个数等于它右边的数加上它右上方的数.这样第8行应当是0,61,122,178,…所以x为178.3.如图17-3所示的数阵中的数字是按一定规律排列的.那么这个数阵中第100行左起笫5个数字是多少?[分析与解]100行左起第5个数,是第99×7+5=698号,在1~9占有9个位置,10~99占有90×2=180个位置,100~999占有900×3=2700个位置;698-180-9=509,509÷3=169……2,即为第170个三位数的第2个数字,即269的十位,即6.4.如图17-4所示,把自然数中的偶数2,4,6,8,…,依次排成5列,如果各列从左到右依次称为第1列、第2列、第3列、第4列和第5列,那么,数1986出现在第几列?[分析与解]相差为16的两个数在同一列.1996=16×124+2,所以1986出现在第2行.5.在图17-5所示的数表中,第100行左边第一个数是多少?[分析与解]每行3个数,所以第100行左边的第一个数就是从2起的第300个自然数,即301.6.在图17-6所示的数表中第n行有一个数A,它的下面一行,即第n+1行有一个数B,并且A和B在同一竖列.如果A+B=391,那么n等于多少?[分析与解]相邻两行,同一列的两个数的和都等于第一列的两个数的和,而从第1行开始,相邻两行第一列的两个数的和依次是31,61,91,121,…每项比前一项多30,因此391是上一列数中的第(391-31)÷30+1=13个数,即n为13.7.如图17-7,自然数按某种方式排列起来,其中数3排在第二行第一列,13排在第三行第三列.问:1993排在第几行第几列?[分析与解]奇数斜行中的数由下向上递增,偶数斜行中的数由上向下递增.第n斜行中=[n(n+1)]÷2.最大的数是:Sn第62斜行中最大的数是[62×63]÷2=1953.第63斜行中最大的数是1953+63=2016.所以1993位于第63斜行.第63斜行中数是由下向上递增,左边第一位数字是1954.因此,1993位于第63斜行由上向下数第1993-1954+1=40位.即1993排在原阵列的第63-40+1=24行,第40列.8.图17-8是按照一定规律组成的三角形数阵,其中第一排有1个数,第二排有2个数,第三排有3个数,…,最后一排有10个数.如果把这55个数相加,问:所得到的和的十位数字是几?[分析与解]我们将每个数除以1991有:有第1行和为1,第2行和为2,第三行和为4,第4行和为8,…则10行数的和为(1+2+4+8+…+512)=1023,所以原三角阵的数字和为1023×1991=2036793,其十位数字为9.9.如图17-9,将自然数1,2,3,4,…,按箭头所指方向顺序排列,拐弯位置处的数依次是2,3,5,7,10,….(1)如果认为2位于第一次拐弯处,那么第45次拐弯处的数是多少?(2)从1978到2010的自然数中,恰在拐弯处的数是多少?[分析与解](1) 我们看拐弯处的数字2,3,5,7,10,13,17,21,26,…相邻两项的差为1,2,2,3,3,4,4,5,…于是第45次拐弯,相当于第45项,与第2项存在累计的差有44个,44÷2=22,即与2相差2×(1+2+3+4+…+22)-1+23=2×23×11+22=528,于是第45次拐弯处的数为2+528=530.(2) 对于一般项有:第2n个拐弯数为:2×(1+2+…+n)+2-1=n×(n+1)+1;第2n+1拐弯数为2×(1+2+…+n)+(n+1)+2-1=(n+1)2+1(上面两个式子中n 均为可取0的自然数).而在1978到2010之间,只有1981=44×45+1,所以1981是拐弯数,是第2×44=88个拐弯数.10.有一张写着自然数l至100的数表,可以在表中相邻两行内各取连续的3个数,然后用长方框围起来.例如,图17-10中所示长方框内的6个数之和是108.如果某个按上述方式形成的长方框所围出的6个数之和是480,那么其中最大的数应该是多少?[分析与解]设方框内第一行左起第一个数为A,则方框内和为A+(A+1)+(A+2)+(A+8)+(A+9)+(A+10)=6A+30.现在有6A+30=480,A=75,则最大的数为75+10=85.11.有一列数,第一个是105,第二个是85,从第三个数开始,每个数都是它前面两个数的平均数.那么,第19个数的整数部分是多少?[分析与解]依次写出前几项,为105,85,95,90,92.5,91.25,91.875,91.5625,…第九数在第七、第八个数之间,第七、八个数的整数部分均是81,所以第九个数的整数部分也为91.也就是说以后的两个数足够接近,它们的整数部分将都是91,所以第19个数的整数部分为91.12.自然数的平方按从小到大的顺序。
奥数题库(四年级)数列规律计算(普通)

双重数列规律1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列的和是多少?9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与数表
一、知识与方法归纳
1、等差数列的有关知识.
(1)通项公式:末项=首项+(项数-1) ×公差
(2)项数=(末项-首项)÷公差+1
(3)求和公式:和=(首项+末项) ×项数÷2
2、本讲主要包括两部分内容:规律较复杂的数列以及简单的数表
二、经典例题
例1.1,100,2,98,3,96,2 ,94,1,92,2 ,90,3 ,88,2,86,1, 84,…,0。
请观察数列的规律并回答一下问题:
(1)这个数列中有多少项是2?
(2)这个数列所有项的总和是多少?
解:
例2. 1,2,3,4, 4, 5, 6, 7,7, 8,9 ,10,…,97, 98, 99, 100.请观察数列的规律并回答一下问题:
(1)这个数列一共有多少个数?
(2)50在数列中是第几个数?
解:
体验训练1 1, 2, 2, 4, 3, 6, 1, 8, 2, 10, 3, 12,…,100.观察数列的规律,请问:(1)数列中有多少个2?
(2)数列中所有数的总和是多少?
解:
例3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数。
从这列数中取出连续的50个数,它们的和最大是多少? 解:
例4. 如图所示,将从5开始的连续自然数按规律填入下面的数阵中,请问:
(1)123应该排在第几列? 第1列 第2列 第3列 … (2)第2行、第20列的数是多少? 5 10 15 …
6 11 16 …
7 12 17 …
8 13 18 …
9 14 19 …
解:
体验训练2 将从1开始的自然数按某种规律填入方格表中,请问:
(1)66在第几行、第几列?
(2)第33行、第4列的数是多少?
解:
*例5.如图所示,将自然数有规律地填入方格表中,请问:
三、内化训练
1.10,2,10,4,10,6,10,8,10,10,10,12, (100)
请观察数列的规律并回答以下问题:
(1)这个数列中有多少项是10?
(2)这个数列所有项的总和是多少?
解:
2.请观察由数组组成的数列:(1,2,3),(2,3,4),(3,4,5),…,(9,10,11)。
请回答以下问题:(1)这个数列中一共有多少个数?
(2)数字8出现了几次?
解:
3. 有一列数,第一个数是6,从第二个数开始,每个数都是它前面一个数的2倍的个位数。
从这列数中取出连续的40个数,请求出它们的和是多少?
解:
4. 如图所示,将从2开始的偶数有规律地填入方格表中,请问:
(1)88在第几行、第几列?
(2)第88行的五个数之和是多少?
解:
5. 如图所示,将从1~200的自然数按照某种规律填入方格表中,请问:
(1)第10行、第3列的数是多少?
(2)第2行的所有数之和是多少?
解:
6.如图所示,把奇数按某种方式排列起来。
请问:
(1)99在第几行、第几列?
解:
*7.在如图所示的数阵中,将满足下面条件的两个数分为一组:它们上下相邻,且和为391.问:在所有这样的数组中,哪两个数的差最大(大数减小数)?
第1行 1 2 3 … 14 15
第2行30 29 28 … 17 16
第3行31 32 33 … 44 45
…………………
解:
四、家庭交流内容
例1方法点拨:大数与小数间隔排列。
例2方法点拨:观察数列的周期。
例3方法点拨:12个数作为一个周期。
例4方法点拨:五个数作为一个周期
例5方法点拨:两行为一个周期。
例6解答提示:从数字排列规律进行分析。