表面工程期末复习
表面工程复习题答案(00002)

表面工程复习题答案表面工程技术:表面工程技术是赋予材料或零部件表面以特殊成分、结构和性能的化学、物理方法与工艺。
表面改性技术:即能提高零部件够表面的耐磨性、耐腐蚀性、抗高温氧性能或装饰零部件表面,或者使材料表面具有各种特殊功能的有关工程技术。
表面涂镀技术:利用外加涂层或镀层的性能使基材表面优化且基材不参与或很少参与涂层反应的技术洁净表面:表层原子结构的周期性不同于体内,但其化学成分与体内相同,这种表面就称为洁净表面莱宾杰尔效应:因环境介质的影响及表面自由能减少导致固体强度、塑性降低的现象,称为莱宾杰尔效应间或伴有化学作用而产生的不断损耗现象磨损:磨损是摩擦接触表面的材料在相对运动中由于机械作用,腐蚀预处理:材料与环境介质作用而引起的恶化在直流电的作用下,以被镀基体金属为阴极,以欲镀金属或其它惰性导体为阳极,通过电解作用,在基体表面上获得结合牢固的金属膜的表面技术化学镀:指在无外加电流的状态下,借助合适的还原剂,使镀液中的金属离子还原成金属,并沉积到零件表面的一种镀覆方法。
又称为无电解镀、无电源电镀等转化膜技术:通过化学或电化学方法,使金属表面形成稳定的化合物膜层而不改变其金属外观(形状及几何尺寸)的一类技术称为转化膜技术涂装技术:将涂料通过一定的方法涂覆于物体表面,经干燥或固化,形成均匀薄膜的工艺过程。
气相沉积:气相沉积技术是利用气相中发生的物理、化学过程,在工件表面形成功能性或装饰性的金属、非金属或化合物涂层的过程物理气相沉积:在真空下,以各种物理方法产生原子或分子沉积在基材上,形成薄膜的过程化学气相沉积:把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基片的反应室,借助气相作用或在基片上的化学反应生成所希望的薄膜的过程真空蒸发镀膜:在真空条件下,用蒸发器加热蒸发物使之汽化,蒸发粒子流直接射向基片并在基片上沉积形成固态薄膜的过程二、简答题1. 表面改性术分为哪几大类?(1)表面组织转化技术(2)表面涂镀技术(3)表面合金化和掺杂技术2. 基于固相宏观成分差异形成的界面有哪些?(1)冶金结合界面(2)扩散结合界面(3)外延生长界面(4)化学键结合界面(5)分子键结合界面(6)机械结合表面3. 简述莱宾杰尔效应的机理。
表面工程复习题(2014)

“材料表面工程”复习题一、名词解释表面工程技术:为满足特定的工程需求,使材料或零部件表面具有特殊的成分、结构和性能(或功能)的化学、物理方法与工艺。
表面扩散:表面上原子(分子)的迁移现象表面能增大液体表面积所需的功(表面物理中,表面能应该指材料表面的内能,它包括原子的动能、原子间的势能以及原子中原子核和电子的动能和势能)吸附作用物理表面上的原子或分子力场不饱和,有吸引周围其他物质(主要是气体、液体)分子的能力磨损相对运动的物质摩擦过程中不断产生损失或残余变形的现象。
腐蚀腐蚀就是材料与环境介质作用而引起的恶化变质或破坏。
极化腐蚀电池工作时,阴、阳极之间有电流通过,使阴、阳极之间的电位差(实际电极电位)比初始(开路时)电位差要小得多的现象。
钝化(定义)由于金属表面状态的改变引起金属表面活性的突然变化,使表面反应速度急剧降低的现象。
(阳极反应受阻的现象)表面淬火用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上(奥氏体化),然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程。
(Fe-Fe3C相图)喷丸强化利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使表层材料在再结晶温度之下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。
(喷丸强化技术)热扩渗将工件放在特殊介质中加热,使介质中某一种或几种元素渗入工件表面,形成合金层(或掺杂层)的工艺。
(化学热处理技术)热喷涂采用各种热源使涂层材料加热熔化或半熔化,然后用高速气体使涂层材料分散细化并高速撞击到基体表面形成涂层的工艺过程。
热喷焊采用热源使涂层材料在基体表面重新熔化或部分熔化,实现涂层与基体之间、涂层内颗粒之间的冶金结合,消除孔隙的表面处理技术。
(喷焊)堆焊在零件表面熔敷上一层耐磨、耐蚀、耐热等具有特殊性能合金层的技术。
电镀在含有欲镀金属的盐类溶液中,在直流电的作用下,以被镀基体金属为阴极,以欲镀金属或其它惰性导体为阳极,通过电解作用,在基体表面上获得结合牢固的金属膜的表面工程技术。
材料表面工程复习题标准答案

1.什么是材料表面工程?表面工程是经表面预处理后,通过表面涂覆、表面改性或多种表面技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状况,以获得所需要表面性能的系统工程2.表面工程的作用有哪些?(1)对于机械零件提高零件表面的耐磨性、耐蚀性、耐热性、抗疲劳强度等力学性能;保证现代机械在高速、高温、高压、重载以及强腐蚀介质工况下可靠而持续地运行(2)对于电子电器元件提高元器件表面的电、磁、声、光等特殊物理性能;保证现代电子产品容量大、传输快、体积小、高转换率、高可靠性;(3)对于机电产品的包装及工艺品提高表面的耐蚀性和美观性;实现机电产品优异性能、艺术造型与绚丽外表的完美结合(4)对生物医学材料提高人造骨骼等人体植入物的耐磨性、耐蚀性,尤其是生物相容性;保证患者的健康并提高生活质量3.表面工程技术包含哪些内容?内容:失效分析、表面技术、涂覆层性能、涂覆层材料、预处理和后加工、表面检测技术、表面质量控制、使用寿命评估、表面施工管理、技术经济分析、三废处理和重大工程实践4.表面工程技术发展经过了哪三个阶段?经历的三个阶段:第一阶段以单一表面工程技术的品种增加、工艺成熟为特征;第二阶段以复合表面工程技术的出现和协同创新为主要特征;第三阶段以微纳米材料和纳米技术与传统表面工程技术的结合与实用化为主要特征5.在材料表面工程中用于表面淬火的加热方式有哪几种?(1)感应加热(高频、中频、工频)表面淬火;(2)火焰加热表面淬火;(3)激光加热表面淬火;(4)等离子体加热表面淬火;6.简要说明热扩渗的原理。
(1)介质分解活性介质在一定温度下,进行化学分解,析出活性(初生态的)原子(或离子)的过程化学介质分解的速度,取决于化学介质性质、数量、分解的温度、压力以及有无催化剂(2)吸收活性原子在金属表面吸附与金属表面原子产生键合而进入金属表层的过程吸收的方式活性原子向钢的固溶体中溶解或形成化合物吸收的强弱与活性介质的分解速度、渗入元素的性质、扩散速度、钢件的成分及其表面状态有关(3)扩散被钢件表面吸收的活性原子(或离子)向钢件深处迁移,以形成一定厚度的扩散层(即渗层)7.激光加热表面淬火有哪些特点?(1)淬硬层组织细化,硬度比常规淬火提高15-20%,铸铁经淬火后耐磨性可提高3-4倍(2)加工速度极快,工艺周期短,生产效率高,成本低,工艺过程易实现数控(3)可进行大型零件局部表面硬化及形状复杂工件的硬化处理(4)淬硬层深度可精确控制(5)可以实现自冷淬火,不需要油或水等淬火介质8.感应加热表面淬火的优点。
2010.12表面工程复习题

现代表面处理技术复习题一、填空题1、按形成途径材料的表面大致可划分为、、、、、、、几种。
2、固体的表面特性主要表现在、、、、。
3、零件脱脂的方法主要有、、、几种。
4、由摩擦副的运动形式,摩擦主要有、、、。
5、按磨损机理分通常磨损主要分、、、、。
6、铝合金阳极氧化膜的封闭处理方法主要有、、、。
1、固体的表面特性主要表现在、、、、。
2、零件脱脂的方法主要有、、、几种。
3、由摩擦副的运动形式,摩擦主要有、、、。
4、按磨损机理分通常磨损主要分、、、、。
5、应力腐蚀发生的3个条件是、、。
6、由涂料的3种固化成膜类型有、、。
7、铝合金阳极氧化膜的封闭处理方法主要有、、、。
8、固体的表面特性主要表现在、、、、。
9、零件脱脂的方法主要有、、、几种。
10、由摩擦副的运动形式,摩擦主要有、、、。
11、按磨损机理分通常磨损主要分、、、、。
12、应力腐蚀发生的3个条件是、、。
13、由涂料的3种固化成膜类型有、、。
14、铝合金阳极氧化膜的封闭处理方法主要有、、、。
二、不定项选择题1、对涂装设备安全要求最高的一种为。
(2分)A、空气喷法B、高压无空气喷法C、静电喷法 D电泳法2、在讨论腐蚀问题时,通常规定电位较低的电极称为。
(2分)A、阳极B、阴极C、正极D、负极3、大批量电镀小螺钉可选。
(2分)A、挂镀B、刷镀C、滚镀D、连续电镀4、为达到心部强韧抗冲击、表层硬而耐磨,可选。
(4分)A、中碳钢调质加表层淬火B、20Cr等低碳钢渗碳、淬火加低温回火C、38CrMoAl等调质加表层渗氮 D、45钢调质加表层镀铬5、机床主轴可由:A、45#钢(调质+表面淬火+低温回火);B、40Cr(调质+表面淬火+低温回火);C、20CrMnTi(渗碳+淬火+低温回火);D、38CrMoAl(调质+氮化)等材料及工艺制造,上述其中成本最高的是(1分),最不抗冲击及抗重载的为(1分),精度高且变形最小的为(1分);(单选)淬透性最低的为(1分),淬透性最高的为(1分),最耐热耐蚀的为;(1分);(单选)轴心部可能为低碳马氏体,表层为高碳马氏体的为;(2分)表面、心部成分相同的为;(2分)(多选)表面处理应安排在半精加工之(前、后)(2分)。
表面工程学复习资料

表面工程学复习资料第一章绪论1.表面工程技术:为满足特定的工程需求,使材料或零部件表面具有特殊的成分、结构和性能的化学、物理方法与工艺。
2.表面工程技术内涵:(1)表面改性技术。
能够提高零部件表面的耐磨性、耐蚀性、抗高温氧化性能,或使材料表面具有特殊功能(磁性能、光电性能)的有关技术。
(2)表面加工技术。
能在单晶硅表面制作大规模集成电路的光刻技术、离子刻蚀技术。
(3)表面合成技术。
借助各种手段在材料表面合成新材料的技术,离子注入制备或合成新材料。
(4)表面加工三维合成技术将二维表面加工累积成三维零件的快速原型制造技术。
(5)上述几个要点的组合或综合3.表面工程技术的分类:(1)表面改性技术:表面组织转换技术、表面涂镀技术、表面合金化和掺杂技术(2)表面微细加工技术(3)表面加工三维成型技术——快速原型制造⑷表面合成新材料技术4.表面工程技术功能:①提高耐腐蚀、耐磨性、耐疲劳、耐辐射性能,表面自润滑性;②实现表面自修复性(自适应、自补偿、自愈合),生物相容性。
第二章表面工程技术的物理化学基础1.理想表面:无限晶体中插进一个平面,将其分成两部分后所形成的表面,并认为半无限晶体中的原子位置和电子密度都和原来的无限晶体一样。
2.洁净表面:尽管材料表层原子结构的周期性不同于体内,但如果其化学成分仍与体内相同,这种表面就成为洁净表面。
3.清洁表面:指零件经过清洗(脱脂、浸蚀等)以后的表面,与洁净表面必须用特殊的方法才能得到不同。
4.典型固体界面分类:(1)基于固相晶粒尺寸和微观结构差异形成的界面(2)基于固相组织或晶体结构差异形成的界面(3)基于固相宏观差异形成的界面:冶金结合界面、扩散结合界面、外延生长界面、化学键结合界面、分子键结合界面、机械结合界面5.物理吸附和化学吸附的区别:P12 表2-16.摩擦分类(实际工作条件差别)干摩擦,边界润滑摩擦、流体润滑摩擦、滚动摩擦7.固体润滑覆膜分类:(1)粘结固体润滑膜(2)化学反应法固体润滑膜(3)电镀和气相沉积方法形成固体润滑膜8.影响固体材料粘着磨损性能的因素:(1)润滑条件或环境。
《表面工程学》复习资料

《表面工程学》复习资料1.表面工程技术:指为了满足特定的工程需求,是材料或零部件表面具有特殊的成分,结构和性能的化学,物理方法。
2.表面工程技术分类:(1)表面改性技术(2)表面微细加工技术(3)表面加工三维成型技术(4)表面合成新材料技术。
表面:一般将固相和气相之间的分界面称为表面。
界面:把固相之间的分界面称为界面3.典型的固相表面:(1)理想表面,(2)洁净表面与清洁表面(3)机械加工表面(4)一般表面。
4.典型固体界面:界面指两个块体相之间的过渡区①空间尺度——原子间力作用影响范围大小②状态——材料和环境条件特征。
(1)基于固相晶粒尺寸和微观结构差异形成的界面(比尔比层:离表面约5nm的区域内,点阵发生强烈畸变,形成的厚度约1~100nm的晶粒极微小的微晶层。
它具有粘性液体膜似的非晶态外观,不仅能将表面覆盖的很平滑,而且能流入裂缝或划痕等表面不规则处;下面为塑性流变层)(2)基于固相组织或晶体结构差异形成的界面(3)基于固相宏观或成分差异的界面。
宏观成分差异形成的界面:冶金结合界面、扩散结合界面、外延生长界面、化学键结合界面、分子键结合界面、机械结合界面。
5.吸附对材料力学性能的影响——莱宾杰效应:许多情况下,由于环境介质的作用,材料的强度,塑性,耐性,耐磨性等力学性能大大降低,产程原因:(1)不可逆转物理过程与物理化学过程引起的效应(2)可逆物理过程和可逆物理化学过程引起的效应,这些过程下降,固体表面自由能,并不同程度地改变材料本身的力学性能。
这种因环境介质的影响及表面自由能减少导致固体强度,塑性降低的现象,称为莱宾杰尔效应。
特征:(1)环境介质的影响有很明显的化学特征。
(2)只要很少的表面活性物质就可以产生莱宾杰尔效应。
(3)表面活性熔融物的作用十分迅速(4)表面活性物质的影响可逆(5)莱宾杰尔效应的产生需要拉应力和表面活性物质同时起作用。
本质:是金属原子对活性介质的吸附,使表面原子的不饱和键得到补偿,使表面能降低,改变表面原子间的相互作用,使金属表面的强度降低。
现代PVD表面工程技术期末复习内容及答案

PVD1810.221.PVD:真空蒸镀、溅射镀膜、离子镀。
2.真空泵的分类:气体传输泵、气体捕集器。
3.弧源、磁过滤器、真空靶室和其他附属部分4.PVD的前处理:清洗、去毛刺、喷砂抛光等。
5.分析膜层组织形貌可以采用:金相显微镜、扫描电子显微镜、透射电子显微镜。
6.涂层的微观结构和形状最终决定了其性质。
7.衍射峰位角2θ是反映衍射方向的问题,主要与辐射波长,晶胞类型,晶胞大小及形状有关。
遵循布拉格方程。
8.涂层结合力的检测方法:划痕、压痕、球痕测试法。
9.常见的应力测试方法:X射线和电子衍射法,试样变形分析法和光干涉法。
10.靶材按成分分为:单质金属、合金、陶瓷靶材。
11.PVD涂层的研究方向:设备、涂层组元、涂层膜结构、涂层纳米化。
12.真空泵主要分为:气体传输泵、气体捕集泵。
13.靶材形状分为:矩形平面靶材,圆形平面靶材和圆柱靶材。
14.传统靶材制造方法包括:铸造,粉末冶金和非金属粉末。
15.零件的主要失效形式:腐蚀、磨损、疲劳、断裂。
16.涂层内应力主要分为热应力和涂层生长应力。
17.涂层厚度的检测方法:断面法、球痕法、无损检测法。
判断题1.与化学气相沉积相比,物理气相沉积温度高、无污染。
(错,温度低)2.真空度即是气体的稀薄程度。
(错,真空度是指处于真空状态下的气体稀薄程度。
)3.与溅射镀和离子镀相比,蒸镀结合性能最好。
(错,最差)4.对刀具喷砂处理可起到刃口细化作用。
(对)5.氮铝化钛涂层是紫黑色,附着力比氮化钛涂层大,耐热性能优越(对)6.清洗是PVD涂层前必不可少的一道工序。
(对)7.刀具涂层要求周边厚度一致,因此涂层过程中必须有三个转动惯量。
(对,自转,公转,大工件台转动)8.在工业领域内,通常用自来水进行漂洗。
(错,杂质多)9.在刀具刃尖涂层沉积最厚,涂层内应力更高。
(对)10.一般情况下,涂层与基体的界限越明显,则涂层结合力越好。
(错,越明显越差)11.相比于平面靶材,旋转管靶材利用率较大。
表面工程学复习

表面工程学复习名词解释表面能:材料表面的内能,包括原子的动能,原子间的势能以及原子中原子核和电子的动能和势能。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。
当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
洁净表面:尽管材料表面原子结构的周期性不同于体内,但其化学成分仍与体内相同的表面。
清洁表面:一般之零件经过清洗(脱脂、侵蚀)以后的表面。
滚光:将零件放入盛有磨料和化学溶液的滚筒中,借滚筒的旋转使零件与磨料、零件与零件表面相互摩擦,以达到清理零件表面的过程。
电化学抛光:电解抛光是以被抛工件为阳极,不溶性金属为阴极,两极同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。
表面淬火:采用特定热源将钢铁材料表面快速加热到AC3或AC1之上,然后使其快速冷却,形成表面强化层的工艺过程。
表面形变强化:在金属的表面形变过程中当外力超过屈服强度后,要塑性变形继续进行必须不断增加外力,从而在真实的应力-应变曲线上表现为应力不断上升。
等离子体热扩渗: 利用低真空中气体辉光放电产生的离子轰击工件表面,形成热扩渗层的工艺过程。
液体热扩渗:将工件浸渍在熔融的液体中,使表面渗入一种或几种元素的热扩渗工艺方法。
化学镀::在无外加电流的状态下,借助合适的还原剂,使镀液中的金属离子还原成金属,并沉积到零件表面的一种镀覆方法。
复合镀:在电镀或化学镀溶液中加入非溶性的固体微粒,并使其与主体金属共沉积在基体表面,或把长纤维迈入或卷缠于基体表面后沉积金属,形成一层金属基的表面复合材料的过程。
合金镀:在一种溶液中,两种或两种以上金属离子在阴极上共沉积,形成均匀细致镀层的过程。
堆焊:在零件表面熔覆一层耐磨、耐蚀、耐热等具有特殊性能合金属的技术。
热喷焊:采用热源使涂层料在机基体表面重新融化或部分熔化,实现涂层与基体之间,涂层内颗粒之间的冶金结合,消除孔隙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释
表面改性:用各种物理、化学等方法处理表面,使之组成、结构发生变化,从而改变性能。
沟道效应:当高能离子沿晶体的主晶轴方向注入时,可能与晶格原子发生随机碰撞,若离子穿过晶格同一排原子附近而偏转很小并进入表层深处,这种现象称为沟道效应。
理想固体表面:一种理论的结构完整的二维点阵平面。
忽略了晶体内部周期性势场在晶体表面中断的影响,也忽略表面上原子的热运动以及出现的缺陷和扩散现象,又忽略表面外界环境的作用等。
离子镀:在真空条件下,利用气体放电使气体或被蒸发物质部分离化,在气体离子或被蒸发物质离子轰击作用的同时把蒸发物或其反应物沉积在基体上。
阳极氧化:在适当的电解液中,以金属作为阳极,在外加电流作用下,使其表面生成氧化膜的方法。
二、填空题
1.堆焊材料可归纳为铁基、镍基、钴基、碳化钨基、铜基五种类型
2.化学气相沉积(CVD)技术分为热激发CVD、低压CVD、等离子体CVD、激光(诱导)CVD、金属有机化合物CVD
3.清洁表面结构的主要缺陷形式为弛豫、重构、偏析、化学吸附、化合物、台阶六种形式
4.按磨损机理划分,磨损分为磨粒磨损、粘着磨损、冲蚀磨损、疲劳磨损、腐蚀磨损、微动磨损、高温磨损七种
5.电镀时合金共沉积的类型为正则共沉积、非正则共沉积、平衡共沉积、异常共沉积、诱导共沉积
6.铝及铝合金的阳极氧化方法硫酸阳极氧化、铬酸阳极氧化、草酸阳极氧化、硬质阳极氧化、瓷质阳极氧化
7.钢铁高温氧化得到以磁性氧化铁(Fe3O4)为主的氧化膜;钢铁常温氧化得到以CuSe 为主的氧化膜
三、简答题
1.简述自熔性合金的特点
(1)绝大多数的自熔性合金是在镍基、铬基、铁基合金中添加适量的硼、硅元素而制得,并且通常为粉末状。
(2)加热熔化时,B、Si扩散到粉末表面,与氧反应生成硼、硅的氧化物,并与基体表面的金属氧化物结合生成硼硅酸盐,上浮后形成玻璃状熔渣,因而具有自行脱氧造渣的能力。
(3)B、Si与其它元素形成共晶组织,使合金熔点大幅度降低,通常在900℃~1200℃之间,低于钢铁等基体金属的熔点。
(4)B、Si的加入,使液相线与固相线之间的温度区域展宽,一般为100℃~150℃,提高了熔融合金的流动性。
2.电镀液的组成及各组分的作用
1)主盐:主盐是指镀液中能在阴极上沉积出所要求镀层金属的盐,用于提供金属离子;2)络合剂:细化镀层晶粒,改善镀层分散能力和覆盖能力,同时影响镀层的沉积速度;3)附加盐:提高电镀液的导电性,对主盐中的金属离子不起络合作用;
4)缓冲剂:稳定溶液的酸碱度;
5)阳极活化剂:促进阳极活化,提高阳极开始钝化的电流密度,从而保证阳极处于活化状态而能正常地溶解;
6)添加剂:不会明显改变镀层导电性,而能显著改善镀层性能。
3.电镀的概念,电镀二元合金时实现共沉积的条件
电镀是指在含有欲镀金属金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使
镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层的一种表面加工方法。
电镀二元合金时实现共沉积的条件:第一,两种金属中至少有一种金属能从其盐类的水溶液中沉积出来。
第二,两种金属的析出电位要十分接近,如果相差太大的话,电位较正的金属将优先沉积,基本完全排斥电位较负金属析出。
4.金属表面化学热处理的概念,金属表面化学热处理实现渗金属的条件
金属表面化学热处理是利用元素扩散性能,使合金元素渗入金属表层的一种热处理工艺。
金属表面化学热处理实现渗金属的条件:
1)渗入金属必须是碳化物形成元素,即渗入元素与工件表层中的碳结合形成金属碳化物2)为了获得碳化物层,基材的碳的质量分数必须超过0.45%
5.等离子体的特点及实现离子镀的必要条件
等离子体是一种电离度超过0.1%的气体,是由离子、电子和中性粒子(原子和分子)所组成的集合体。
等离子体整体呈中性,但含有相当数量的电子和离子,表现出相应的电磁学等性能,如等离子体中有带电粒子的热运动和扩散,也有电场作用下的迁移。
实现离子镀的必要条件:①造成一个气体放电的空间;②将镀料原子(金属原子或非金属原子)引进放电空间,使其部分离化。
四、论述题
1.用溅射和沉积理论说明离子渗氮的机理
离子渗氮时,渗氮层是通过反应阴极溅射形成的。
在真空炉内,稀薄气体在阴极、阳极间的直流高压下形成等离子体,N+、H+、NH3+等正离子轰击阴极工件表面,轰击的能量可加热阴极,使工件产生二次电子发射,同时产生阴极溅射,从工件打出C、N、O、Fe等。
Fe 能与阴极附近的活性氮原子形成FeN,由于背散射又沉积到阴极表面,FeN分解,FeN→Fe2N →Fe3N→Fe4N,分解出的氮原子大部分渗入工件表面内,一部分返回等离子体区。
2.比较物理气相沉积三种方法的原理与特点
物理气相沉积法主要有真空蒸镀、溅射和离子镀。
真空蒸镀:在真空中加热使金属、合金或化合物蒸发,然后凝结在基体表面上的方法叫真空蒸镀。
溅射:溅射是利用高速正离子轰击某一靶材(阴极),使靶材表面原子以一定能量逸出,后在工件表面沉积的过程。
离子镀:离子镀借助于一种惰性气体的辉光放电使欲镀金属或合金蒸发离子化,并在这些荷能离子轰击基体(工件)表面并同时沉积在其上形成镀膜。
三种方法的比较如下:
1)、从沉积粒子能量(中性原子)来看,真空蒸镀为0.1-1eV,溅射为1-10eV,离子镀为0.1-1eV(此外还有高能中性原子)。
2)、从沉积速率来看,真空蒸镀为0.1-70μm/m i n,溅射为0.01-0.05μm/m i n(磁控溅射接近于真空蒸镀),离子镀为0.1-50μm/m i n。
3)、从膜层特点看,真空蒸镀低温时密度小但表面光滑、气孔低温多、附着性不太好、内应力为拉应力绕射性差;溅射密度大、气孔少但混入溅射气体较多、附着性较好、内应力为压应力、绕射性差;离子镀密度大,无气孔但膜层缺陷较多,附着性很好,内应力视工艺条件而定,绕射性较好。
4)、从被沉积物质的气化方式看,真空蒸镀为电阻加热、电子束加热感应加热、激光加热等;溅射的镀料原子不是靠加热方式蒸发,而是靠阴极溅射由靶材获得沉积原子;离子镀可以分为蒸发式或者溅射式,蒸发式为电阻加热、电子束加热、感应加热、激光加热等,溅射式由进入辉光放电空间的原子由气体提供,反应
物沉积在基片上。
5)、从镀膜的原理及特点看,真空蒸镀工件不带电,真空条件下金属加热蒸发沉积到工件表面,沉积粒子的能量与蒸发时的温度对应。
溅射的工件为阳极,靶为阴极,利用氩原子的溅射作用把靶材原子击出而沉积在工件表面上,沉积原子的能量由被溅射原子的能量分布决定。
离子镀的工件为阴极,蒸发源为阳极,进入辉光放电空间的金属原子离子化后奔向工件,并在工件表面沉积成膜,沉积过程中离子对基片表面、膜层与基片的界面以及膜层本身都发生轰击作用,粒子
的能量决定于阴极上所加的电压。