中考数学模拟试卷(含答案)

合集下载

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。

选择题(共10小题,每小题3分,共30分)1.求-3的倒数。

()A。

-1/3 B。

-1/-3 C。

1/-3 D。

1/32.函数y=1/(x-8),x的取值范围是()。

A。

x8 D。

x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。

A。

2.6×10^5 B。

26×10^4 C。

0.26×10^6 D。

2.6×10^64.下列简单几何体的左视图是()。

A。

B。

C。

D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。

A。

32、31 B。

31、32 C。

31、31 D。

32、356.下列命题中,错误的是()。

A。

矩形的对角线互相平分且相等 B。

对角线互相垂直的四边形是菱形 C。

等腰梯形的两条对角线相等 D。

等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。

A。

B。

C。

D.8.下列各式计算结果正确的是()。

A。

2a+a=3a B。

(3a)^2=9a^2 C。

(a-1)^2=a^2-1 D。

a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。

10.已知函数y=2x^2-x-3,求其对称轴的方程。

答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。

11、一对互为相反数的数为x和-x。

12、b²-2b可以分解为b(b-2)。

中考数学仿真模拟试卷(含答案)

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考仿真模拟测试《数学试卷》含答案解析

中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(上)期末数学模拟试卷一.选择题(共10 小题,满分30 分,每小题3分)1.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200 件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数2.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4 3.在中国集邮总公司设计的2017 年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A. B.C.D.4.⊙O 的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4 B.d=4 C.d>4 D.0≤d<45.抛物线y=﹣2(x﹣6)2+9 的顶点坐标是()A.(6,9)B.(﹣6,9)C.(6,﹣9)D.(﹣6,﹣9)6.如图,已知⊙O 的直径A E=10cm,∠B=∠EAC,则A C 的长为()A.5cm B.cm C.D.6cm7.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD 为⊙O 的直径,弦A B⊥CD 垂足为E,CE=1 寸,AB=10 寸,求直径CD 的长”,依题意,CD 长为()A.12 寸B.13 寸C.24 寸D.26 寸8.当a b>0 时,y=ax2 与y=ax+b 的图象大致是()A. B.C. D.9.已知二次函数y=ax2+bx+c 中,自变量x与函数y之间的部分对应值如表:在该函数的图象上有A(x1,y1)和B(x2,y2)两点,且﹣1<x1<0,3<x2<4,y1 与y2 的大小关系正确的是()A.y1≥y2 B.y1>y2 C.y1≤y2 D.y1<y210.如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P1(1,1),紧接着第2 次向左跳动 2 个单位至点P2(﹣1,1),第 3 次向上跳动 1 个单位,第 4 次向右跳动 3 个单位,第 5 次又向上跳动 1 个单位,第 6 次向左跳动 4 个单位,…依此规律跳动下去,则点P第2017 次跳动至P2017 的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)二.填空题(共8小题,满分24 分,每小题3分)11.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.12.一元二次方程2x2﹣4x+1=0 有个实数根.13.设抛物线y=x2+8x﹣k 的顶点在x轴上,则k=.14.如图,PA、PB、DE 分别切⊙O 于A、B、C,⊙O 的半径为6cm,OP 的长为10cm,则△PDE 的周长是.15.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.16.将抛物线y=x2+2x 向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的表达式为;17.如图,圆锥体的高h,底面半径r=1cm,则圆锥体的侧面积为cm2.18.抛物线y=3(x+2)2﹣7 的对称轴是.三.解答题(共8小题,满分96 分)19.用适当方法解下列方程(1)3(x﹣2)=5x(x﹣2)(2)x2+x﹣1=020.如图是由边长为1的小正三角形组成的网格图,点O和△ABC 的顶点都在正三角形的格点上,将△ABC 绕点O逆时针旋转120°得到△A′B′C′.(1)在网格中画出旋转后的△A′B′C′;(2)求A B 边旋转时扫过的面积.21.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800 名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有 2 名女同学,其余为男同学.现要从中随机抽取 2 名同学代表班级参加校篮球队,请直接写出所抽取的 2 名同学恰好是 1 名女同学和 1 名男同学的概率.22.物美商场于今年年初以每件 25 元的进价购进一批商品.当商品售价为 40 元时,一月份销售 256 件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400 件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250 元?23.如图,Rt△ABC 中,∠ABC 为直角,以A B 为直径作⊙O 交A C 于点D,点E为B C 中点,连结D E,DB(1)求证:DE 与⊙O 相切;(2)若∠C=30°,求∠BOD 的度数;(3)在(2)的条件下,若⊙O 半径为2,求阴影部分面积.24.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为 20 元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32 元,如果李明想要每月获得的利润2000 元,那么销售单价应定为多少元?25.如图1,在△ABC 中,AE⊥BC 于E,AE=BE,D 是A E 上的一点,且D E=CE,连接BD,CD.(1)试判断B D 与A C 的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE 绕点E旋转一定的角度后,试判断B D 与A C 的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想B D 与A C 的数量关系,请直接写出结论;②你能求出B D 与A C 的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.26.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B 两点(点A在点B的左边),与y 轴交于点C,点D为抛物线的顶点.(1)求点A、B、C 的坐标;(2)点M(m,0)为线段AB 上一点(点M 不与点A、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E,与抛物线交于点P,过点P 作PQ∥AB 交抛物线于点Q,过点Q 作QN⊥x 轴于点N,可得矩形PQNM.如图,点P 在点Q 左边,试用含m 的式子表示矩形P QNM 的周长;(3)当矩形P QNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ,过抛物线上一点F 作y轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG=DQ,求点F 的坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.1x2+2x﹣3=0 ∴x2+2x=3 ∴x2+2x+1=1+3∴(x+1)2=4故选:D.2A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.3解答】解:∵点P在圆内,且⊙O的半径为 4,∴0≤d<4,故选:D.4解答】解:由函数的解析式可知,此函数的顶点坐标为:(6,9).故选:A.5解答】解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC = 故选: B .7.【解答】解:连接 OA ,如图所示,设直径 CD 的长为 2x ,则半径 OC =x , ∵CD 为⊙O 的直径,弦 AB ⊥CD 于 E ,AB=10寸, ∴AE =BE =AE =5(cm),AB =×10=5寸,连接OA ,则OA =x 寸,根据勾股定理得 x 2=52+(x ﹣1)2,解得 x =13, CD =2x =2×13=26(寸).故选: D .8.【解答】解:根据题意, ab >0,即 a 、b 同号,当 a >0时,b >0,y=ax 2与开口向上,过原点,y =ax +b过一、二、三象限;此时,没有选项符合,当 a <0时,b <0,y=ax 2与开口向下,过原点,y =ax +b过二、三、四象限;此时, D故选:D.10.【解答】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…,∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数).∵2017=504×4+1,∴P2017(504+1,504×2+1),即( 505,1009).故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【解答】解:根据关于原点对称的点的坐标的特点,∴点( 1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).12.【解答】解:∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,∴此一元二次方程有两个实数根,故答案为:两.13.【解答】解:根据题意得=0,解得k=﹣16.故答案为:﹣16.14.【解答】解:连接OA.∵PA、PB、DE分别切⊙O于A、B、C点,∴BD=CD,CE=AE,PA=PB,OA⊥AP.在直角三角形OAP中,根据勾股定理,得AP=8,∴△PDE的周长为 2AP=16.故选答案为16cm.15.【解答】解:画树状图如下:由树状图可知,共有 9种等可能结果,其中两次都摸到红球的有 1种结果,所以两次都摸到红球的概率是故答案为:16.【解答】解: y =x 2+2x =( x +1)2﹣1,此抛物线的顶点坐标为(﹣1,﹣1),把点(﹣1,﹣1)向左平移 2个单位长度,再向下平移 3个单位长度后所得对应点的坐标为(﹣3,﹣4),所以平移后得到的抛物线的解析式为 y =( x +3)2﹣4.故答案为:y =( x +3)2﹣4.17.【解答】解:圆锥的母线长是底面周长是 2π,则圆锥体的侧面积是: 故答案是: 2π.18.【解答】解:∵ y =3(x +2)2﹣7,∴抛物线的对称轴为直线 x =﹣2,故答案为: x =﹣2.三.解答题(共 8小题,满分 96分)19.【解答】解:(1)方程整理得: 3(x ﹣2)﹣5x (x ﹣2)= 0,分解因式得:(x ﹣2)(3﹣5x )= 0,,.=2(cm ), ×2×2π=2π(cm 2).解得: x 1=2,x 2=(2)这里 a =1,b =1,c =﹣1,∵△= 1+4=5,∴x =.20.【解答】解:(1)如图,△ A ′B ′C ′为所作;(2)AB 边旋转时扫过的面积= S 扇形 BOB ′﹣S 扇形 AOA ′ =-=π.21.【解答】解:(1)调查的总人数为 20÷40%=50(人),所以喜欢篮球项目的同学的人数= 50﹣20﹣10﹣15=5(人);“乒乓球”的百分比=因为 800×(2)如图,(3)画树状图为:;=20%,=80,所以估计全校学生中有 80人喜欢篮球项目;故答案为 5,20,80;共有 20种等可能的结果数,其中所抽取的 2名同学恰好是 1名女同学和 1名男同学的结果数为 12,所以所抽取的 2名同学恰好是 1名女同学和 1名男同学的概率= 22.【解答】解:(1)设二、三这两个月的月平均增长率为 x ,根据题意可得: 256(1+x )2=400,解得: x 1=答:二、三这两个月的月平均增长率为 25%; (2)设当商品降价 m 元时,商品获利 4250元,根据题意可得:(40﹣25﹣m )(400+5m )= 4250,解得: m 1=5,m 2=﹣70(不合题意舍去).答:当商品降价 5元时,商品获利 4250元.23.【解答】解:(1)连结 OD , ∵AB 为⊙O 为直径, ∴∠ADB =∠ BDC =90°,又∵ E 是斜边 BC 的中点 ∴DE =BE =CE , ∴∠BDE =∠ DBE , ∵OD =OB , ∴∠ODB =∠ OBD ∴∠ODE =∠ ODB +∠BDE =∠ OBD +∠DBE =∠ ABC =90°即 DE 与⊙O 相切.(也可以通过证明△OBE ≌△ODE 得到∠ ODE =∠ OBE =90°)(2)若∠ C =30°而 DE =CE , ∴∠DEB =60°在四边形 OBED 中,则∠ BOD =360°﹣90°﹣90°﹣60°= 120°, (3)连结 OE ,则∠ OED =∠ OEB =30°= .,x 2=﹣(不合题意舍去).∵OD=OB=2∴DE=BE=2∴S阴影部分=S四边形OBED﹣S扇形OBD=S△OBE+S△ODE﹣S扇形OBD=224.【解答】解:(1)由题意,得:w=(x﹣20)×y+2 ﹣=4 ﹣.。

相关文档
最新文档