在平面直角坐标系中画位似图形

合集下载

4.8 第2课时 平面直角坐标系中的位似变换教案1

4.8 第2课时 平面直角坐标系中的位似变换教案1

第2课时 平面直角坐标系中的位似变换1.理解位似图形的坐标变化规律;(难点)2.能熟练在坐标系中根据坐标的变化规律作出位似图形.(重点)一、情景导入观察如图所示的坐标系中的几个图形,它们之间有什么联系?二、合作探究 探究点:平面直角坐标系中的位似变换 【类型一】 求在坐标系中进行位似变化对应点的坐标在平面直角坐标系中,已知点A(6,4),B (4,-2),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A.(3,2)B.(12,8)C.(12,8)或(-12,-8)D.(3,2)或(-3,-2)解析:根据题意画出相应的图形,找出点A 的对应点A ′的坐标即可.如图,△A ′B ′O 与△A ″B ″O 即为所作的位似图形,可求得点A 的对应点的坐标为(3,2)或(-3,-2).故选D. 方法总结:位似图形与位似中心有两种情况:(1)位似图形在位似中心两侧;(2)位似图形在位似中心同侧.若题中未指明位置关系,应该分两种情况讨论,防止漏解.【类型二】 在平面直角坐标系中画位似图形如图,在平面直角坐标系中,A (1,2),B (2,4),C (4,5),D (3,1)围成四边形ABCD ,作出一个四边形ABCD 的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.解析:以坐标原点O 为位似中心的两个位似图形,一种可能是位似图形在位似中心同侧,此时各顶点的坐标比为2;另一种可能是位似图形在位似中心的两侧,此时各顶点的坐标比为-2,此题作出一个即可.解:如图,利用位似变换中对应点的坐标的变化规律,分别取A′(2,4),B′(4,8),C′(8,10),D′(6,2),顺次连接A′B′,B′C′,C′D′,D′A′.则四边形A′B′C′D′就是四边形ABCD的一个位似图形.方法总结:画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k(或除以±k),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可.三、板书设计平面直角坐标系中的位似变换:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.位似变换是特殊的相似变换.以学生的自主探究为主线,培养学生的探索精神和合作意识.注重数形思想的渗透,通过坐标变换,在平面坐标系中,让学生画图、观察、归纳、交流,得出结论.在学习和探讨的过程中,体验特殊到一般的认知规律.通过交流合作,体验到成功的喜悦,树立学好数学的自信心.。

位似变换中对应点的坐标的变化规律

位似变换中对应点的坐标的变化规律

位似变换中对应点的坐标的变化规律
位似变换中对应点的坐标的变化规律:
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图
形对应点的坐标为ka或-ka,a为原顶点的横纵标.
如:在以O为原点的坐标系内,△ABC的顶点坐标分别为A(1,1)、B(2,3)、C
(4,2),若以O为位似中心在△ABC同侧放大,相似比为2,则A’坐标为(2,2)、B’(4,6)、C’(8,4);若以O为位似中心在△ABC异侧放大,相似比为2,则A’’(-2,-3)、B’’(-4,-6)、C’’(-8、-4),
在平面直角坐标系中,如果位似变换是以三角形的一个靠近原点的顶点为位似中心,
相似比为k,那么位似图形对应点的坐标变成ka-(k-1)或-ka+(k+1),a为原顶点的横纵坐标.
如:在以O为原点的坐标系内,△ABC的顶点坐标分别为A(1,1)、B(2,3)、C
(4,2),若以A为位似中心在△ABC同侧放大,相似比为2,则A’坐标为(1,1)、B’(3,5)、C’(7,3);若以O为位似中心在△ABC异侧放大,相似比为2,则A’’(1,1)、B’’(-1,-3)、C’’(-5、-1)。

感谢您的阅读,祝您生活愉快。

位似图形的坐标变化规律(课件)-2023-2024学年九年级数学下册同步精品课堂(人教版)

位似图形的坐标变化规律(课件)-2023-2024学年九年级数学下册同步精品课堂(人教版)

C″
B″
例2.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位
似中心的位似图形,且相似比为1:3,点A,B,E在x轴上.
(1)若点F的坐标为(4.5, 3),直接写出点A和点C的坐标;
(2)若正方形BEFG的边长为6,求点C的坐标.
解:
1
3
(1)A( ,0),C( ,
2
2
1)
1.理解平面直角坐标系中,位似图形对应点的坐标之间的联系.
2.会用图形的坐标的变化表示图形的位似变换,掌握把一个图形按一定比
例放大或缩小后,点的坐标变化的规律.
(重点、难点)
3.了解四种图形变换 (平移、轴对称、旋转和位似) 的异同,并能在复杂
图形中找出这些变换.
位似
1.如图,若AB∥CD,则△OAB___△OCD,△OAB与△OCD是_____图形,点O是
分别得A'(8,-10) ,B'(12, 0),O' (0,0) ,
或A'(-8,10),B'(-12,0),O'(0,0).
3.将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换
的是( C )
A.将各点的纵坐标乘2,横坐标不变
B.将各点的坐标除以2,纵坐标不变
C.将各点的横坐标、纵坐标都乘2
(3,6),C(-3,3). 以原点O为位似中心,画出四边形OABC的位似图形,
使它与四边形OABC的相似是2:3.
画法二:将四边形OABC各顶点的坐标都
2
乘 ;在平面直角坐标系中描点O(0,
3
0),A″(-4,0),B″(-2,-4),C″(2,
-2),用线段顺次连接O,A″,B″,C″.

平面直角坐标系中的位似图形

平面直角坐标系中的位似图形

课题:平面直角坐标系中的位似图形【学习目标】1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换. 【学习重点】用图形的坐标的变化来表示图形的位似变换. 【学习难点】把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律。

情景导入 生成问题回顾:如图,△ABC 三个顶点坐标分别为A (2,3),B (2,1),C (6,2).(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标; 答:A 1(-1,3)、B 1(-1,1)、C 1(3,2).(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标; 答:A 2(2,-3)、B 2(2,-1)、C 2(6,-2).(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标. 答:A 3(-2,-3)、B 3(-2,-1)、C 3(-6,-2).自学互研 生成能力知识模块一 用图形的坐标的变化来表示图形的位似变换 阅读教材P98“动脑筋”,完成下面的内容:在平面直角坐标系中有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1∶3,把线段AB 缩小.方法一: 方法二:探究:(1)在方法一中,A ′的坐标是(2,1),B ′的坐标是(2,0),对应点坐标之比是13;(2)在方法二中,A ″的坐标是(-2,-1),B ″的坐标是(-2,0),对应点坐标之比是-13.师生合作探究、共同归纳坐标系中的位似变换规律归纳:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【变例】如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的位似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;特别注意:仿照上面探究所示,用两种方法中的任何一种即可画出位似比为1∶2的位似图形,但此题的要求是在y轴的左侧作图,故只能是一种.(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标。

2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)

2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)

人教版九年级数学下册第二十七章-相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()A B.1.5 C D.12、如图,已知矩形ABCD中,AB=3,BE=2,EF⊥B C.若四边形EFDC与四边形BEFA相似而不全等,则CE的值为()A.92B.6 C.152D.93、在ABC中,D,E分别是边AB,AC上的两个点,并且DE∥BC,AD:BD=3:2,则ADE与四边形BCED的面积之比为()A .3:5B .4:25C .9:16D .9:254、如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,3S :2S 的值为( )A .12 B .23C D 3525、若578a b ck ===且323a b c -+=,则243a b c +-的值是( ) A .14 B .42 C .7 D .1436、下列图形中,不是位似图形的是( )A .B .C .D .7、已知32a b =,那么下列等式中正确的是( )A .53a b b += B .13a b b -= C .23a b = D .23ab =8、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则BEEC的值为( )A .13B .14C .15D .1259、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:8110、如图,DE ∥BC ,则下列式子正确的是( )A .=AB BDEC AEB .AD DEAB BC= C .=AE ABEC ADD .AD DEAB BC=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=6,BC275=,点N在边AD上,ND=2,点M在边BC上,BM=1,点E在DC的延长线上,连接AE,过点E作EF⊥AE交直线MN于点F,当AE=EF时,DE的长为 _____.2、如果5a=4b,那么ba=____.3、如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且54OEEA=,则FGBC=________.4、如图,在矩形ABCD中,AB=30,BC=40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将△OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F.若△PDF为直角三角形,则PD的长为______.5、如图,在ABCD □中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果:2:3DE EC =,那么:DEF ABF S S =△△____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为坐标原点,B ,C 两点坐标分别为()3,1-,()2,1.(1)以O 为位似中心在y 轴左侧将OBC 放大两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)已知(),M x y 为OBC 内部一点,写出M 的对应点M '的坐标. 2、如图,在平面直角坐标系中,点A 、点B 的坐标分别为()1,3,()3,2.(1)画出OAB绕点B顺时针旋转90︒后的O A B''△;'''';(2)以点B为位似中心,相似比为2:1,在x轴的上方画出O A B''△放大后的O A B3、在等边三角形ABC中,点D是边AB的中点,过点D作DE∥BC交AC于点E,点F在BC边上,连接DF,EF.(1)如图1,当DF是∠BDE的平分线时,若AE=2,求EF的长;(2)如图2,当DF⊥DE时,设AE=a,则EF的长为(用含a的式子表示).4、如图,在Rt△ABC中,∠C=90°,BC=A=60°,四边形DEFG是△ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AE=x,DG=y.(1)求y与x之间的函数关系式;(2)当矩形DEFG 的面积S 取得最大值时,求△CDG 与△BFG 的相似比.5、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC . (1)作出ABC 关于x 轴对称的A B C ''';(2)以坐标原点为位似中心在图中的网格中作出A B C '''的位似图形A B C ''''''△,使A B C '''与A B C ''''''△的位似比为1:2;(3)若ABC 的面积为3.5平方单位,求出A B C ''''''△的面积.---------参考答案----------- 一、单选题 1、D 【解析】 【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CEOM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:设CE =x ,∵四边形EFDC 与四边形BEFA 相似, ∴AB CEBE EF=, ∵AB =3,BE =2,EF =AB , ∴323x =, 解得:x =4.5, 故选:A . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEFA 相似得到比例式. 3、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.故选:C. 【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方. 4、C 【解析】 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AEAB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AE AB,BE AE =∴AE AB ==,∴2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a ==,∴)2232:2S S a ==. 故选C .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.5、D【解析】【分析】将,,a b c 用k 表示出来,得到5,7,8a k b k c k ===,再将求出,,a b c 的结果与323a b c -+=联立求出,,a b c 的值 ,最后把所求的,,a b c 代入所求的代数式即可求解.【详解】 解:578a b c k ===, 5,7,8a k b k c k ∴===,323a b c -+=,352783k k k ∴⨯-⨯+=, 解,得13k =,578,333a b c ∴==,= 578142432433333a b c ∴+-=⨯+⨯-⨯=, 故选:D .【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示,,a b c 是解题的关键.6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】解:根据位似图形的概念,A 、B 、C 三个图形中的两个图形都是位似图形;D 中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形.故选D .【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.7、C【解析】【分析】由题意设()30,a k k =≠ 则2,b k = 再逐一代入各选项进行计算与检验即可得到答案.【详解】 解: 32a b =, 设()30,a k k =≠ 则2,b k =∴55,22a b k b k +==故A 不符合题意; 321,22a b k k b k --==故B 不符合题意; 263,a k b ==故C 符合题意;32,,2233a k b k ==则,23a b ≠故D 不符合题意; 故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.8、B【解析】【分析】根据∥DE AC 可得BED BCA ∽△△,DOE COA ∽,再根据相似三角形的性质可得BE DE BC AC=和DOE △与COA 的相似比为1:5,进而可得15BE BC =,最后用BC 表示EC 即可求出BE EC . 【详解】解:∵∥DE AC ,∴BED BCA ∠=∠,ODE OCA ∠=∠.∵DBE ABC ∠=∠,DOE COA ∠=∠,∴BED BCA ∽△△,DOE COA ∽. ∴BE DE BC AC=. ∵:1:25DOE COA S S =△△,∴DOE △与COA 的相似比为1:5. ∴15DE CA =. ∴15BE BC =. ∴15BE BC =. ∴45EC BC BE BC =-=. ∴14BE EC =.故选:B .【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键.9、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:∵DE ∥BC ,∴,ADE ABC AED ACB ==∠∠∠∠,∴ADE ABC , ∴AD DE AE AB BC AC==. 故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题1、10415【解析】【分析】过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L ,先证明四边形NLGD 是矩形,得到LG =ND =2,∠DNL =90°,NL =DG ,再证明四边形NHCD 是矩形,得到HH =CD =6,CH =ND =2,则125MH BC BM CH =--=;然后证明△EFG ≌△AEF 得到FG =DE ,275GE AD BC ===,则275NL DG DE EG DE ==+=+,设=DE FG x =,则2FL FG LG x =-=-,275NL x =+,证明△NMH ∽△NFL ,的MH NH FL NL=,即12652725x x =-+,由此求解即可. 【详解】解:如图所示,过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L , ∴∠NLG =∠G =90°,∵四边形ABCD 是矩形,∴CD =AB =6,∠D =∠BCD =90°,AD BC =,∴四边形NLGD 是矩形,∴LG =ND =2,∠DNL =90°,NL =DG ,∴四边形NHCD是矩形,∴HH=CD=6,CH=ND=2,∴125 MH BC BM CH=--=;∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEG=90°,又∵∠FEG+∠EFG=90°,∴∠EFG=∠AED,又∵AE=EF,∠D=∠G=90°,∴△EFG≌△AEF(AAS),∴FG=DE,275 GE AD BC===,∴275 NL DG DE EG DE==+=+,设=DE FG x=,则2FL FG LG x=-=-,275 NL x=+,∵∠NHM=∠NLF=90°,∠MNH=∠FNL,∴△NMH∽△NFL,∴MH NHFL NL=,即12652725x x=-+,解得10415x=,∴10415 DE=,故答案为:104 15.【点睛】本题主要考查了矩形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,解题的关键在于能够正确作出辅助线求解.2、5 4【解析】【分析】由5a=4b,结合比例的基本性质即可求出ba的值.【详解】解:∵5a=4b,∴54ba.故答案为:54.【点睛】本题考查的是比例的基本性质,掌握比例的基本性质是解题的关键.3、59【解析】【分析】 利用位似的性质得到FG OF OE BC OB OA ==,然后根据比例的性质求解. 【详解】解:∵四边形ABCD 与四边形EFGH 位似,其位似中心为点O , ∴FG OF OE BC OB OA ==, ∵54OE EA =, ∴55549FG BC ==+, 故答案为:59.【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.4、5或252 【解析】【分析】分情况进行讨论,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,先证△DHO ∽△DAB ,得到1=2OH HD OD AB AD BD ==,求出1152OH AB ==,1202HD AD ==,证明∠HOP =∠HPO =45°,得到OH =PH =15,则PD =HD -PH =5;当∠PFD =90°时,先求出50BD =,得到11=2522OA OB OC OD AC BD =====,从而得到∠DAO =∠ODA ;证明△OFE ∽△BAD ,推出1152OF AB ==,则10DF OD OF =-=,最后证明△PDF ∽△BDA ,则12542PD BD ==. 【详解】解:如图1所示,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∴∠HPF =90°,∵四边形ABCD 是矩形,∴BD =2OD ,∠BAD =∠OHD =90°,AD =BC =40,∴OH ∥AB ,∴△DHO ∽△DAB , ∴1=2OH HD OD AB AD BD ==, ∴1152OH AB ==,1202HD AD ==, 由折叠的性质可得:1==452HPO FPO HPF ∠=∠︒∠,∴∠HOP =45°,∴∠HOP =∠HPO =45°,∴OH =PH =15,∴PD =HD -PH =5;如图2所示,当∠PFD =90°时,∴∠OFE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=30,∴50BD=,∴11=2522OA OB OC OD AC BD=====,∴∠DAO=∠ODA,由折叠的性质可知:AO=EO=25,∠PEO=∠DAO=∠ODA,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴12 OF OEAB BD==,∴1152OF AB==,∴10DF OD OF=-=,∵∠PFD=∠BAD,∠PDF=∠BDA,∴△PDF∽△BDA,∴14 PD DFBD DA==,∴12542 PD BD==,∴综上所述,当△PDF为直角三角形,则PD的长为5或252,故答案为:5或252.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、4:25##425 【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB , ∴2()DEF ABF S DE S AB=. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴:425DEF ABF S S =:△△ 故答案为:4:25或425 . 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.三、解答题1、(1)画图见解析;(2)点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)点M'的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点B',C',然后顺次连接O,B',C'即可;(2)根据(1)中所作图形即可得到B',C'两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可.【详解】解:(1)如图所示,△OO′O′即为所求;(2)如图所示,点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)∵△OO′O′是△OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为△OBC内部一点,∴点M的对应点M'的坐标为(-2x,-2y).【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识.2、(1)见解析;(2)见解析【解析】【分析】(1)找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)延长OO′至O″,OO′至O″,使得OO″=2OO′,OO″=2OO′,连接O″O″,则''''即为所求O A B【详解】(1)如图,找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)如图,延长OO ′至O ″,OO ′至O ″,使得OO ″=2OO ′,OO ″=2OO ′,连接O ″O ″,则O A B ''''【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键.3、(1)EF =2(2)72【解析】【分析】(1)根据DE ∥BC 证明ADE 是等边三角形,再根据D 是AB 中点,可证明BFD 是等边三角形,在证明DEF 是等边三角形,从而求得EF =2,(2)过点A 作AM 垂直BC 于点M ,可证DBF ∽ABM ,由相似可求出DF ,在利用勾股定理即可求出EF .【详解】解:(1)∵ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∴∠A=∠ADE=60°,∴ADE是等边三角形,∴AD=DE=2,∵D是AB中点,∴BD=AD=2,∵DF平分∠BDE,∴∠BDF=∠EDF=12∠BDE=12(180°-60°)=60°,又∵∠B=60°,∴BFD是等边三角形,∴DF=BD=2,∵DF=DE=2,∠EDF=60°,∴DEF是等边三角形,∴EF=DE=DF=2;(2)过点A作AM垂直BC于点M,∵DE∥BC,DF⊥DE,∴∠BFD=∠FDE=90°,∵∠DFB=∠AMB=90°,又∵∠B=∠B,∴DBF∽ABM,∵D为AB中点,∴1=2 DB DFAB AM,∴DF=12AM,∵AM是等边三角形BC边上的高,∴M是BC的中点,∴BM=12BC=a,∴AM,∴DF=12AM,∴在Rt DEF △中,EF 32a a (). 【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键.4、(1)y =8﹣4x ;(2)2√33 【解析】【分析】(1)依据Rt △ABC 中,∠O =90°,OO =4√3,∠O =60°,即可得到AC =4,AD =2AE =2x ,OO =12OO =12O ,再根据CD =AC -AD ,可得12O =4−2O ,进而得出y 与x 之间的函数关系式; (2)依据S =DE ×DG =√3O ×(8−4O )=−4√3(O −1)2+4√3,可得当x =1时,S 最大=4√3,再根据△DCG ∽△GFB ,即可得到OO OO =2√3=2√33,进而得出△CDG 与△BFG 的相似比. 【详解】解:(1)∵Rt △ABC 中,∠C =90°,BC =A =60°,∴AC =4,AD =2AE =2x ,OO =12OO =12O ,∵CD =AC ﹣AD ,∴12O =4−2O ,即y 与x 之间的函数关系式为y =8﹣4x ;(2)∵DE ,∴S =DE ×DG ×(8﹣4x )=﹣x ﹣1)2∴当x =1时,S 最大=此时,GF =DE∴BG =2GF =DG =8﹣4=4,∵∠C =∠BFG =90°,∠DGC =∠B ,∴△DCG ∽△GFB ,∴OO OO =2√3=2√33, ∴△CDG 与△BFG 的相似比为2√33. 【点睛】 本题考查的是相似三角形的判定与性质以及矩形的性质,熟知相似三角形的对应边成比例是解答此题的关键.5、(1)见解析;(2)见解析;(3)14平方单位.【解析】【分析】(1)根据轴对称性质即可画出△ABC 关于x 轴对称的A B C '''; (2)根据位似图形的性质即可画出A B C '''以点O 为位似中心的位似图形A B C ''''''△,A B C '''与A B C ''''''△的位似比为1:2;(3)利用相似三角形的性质计算即可.【详解】解:(1)如图,A B C ''',即为所求作; (2)如图,A B C ''''''△,即为所求作;(3)∵A B C '''与A B C ''''''△的位似比为1:2, ∴A B C '''∽A B C ''''''△,O ′O ′O ″O ″=12, ∴O △O ′O ′O ′O △O ″O ″O ″=(O ′O ′O ″O ″)2=14,∵ABC 的面积为3.5平方单位,即A B C '''的面积为3.5平方单位,∴A B C ''''''△的面积为:2O △O ′O ′O ′=4×3.5=14平方单位.【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

平面直角坐标系中的位似变换

平面直角坐标系中的位似变换
图 (2)中,把△AOC放大后,A,O,C的对应点为A′(8,
8),O(0, 0),C′ (10, 0); A"(-8,-8),O(0,0), C″ (-10, 0).
归纳
知1-导
在平面直角坐标系中,如果位似变换是以原点 为位似中心,相似比为k,那么位似图形对应点的坐 标的比等于k或-k.即若原图形的某一顶点坐标为(x0, y0),则其位 似 图 形 对 应 顶 点 的 坐 标 为 ( k x 0, k y 0) 或 (-kx0,-ky0).
知1-练
3 如图,线段CD的两个端点的坐标分别为C(1,2), D(2,0),以原点为位似中心,将线段CD放大得 到线段AB,若点B的坐标为(5,0),则点A的坐标 为( B ) A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)
知1-练
4 (中考•东营)如图,在平面直角坐标系中,已知点 A(-3,6),B(-9,-3),以原点O为位似中心, 相似比为 1 , 把△ABO缩小,则点A的对应点A′的
事实上,幻灯机工作的实质是将图片中的图形放大. 本节知识将对上述问题作系统的讲解.
知1-导
知识点 1 平面直角坐标系中的位似变换
问题
如图(1),在直角坐标系中,有两点A(6,3),B(6,
0).以原点O为位似中心,相似 比为 1 ,把线段AB缩小.观察
3 对应点之间坐标的变化,你有
什么发现?
如图(2),△AOC三个顶点的
3
坐标是( D ) A.(-1,2) B.(-9,18) C.(-9,18)或(9,-18) D.(-1,2)或(1,-2)
知1-练
5 【中考·烟台】如图,在平面直角坐标系中,正方 形ABCD与正方形BEFG是以原点O为位似中心的 位似图形,且相似比为 1 , 点A,B,E在x轴上,

专题19 图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题19 图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题19 图形的相似与位似的核心知识点精讲1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出 它的坐标,灵活运用不同方式确定物体的位置。

考点1:比例线段1. 比例线段的相关概念 如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 2.比例的基本性质:①a :b=c :d ad=bc ②a :b=b :c .3.黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB ≈0.618AB. 考点2:相似图形1. 相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.n m b a =cb b a =⇔ac b =⇔2215-3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.考点3:位似图形1.位似图形的定义两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【注意】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【题型1:相似三角形的相关计算】【典例1】(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4B.6C.8D.101.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD =3,则的值是()A.B.C.D.2.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1B.C.2D.33.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4D C,DE=2.4,则AD的长为()A.1.8B.2.4C.3D.3.24.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4 a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a5.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2B.4C.6D.8【题型2:相似三角形的实际应用】【典例2】(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m2.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.【题型3:位似】【典例3】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.(2023•长春)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.3.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)一.选择题(共10小题)1.已知,则的值是()A.B.C.3D.2.如图,△ABC∽△ADE,若∠A=60°,∠ABC=45°,那么∠E=()A.75°B.105°C.60°D.45°3.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段BC=4cm,则线段AC的长是()A.4cm B.5cm C.6cm D.7cm4.下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm5.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高16 5cm,下半身长x与身高l的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm6.如图,在△ABC中,DE∥BC,DF∥AC,则下列比例式中正确的是()A.=B.=C.=D.=7.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F.若AB:BC=5:3,DE=15,则E F的长为()A.6B.9C.10D.258.△ABO三个顶点的坐标分别为A(2,4),B(6,0),C(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A'B'O,则点A′的坐标是()A.(1,2)B.(1,2)或(﹣1,﹣2)C.(2,1)或(﹣2,﹣1)D.(﹣2,﹣1)9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.3:1C.9:1D.9:1610.小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.2二.填空题(共5小题)11.如果两个相似三角形的周长比为2:3,那么它们的对应高的比为.12.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为m.13.如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C处自然得体,已知点C 是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为米.14.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步.问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.15.如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为.三.解答题(共5小题)16.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.17.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.18.如图,矩形ABCD中,M为BC上一点,EM⊥AM交AD的延长线于点E.(1)求证:△ABM∽△EMA;(2)若AB=4,BM=3,求ME的长.19.某数学兴趣小组要完成一个项目学习,测量凌霄塔的高度AB.如图,塔前有一棵高4米的小树CD,发现水平地面上点E、树顶C和塔顶A恰好在一条直线上,测得BD=57米,D、E之间有一个花圃距离无法测量;然后,在E处放置一平面镜,沿BE后退,退到G处恰好在平面镜中看到树顶C的像,EG =2.4米,测量者眼睛到地面的距离FG为1.6米;已知AB⊥BG,CD⊥BG,FG⊥BG,点B、D、E、G 在同一水平线上.请你求出凌霄塔的高度AB.(平面镜的大小厚度忽略不计)20.如图,已知AD,BC相交于点E,且△AEB∽△DEC,CD=2AB,延长DC到点G,使CG=CD,连接AG.(1)求证:四边形ABCG是平行四边形;(2)若∠GAD=90°,AE=2,CG=3,求AG的长.一.选择题(共10小题)1.如图,在等边△ABC中,点D,E分别是BC,AC上的点,∠ADE=60°,AB=4,CD=1,AE=()A.3B.C.D.2.如图,在等边△ABC中,点D,E分别在边BC,AC上,∠ADE=60°,若AD=4,=,则DE的长度为()A.1B.C.2D.3.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点,以AD为一边构造Rt△ADE,∠DAE=90°,AD=AE,下列说法正确的是()①∠BAD=∠EDC;②△ADO∽△ACD;③;④2AD2=BD2+CD2.A.仅有①②B.仅有①②③C.仅有②③④D.①②③④5.凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB的距离之比为5:4,则物体被缩小到原来的()A.B.C.D.6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E,F,连接BD、DP,BD与CF相交于点H,给出下列结论:①∠DPC=75°;②CF=2AE;③;④△FPD∽△P HB.其中正确结论的个数是()A.4B.3C.2D.17.如图,在边长为5的正方形ABCD中,点E在AD边上,AE=2,CE交BD于点F,则DF的长为()A.B.C.D.8.如图,在Rt△ABC中,∠ABC=90°,AB=4,AC=5,AE平分∠BAC,点D是AC的中点,AE与BD 交于点O,则的值为()A.2B.C.D.9.如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.10.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.点P 的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,BP的长为()A.B.C.D.二.填空题(共6小题)11.如图,△ABC中,AB=4,BC=5,AC=6,点D、E分别是AC、AB边上的动点,折叠△ADE得到△A′DE,且点A′落在BC边上,若△A′DC恰好与△ABC相似,AD的长为.12.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE交AC于点F,若DF=2,EF=4,则C D的长是.13.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BD=1,CD=4,则AD的长为.14.如图,一张矩形纸片ABCD中,(m为常数),将矩形纸片ABCD沿EF折叠,使点A落在BC边上的点H处,点D的对应点为点M,CD与HM交于点P.当点H落在BC的中点时,且,则m=.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AE平分∠BAC交BC于点E,连接CD交AE 于点F.若AC=5,BC=12,则EF的长是.16.如图,在平面直角坐标系中,已知A(1,0),B(2,0),C(0,1),在坐标轴上有一点P,它与A、C两点形成的三角形与△ABC相似,则P点的坐标是.三.解答题(共3小题)17.如图,点P在△ABC的外部,连结AP、BP,在△ABC的外部分别作∠1=∠BAC,∠2=∠ABP,连结PQ.(1)求证:AC•AP=AB•AQ;(2)判断∠PQA与∠ACB的数量关系,并说明理由.18.如图,在△ABC中,点D,E分别在边BC,AC上,AD与BE相交于点O,且AB=AD,AE2=OE•B E.(1)求证:①∠EAD=∠ABE;②BE=EC;(2)若BD:CD=4:3,CE=8,求线段AE的长.19.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图①,在正方形ABCD中,点E,F分别是AB、AD上的两点,连接DE,CF,DE⊥CF,求证△AED≌△DFC.【类比探究】(2)如图②,在矩形ABCD中,AD=7,CD=4,点E是边AD上一点,连接CE,BD,且CE⊥BD,求的值.【拓展延伸】(3)如图③,在Rt△ABC中,∠ACB=90°,点D在BC边上,连结AD,过点C作CE⊥AD于点E,CE的延长线交AB边于点F.若AC=3,BC=4,,求CD的值.20.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.1.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC 上,且,则AE的长为()A.1B.2C.1或D.1或22.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36°B.BC=AEC.D.3.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是.4.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.5.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.6.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M 恰好落在边DC上,则图中与△NDM一定相似的三角形是.7.(2023•辽宁)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点B作BE∥AC,交DA的延长线于点E,连接OE,交AB于点F,则四边形BCOF的面积与△AEF的面积的比值为.8.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为.9.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.10.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即E D=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.11.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠F AC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.12.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.。

初中数学 人教版九年级下册27.3 位似 课件

初中数学 人教版九年级下册27.3 位似  课件
原来的 , 1 1. 在四边形外任2选一点O(如图), 2. 分别在线段OA、OB、OC、OD上取点A'、B'、C'、D',使得OA' OB' OC' OD' 1
OA OB OC OD 2
3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.
A
B
D
A'
B'
D' C
y A
C. (3,2)
D. (3,1)
C
B
D x
随堂演练
2. 如图,线段CD的两个端点的坐标分别为C(1,2),D(2,0),
以原点为位似中心,将线段CD放大得到线段AB,若点B的坐
标为(5,0),则点A的坐标为( B )
A.(2,5)
B.(2.5,5)
C.(3,5)
D.(3,6)
随堂演练
3. 如图,某学习小组在讨论 “变化的鱼”时,知道大 鱼与小鱼是位似图形,则小鱼上的点 (a,b) 对应大 鱼上的点 (-2a,-2b) .
y 6
B
4 C
2
A″ O
-2
B″ -4
A 6x 4
C″
课堂总结
1.图形变换的种类: (1)全等变换:全等变换不改变图形的大小与形状,全等变换
包括平移、旋转、轴对称. (2)相似变换:相似变换改变图形的大小,不改变图形的形状,
位似是相似的特殊情况. 2. (1)当位似图形在原点同侧时,其对应顶点的坐标的比为 k(k>0),对应点为 (kx,ky);当位似图形在原点两侧时, 其对应顶点的坐标的比为-k,对应点为(﹣kx,﹣ky).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随堂演练
基础巩固
1.某学习小组在讨论“变化的鱼”时, 知道大 鱼与小鱼是位似图形(如图所示), 则小鱼上的
点(a, b)对应大鱼上的点( A )
A.(-2a, -2b)
B.(-a, -2b)
C.(-2b, -2a)
D.(-2a, -b)
2.△ABC三个顶点坐标分别为A(-2,-2),B(-4,-2), C(-6,-4),以原点为位似中心,将△ABC放大后得 到的△DEF与△ABC的相似比为2∶1,这时△DEF
(2,0)
规律:在平面直角坐标系中,如果以原点为位
似中心,新图形与原图形的相似比为k,那么当两图 形位于原点同侧时,与原图形上的点(x , y)对应的位 似图形上的点的坐标是(kx , ky).
探究2 当以原点为位似中心的两位似图形位 于原点异侧时,对应点的坐标有什么变化?
1 3
(-2,0)
(-2,-1)
在平面直角坐标系中画位似图形
寄语:数学并不神秘,不是
只有天才才能学好数学,只要 通过努力,掌握适当的方法, 人人都能学会数学。
位似图形y在直角
坐标系中又有什 么规律呢?
5
A(1,3)
新课导入
B(0,1)
O
C(2,1)
5
直角坐标系中的 变换:规律 平移 轴对称 旋转
x
知识点1
在直角坐标y 系中画出位似图形
教 材 习 题 27.3
复习巩固
1.如图,如果虚线图形与实线图形是位似图形, 求它们的相似比并找出位似中心.
2.如图,以点P为位似中心,将五角星的边长 缩小为原来的 1 .
2
3.△ABC三个顶点的坐标分别为A(2,2),B(4,2), C(6,4). 以原点O为位似中心,将△ABC缩小得到 △DEF,使△DEF与△ABC对应边的比为1:2,这时 △DEF各个顶点的坐标分别是多少?
为坐标轴建立平面直角坐标系, 画出△A′B′C′
关于点O 中心对称的△A″B″C″, 并直接写出
△A″B″C″各顶点的坐标.
y
A″(6,0), B″(3,-2), C″(4,-4).
12
6
Ox
课堂小结
目前已经学了哪些变换? 有什么区别与联系?
平移、轴对 称、旋转
还有
位似变换
位似与平移、轴对称、旋转三种变换的联 系和区别:
经过位似变y
换还可以得到其 他图形吗?
5
A(4,4)
为位似中心,相似比
为2,将△AOC放大.
C(5,0)AOC ②连接位似中心O,找到 相似比为2的对应点
探究1 当以原点为位似中心的两位似图形位 于原点同侧时,对应点的坐标有什么变化?
2 A′(8,8)
1 3
(2,1)
C′(10,0)
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
教学反思
本课时可类比上一课时的教学方式进行,只 不过本课时涉及到了平面直角坐标系,教学时教 师应让学生充分参与,体会平面直角坐标系的位 似变换,以培养学生的动手操作能力和用位似变 换解决实际问题的能力.本课的难点是用图形的坐 标变化来表示图形的位似变换的变化规律,教师 可让学生以小组为单位进行讨论,争取让学生自 己发现规律,教师再予以适当点拨,以培养学生 的探究能力.
以x 轴为对称轴,则对应点的横坐标相等,纵坐标互为相
轴对称变换 反数;以y 轴为对称轴,则对应点的纵坐标相等,横坐标互
为相反数
旋转变换 一个图形绕原点旋转180° ,则旋转前后两个图形对应
点的横坐标与纵坐标都互为相反数
位似变换 当以原点为位似中心时,变换前后两个图形对应点的横
坐标、纵坐标之比的绝对值等于相似比
1、在直角坐标系中,画出线 段AB,其中A(6,3),B(6,
还有满足条 件的线段吗?
0). 再以原点O为位似中心, 相似比为 1 ,把线段AB缩小.
3
①画出线段AB
A′
②连接位似中心O
B″
A(6,3)
③找 1的对应点
O
B′
5 B(6,0)
x
3
A″
2、在直角坐标系中, △AOC 的三个顶点的 坐标分别为A(4,4), O(0,0),C(5,0).以点O
2 B″ x
A″
练习
1.如图表示△AOB和把它缩小后得到的△OCD, 求△AOB与△COD的相似比。
解:相似比为OB:OD=5:2. A
5
C B
D5
2.如图,△ABO三个顶点的坐标分别为A(4,-5), B(6,0), O(0,0). 以原点O为位似中心,把这个三角形 放大为原来的2倍,得到△A′B′O′.写出△A′B′O′三 个顶点的坐标.
联系:位似、平移、轴对称、旋转都是图形变换 的基本形式;
区别:平移、轴对称、旋转三种图形变换都是全 等变换,而位似变换是相似(扩大或缩小)变换.
坐标系中的位似变换规律:
若 ①以原点为位似中心; ②新图形与原图形的相似比为k; ③原图形上的点(x,y); 则对应的位似图形上的点的坐标为
(kx,ky)或(-kx,-ky).
的坐标为(kx,ky)或(-kx,-ky).
典例精析
例 如图,△ABO三个顶点的坐标分别为A(-2,4),
B(-2,0), O(0,0). 以原点O为位似中心, 画出一
个三角形, 使它与△ABO的
y 6
相似比为 3 .
2
A
4
2
B
-4
-2 O
2
x
A′(-3,6)
y 6
还可以得到其他
图形吗?
A4
2
B′(-3,0) B -2 O
B
6
-5
A
B
6
-5
A
A(4,-5), B(6,0) A′(8,-10), B′(12,0) A″(-8,10), B″(-12,0)
至此,我们已经学习了平移、轴对称、旋转和 位似等图形的变化方式.你能在下图所示的图案中找 到它们吗?
平移、轴对称、旋转、位似变换的坐标变化规律
平移变换 对应点的横坐标或纵坐标加上(或减去)平移的单位长度
中点D的坐标是 (-4,-4)或(4,4) .
综合应用
如图所示, 图中的小方格都是边长为1的正方形,
△ABC与△A′B′C′是以O为位似中心的位似图形, 它们
的顶点都在小正方形的顶点上.
y
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′
的相似比;
相似比为2∶1
12
6
Ox
(3)以位似中心O为坐标原点, 以格线所在直线
A″(-10,0)
-2
B″(-8,-8)
规律:在平面直角坐标系中,如果以原点为位
似中心,新图形与原图形的相似比为k,那么当两图 形位于原点异侧时,与原图形上的点(x , y)对应的位 似图形上的点的坐标是(-kx , -ky).
位似图形的坐标规律
一般地,在平面直角坐标系中,如果以原点 为位似中心,新图形与原图形的相似比为k,那么 与原图形上的点(x,y)对应的位似图形上的点
相关文档
最新文档