第二章 第三讲 函数的值域与最值
高二数学函数的值域与最值

故值域为[0,+≦). 3. [0,4) 解析:≧4x>0,≨0≤16-4x<16,
≨ 16 4x
4. [-1,1) ≨-2≤ 5.4
3
∈[0,4).
解析:y 1 <0,
2
≨-1≤y<1,即值域为[-1,1).
1 3 3 x x 1 x , 解析: 2 4 4 1 4 4 f ( x) , f ( x ) max . 3 3 3 4
3 , ≨△=8(2a2-a-3)≤0⇒-1≤a≤ 2 ≨a+3>0,
≨g(a)=2-a|a+3|=-a2-3a+2
3 17 3 a a 1, . 2 4 2
3 上单调递减, ≧二次函数g(a)在 1, 2
数,在[2,+≦)上是增函数,
≨f(x)min=f(2)=6.
函数,
1 1 (2)当a= 时,f(x)=x+ +2,易知f(x)在[1,+≦)上为增 2x 2
7 ≨f(x)min=f(1)= . 2
(3)函数f(x)=x+ a +2在(0, a ]上是减函数,在[ a ,+≦)
x
上是增函数. 若 a >1,即a>1时,f(x)在区间[1,+≦)上先减后增, ≨f(x)min=f(
2
3 ≨ 2
4
≤g(a)≤g(-1),
19 即 ≤g(a)≤4,
≨g(a)的值域为
19 , 4 4
.
链接高考
(2010·山东改编)函数f(x)=log2(3x+1)的值域为________.
高中数学解题方法系列:函数的值域与最值

①
y
k
b x2
型,可直接用不等式性质,
【及时反馈】
求
y
3 2 x2
的值域(答: (0,
3]) 2
②
y
x2
ቤተ መጻሕፍቲ ባይዱ
bx mx
n
型,先化简,再用均值不等式,
【及时反馈】
(2)求函数 y x 2 的值域(答:[0, 1] )
x3
2
③ y x2 mx n 型,可用判别式法或均值不等式法, mx n
(3)、求函数 y x 2 2x 3 在如下区间中的的最值与值域。
ⅰ、 (4,2] ;ⅱ、 (1,2] ;ⅲ、 (3,5) ;ⅳ、 (,)
(4)、求函数 y sin x cos 2x 的最值与值域。(提示:先转化为带有限制条
件的二次型函数的最值与值域的求解)
(5)、若
所示:
定义域
值域
原函数 y f (x)
A
C
反函数 y f 1 (x)
C
A
由上表知,求原函数的值域就是相当于求它的反函数的定义域 ⅱ、求反函数的步骤(“三步曲”)
①求 x ( y) ;②x、y 互换;③通过求原函数的值域得出反函数的定义域
【及时反馈】
(1)、求函数 f (x) 2x 4 的值域 x 1
解: y x x 1 (x 1) x 1 1
令 x 1 t(运用换元法时,要特别要注意新元 t 的范围),易知 t 0(why ?) 所 以 x 1 t 2 , 所 以 y t 2 t 1(t 0) , 欲 求 原 函 数 的 值 域 , 只 需 求 y t 2 t 1(t 0) 的最值与值域即可(解法同上面的【及时反馈】)。
函数的值域

奎屯 新疆
题型精讲 例4 求函数
5x 2 y x
5 5x 2
的最大值;
解法2: (不等式方法)
y 5x 2 1 [(5 x 2) 2] 5
2 当x 时, 5
2 5x 2 5 2 4 2 2 5
4 4 当且仅当 x 时等号成立 , 且x 适合题意 。 5 5
1 1 7 (x ) (x ) 5 5x 1 7 5 =5 2 10 5 解(1):由y 1 4 x 2 (x 1 ) 4 (x 1 ) 4 4 8 x 2 2 2 由此知y f ( x)在[3, 1] 上为增函数
f ( 3) y f (1)
2
王新敞
奎屯
新疆
四、巩固与提高
3.y 2 x 2 4 x的值域是 C ( A)[2, 2];( B)[1, 2];(C )[0, 2);( D)[ 2, 2]. 2 x 3, 4.函数y x 3, x 5, x0 0 x 1的最大值为 4 x 1
王新敞
奎屯
新疆
五、小结 求函数的值域和最值常用方法: 配方法、判别式法、不等式法、换元法、 反函数法、利用函数的单调性和有界性、数形 结合、导数法等. 求函数最大、最小值问题历来是高考热点, 这类问题的出现率很高,应用很广. 因此应注意 总结最大、最小值问题的解题方法与技巧,以提 高高考应变能力. 因为函数的最大、最小值求出 来了,值域也就知道了,反之,若求出的函数的 值域为非开区间,函数的最大或最小值也等于求 出来了 .
题型精讲
1 5 5 x x 1 x ,0 (0, ) 2 4 4
值域(最值)问题常见类型及解法.

4
2
2y (t 1)2 8(t 0) 。即 y (, 4]。
五、 基本不等式法:
【理论阐释】
对形如(或可转化为)f (x) ax b ,可利用 a b ab, a2 b2 2ab
x
2
求得最值。注意“一正、二定、三等”。
典例导悟
典例导悟
(2010·四川高考文科·T11)设
f (x) 的最小值是 f (3) 3 f (1) 6 .
七、数形结合法:
【理论阐释】 适用于函数本身可和其几何意义相联系的函数类型.
典例导悟
求函数f (x) x2 6x 18 x2 10x 26 的最小值。
【解析】f (x) x2 6x 18 x2 10x 26
检验:当 y 1 5
1 5
时,代入①求根, x
2
5 (
6)
2
5
x2 5x 6
y 又由 x2+x-6≠0 得函数
的定义域为
x2 x 6
{x|x≠2 且 x≠-3}.
∵2 { x| x2 且 y x-3},∴ 1 。 5
再检验 y=1 代入①求得 x=2,∴y1,
典例导悟
( 2010 · 重 庆 高 考 文 科 · T 19 ) 已 知 函 数 f (x) ax3 x2 bx ( 其 中 常 数 a, b ∈ R ), g(x) f (x) f '(x) 是奇函数.
(1)求 f (x) 的表达式;
(2)讨论 g(x) 的单调性,并求 g(x) 在区间 1, 2 上的最大值与最小值.
1.
即
a
多变量函数的值域与最值问题

多变量函数的值域与最值问题函数的值域与最值是高中数学中的主干知识,也是历年高考重点考查的必考知识要点。
对函数的值域与最值的考查有直接的、有间接的、有显性的、也有隐性的,形式多式多样。
这类题主要是考查学生对主干知识的理解与掌握和数学思想方法的运用,知识的综合性较大具有一定的难度,在高考中一般属中难题或难题。
特别是多变量函数因其变量多而让学生有望而生畏束手无策之感,这类题往往以选填题的形式出现。
虽然该知识点的考查变化多样,但若我们认真分析总结,这类题其实依然有律可寻,有法可依。
解决多变量最值与值域问题我们必须明确多个变量间的关系,一般常见的变量间关系分“独立性”与“相亲性”两种。
一、变量间的“独立性”是指多个变量间在目标函数中取值时相互独立互不牵连。
二、变量间的“相亲性”是指多个变量间在目标函数中取值时相互牵制、互相制约。
在牵制与制约过程中通常又有两种形式存在。
一种是一个变量的取值直接可以确定另一个变量的取值,我们称这种关系为“稳定”制约关系,多个变量间的“稳定”制约关系一般通过等式的方式来呈现。
处理这种问题时我们一般可以采用统一变量的思想来消减变量,化多变量函数为单变量函数,然后采用单变量函数求值域与最值的方法来处理。
若统一变量时计算量较大,有时也可以用一些特别的方法来处理。
如:基本不等式法、柯西不等式法等。
另一种是一个变量的取值并不能完全能确定另一个变量的取值,但它对另一个变量的取值范围有限定和制约,我们称这种关系为“相关”制约关系,多个变量间的“相关”制约关系通常通过不等式的方式来呈现。
处理这种问题时,我们不可轻易的将多个变量一一单独分离后,再用分离出的范围来简单拼凑目标函数所需的最值,这样往往会破坏多变量间的相关性导致误解。
处理这类问题时我们需采用整体法的思想、线性规划的思想、数形结合的思想来确保变量间的相关性从而达到求值域与最值的目标。
高中数学解题方法系列:函数的值域与最值

(一)、最值与值域的高考地位 传统高考数学中的应用题中凡涉及到利润最大(或最小),最少的人力、物
力等,均可归结于最值与值域的求解;当今高考数学中的求字母参数的取值范围 问题很大一部分归结于最值与值域的求解
通过求函数的最值与值域可大大的加深对一些数学思想的领会,提高运用数 学思想解题的能力。 (二)、最值与值域的关系 1、有的函数知道值域就可以求最值
A
由上表知,求原函数的值域就是相当于求它的反函数的定义域 ⅱ、求反函数的步骤(“三步曲”)
①求 x ( y) ;②x、y 互换;③通过求原函数的值域得出反函数的定义域
【及时反馈】
(1)、求函数 f (x) 2x 4 的值域 x 1
(2)、求函数
f
(x)
3x 5x
4
的值域
法(三):分离变量法
2
9、最值存在定理:连续函数在闭区间上一定存在最大值和最小值
(三)、基本初等函数的定义域与值域
函数名
函数解析式
定义域
值域
一次函数 y kx b(k 0)
R
R
二次函数 y ax 2 bx c(a 0) R
a 0 时,{y | y 4ac b2 } 4a
a 0 时,{y | y 4ac b2 } 4a
R
【-1,1】
{x | x k (kR Z )} 2
(四)、函数的最值与值域的求解技巧
即是求函数值的集合或是找到的 y 的不等式出来(以后者为重)
如:已知函数 f (x) 2x 1, x 0,1,2,3,5则此函数的值域是( )
A、9,1,2,3,5;B、 1,1,3;C、 9,1,1,3,5;D、x | 1 x 9
2022年高考数学理科第一轮复习资料:2-3

第二章 第三讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.下列函数中,值域为(0,+∞)的是 ( )A .y =512-xB .y =(13)1-xC .y =(12x )-1 D .y =1-2x 答案:B解析:y =512-x 中,12-x≠0,故y ≠1,值域为(0,1)∪(1,+∞),y =(13)1-x 的值域为(0,+∞),故选B.总结评述:对于不复杂的函数,可以通过基本函数的值域及不等式的性质观察出函数的值域.2.函数f (x )=11-x (1-x )的最大值为 ( ) A.45 B.54 C.34 D.43答案:D解析:1-x (1-x )=x 2-x +1=(x -12)+34≥34.因此,有0<11-x (1-x )≤43.所以f (x )的最大值为43. 总结评述:二次函数或转化为形如F (x )=af 2(x )+bf (x )+c 类的函数的值域问题,均可用配方法,而后面的函数要注意f (x )的范围.3.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 答案:B解析:a >1时,f (x )在[0,1]上为增函数,最小值f (0),最大值f (1);0<a <1时,f (x )在[0,1]上为减函数,最小值f (1)、最大值f (0),据题设有:f (0)+f (1)=a ,即1+a +log a 2=a ,∴a =12. 4.(2009·湖北部分重点中学第二次联考)函数y =x x 2+x +1(x >0)的值域是 ( ) A .(0,+∞) B .(0,13) C .(0,13] D .[13,+∞) 答案:C解析:由y =x x 2+x +1(x >0)得0<y =x x 2+x +1=1x +1x +1≤12x ·1x+1=13,因此该函数的值域是(0,13],故选C. 5.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是 ( ) A .(-∞,0)∪(12,2]B .(-∞,2]C .(-∞,12)∪[2,+∞) D .(0,+∞)答案:A解析:∵x ∈(-∞,1)∪[2,5),则x -1∈(-∞,0)∪[1,4),∴2x -1∈(-∞,0)∪(12,2],故应选A.6.(2009·重庆市高三联合诊断性考试(第一次))已知函数y =x 2-3x +3(x >0)的值域是[1,7],则x 的取值范围是 ( )A .(0,4]B .[1,4]C .[1,2]D .(0,1]∪[2,4]答案:D解析:依题意得y =(x -32)2+34(x >0)的值域是[1,7],由x 2-3x +3=1解得x =1或x =2;由x 2-3x +3=7得x =-1(舍)或x =4.结合该函数的图象分析可知,x 的取值范围是(0,1]∪[2,4],选D.7.函数f (x )=2-4x -x 2(0≤x ≤4)的值域是 ( )A .[-2,2]B .[1,2]C .[0,2]D .{-2,2}答案:C 解析:用三角换元法,可令x -2=2sin θ,θ∈[-π2,π2]. ∵y =2-4x -x 2=2-4-(x -2)2∴y =2-2cos θ∈[0,2],故选C.8.(2009·宁夏、海南,12)用min{a ,b ,c }表示a 、b 、c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( )A .4B .5C .6D .7答案:C解析:f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.二、填空题(4×5=20分)9.(2009·湖北八校第一次联考)函数y =13-e x的值域为________. 答案:(-∞,0)∪(13,+∞) 解析:由e x =3y -1y >0⇒y <0或y >13. 10.函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________.答案:{x |-3<x ≤2}解析:由9-x 2>0得-3<x <3,∴A ={x |-3<x <3}.∵0<9-x 2≤9,∴log 3(9-x 2)≤2.∴B =(-∞,2]故A ∩B ={x |-3<x ≤2}.11.设x 、y ≥0,2x +y =6,则Z =4x 3+3xy +y 2-6x -3y 的最大值是__________,最小值是__________.答案:18 272分析:转化为一元函数最值,转化时注意挖掘出变元的取值范围(隐含条件).解答:由y =6-2x ≥0及x ≥0得0≤x ≤3,将y =6-2x 代入Z 中得Z =2x 2-6x +18(0≤x ≤3),从而解得:Z max =18,Z min =272. 12.(2011·原创题)在实数的原有运算法则中,我们补充定义新运算“”如下: 当a ≥b 时,a b =a ;当a <b 时,a b =b 2.则函数f (x )=(1x )·x -(2x )(x ∈[-2,2])的最大值等于________(“·”和“-”仍为通常的乘法和减法).答案:6解析:当x ∈[-2,1]时,f (x )=1·x -2=x -2,f (x )max =-1;当x ∈(1,2]时,f (x )=x 2·x -2=x 3-2,f (x )max =6,故填6.三、解答题(4×10=40分)13.求下列函数的值域:(1)y =x 2x +1;(2)y =x 2-x x 2-x +1; (3)y =x -1-2x ;(4)y =log 3x +log x 3-1.分析:解析:(1)解法一:(反函数法)因为函数y =x 2x +1的反函数为y =11-2x,后者其定义域为{x |x ≠12,x ∈R }, 故函数的值域为{y |y ≠12,x ∈R }. 解法二:(分离常数法)y =x 2x +1=x +12-122(x +12)=12-122x +1. ∵12(2x +1)≠0,∴函数的值域为{y |y ≠12,y ∈R }. (2)解法一:(配方法)∵y =1-1x 2-x +1,而x 2-x +1=(x -12)2+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1. 解法二:(判别式法)由y =x 2-x x 2-x +1,得(y -1)x 2+(1-y )x +y =0, ∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴必须△=(1-y )2-4y (y -1)≥0.∴-13≤y ≤1. ∵y ≠1,∴函数的值域为[-13,1). (3)解法一:(单调性法)定义域为{x |x ≤12},函数y =x ,y =-1-2x ,均在(-∞,12]上递增,则y =x -1-2x 在(-∞,12]上递增,故y ≤12-1-2×12=12. 解法二:(换元法)令1-2x =t ,则t ≥0,且x =1-t 22.∴y =-12(t +1)2+1≤12(t ≥0), ∴y ∈(-∞,12].(4)当x >1时,log 3x >0,故有y ≥2log 3x ·1log 3x-1=1. 当且仅当log 3x =1log 3x,即log 3x =1,即x =3时等号成立. 当0<x <1时,log 3x <0,-log 3x >0∴y =log 3x +1log 3x -1=-(-log 3x -1log 3x )-1≤-2(-log 3x )·(-1log 3x)-1=-3. 当且仅当log 3x =1log 3x ,即x =13时等号成立, 综上可知,函数的值域为{y |y ≤-3或y ≥1}.14.(1)若函数y =lg(x 2-ax +9)的定义域为R ,求a 的范围及函数值域;(2)若函数y =lg(x 2-ax +9)的值域为R ,求a 的取值范围及定义域.解析:(1)函数的定义域为R .即x 2-ax +9>0恒成立,则△=a 2-36<0恒成立,所以-6<a <6. 此时,x 2-ax +9=(x -a 2)2+9-a 24≥9-a 24, ∴a 的范围是(-6,6),值域为[lg(9-a 24),+∞). (2)函数的值域为R ,即真数x 2-ax +9必能取遍所有正数,二次函数g (x )=x 2-ax +9的图象不可能全在x 轴上方,△=a 2-36≥0,所以a ≥6或a ≤-6.由x 2-ax +9>0得x >a +a 2-362或x <a -a 2-362. 所以此函数的定义域为 (-∞,a -a 2-362)∪(a +a 2-362,+∞). 15.在经济学中,函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x >0)台的收入函数为R (x )=3000x -20x 2(单位:元),其成本函数为C (x )=500x +4000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x );(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?解析:(1)P (x )=R (x )-C (x )=(3000x -20x 2)-(500x +4000)=-20x 2+2500x -4000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2500(x +1)-4000-(-20x 2+2500x -4000)=2480-40x (x ∈[1,100]且x ∈N ).(2)P (x )=-20(x -1252)2+74125, 当x =62或63时,P (x )max =74120(元).因为MP (x )=2480-40x 是减函数,所以当x =1时,MP (x )max =2440(元).因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值.16.(2009·江苏南通中学模拟)设函数f (x )=|2x +1|-|x -4|.(1)求函数f (x )的值域;(2)若关于x 的不等式f (x )≥a 2-3a -7在[0,5]上恒成立,试求a 的取值范围.解析:(1)f (x )=⎩⎪⎨⎪⎧ -x -5,x <-123x -3,-12≤x ≤4x +5,x >4,作出其图象(如下图),所以,函数f (x )的值域是[-92,+∞). (2)由图象可知,函数f (x )在[0,5]上的最小值为f (0)=-3,由题意可知,f (0)≥a 2-3a -7,因此-1≤a ≤4.。
函数的值域与最值复习PPT优秀课件

达式有明显的几何意义.
26
走进高考
学例1 (2009·湖 南 卷 ) 函 数
y=2tanx+tan( -x)(0<x< )的
最小值是 2
2
2.
2
因为0<x< 2 ,所以tanx>0,
所以y=2tanx+ 1 ≥
tan x
2 ,当2 且仅当
tanx= 时2 “=”成立.
2
27
学例2 (2009·海南/宁夏卷)用min{a,b,c}表
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
12
不妨设f(x)=3x(-1≤x≤3,且x∈Z), 可知D={-3,0,3,6,9},M=9,N=-3,可 知,A、B、C错误,选D.
点评 1. 函 数 的 值 域 是 函 数 值 的 集 合 ,
函数的最值是该集合中的元素. 2.当函数y=f(x)在其定义域上是连续函数
时 , D=[N , M] , 其 中 N=f(x)min , M=f(x)max.
件的实数a、b.
综合①②③可得,满足条件的实数a、b不存在.
25
方法提炼
1.配方法:主要适用于二次函数或利用换元 技巧转化为二次函数,要特别注意自变量 和新变量的范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 第3讲一、选择题(8×5=40分)1.下列函数中,值域为(0,+∞)的是( )A .y =512-xB .y =(13)1-x C .y =(12)x -1 D .y =1-2x解析:y =512-x 中,12-x≠0,故y ≠1,值域为(0,1)∪(1,+∞),y =(13)1-x 的值域为(0,+∞),故选B.答案:B总结评述:对于不复杂的函数,可以通过基本函数的值域及不等式的性质观察出函数的值域.2.(2010·山东,3)函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)解析:∵3x >0,∴3x +1>1,∴log 2(3x +1)>0.∴f (x )∈(0,+∞).故选A.答案:A3.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪(12,2] B .(-∞,2]C .(-∞,12)∪[2,+∞) D .(0,+∞)解析:∵x ∈(-∞,1)∪[2,5),则x -1∈(-∞,0)∪[1,4),∴2x -1∈(-∞,0)∪(12,2],故应选A.答案:A4.函数y =log 2x +log x (2x )的值域是( )A .(-∞,-1]B .[3,+∞)C .[-1,3]D .(-∞,-1]∪[3,+∞)解析:y =log 2x +log x (2x )=log 2x +1+log 2x log 2x =log 2x +1log 2x+1. ∵|log 2x +1log 2x |=|log 2x |+1|log 2x |≥2, ∴log 2x +1log 2x+1∈(-∞,-1]∪[3,+∞).故选D. 答案:D5.当x ∈[0,2]时,函数f (x )=ax 2+4(a -1)x -3在x =2时取得最大值,则a 的取值范围是( )A .[-12,+∞) B .[0,+∞)C .[1,+∞)D .[23,+∞) 解析:a =0时不成立.当a >0时,对称轴为x =-4(a -1)2a≤1, ∴a ≥23. 当a <0时,x =-4(a -1)2a≥2,a ∈∅,故选D. 答案:D6.函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14B.12C .2D .4解析:f (x )=a x +log a (x +1)是单调递增(减)函数(原因是y =a x 与y =log a (x +1)单调性相同),且在[0,1]上的最值分别在两端点处取得,最值之和为f (0)+f (1)=a 0+log a 1+a +log a 2=a ,∴log a 2+1=0.∴a =12. 答案:B7.(2010·天津,10)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡ -94,+∞) D.⎣⎡⎦⎤-94,0∪(2,+∞) 解析:∵x <g (x ),x <x 2-2,(x -2)(x +1)>0,∴x ∈(-∞,-1)∪(2,+∞),f (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ∈[-1,2], =⎩⎨⎧ (x +12)2+74,x ∈(-∞,-1)∪(2,+∞),(x -12)2-94,x ∈[-1,2].∴f (x )的值域为⎣⎡⎦⎤-94,0∪(2,+∞). 答案:D8.(高考改编题)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则m M的值为( ) A.22 B.32C. 2D.53解析:由题意知函数的定义域为{x |-3≤x ≤1},∵y =1-x +x +3≥0,∴y 2=4+2(1-x )(x +3)=4+2-(x +1)2+4,当x =-1时,y 2max =8,∴y max =M =22,当x =1或-3时,y 2min =4,∴y min =m =2,∴m M =222=22. 答案:A二、填空题(4×5=20分)9.函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________.解析:由9-x 2>0得-3<x <3,∴A ={x |-3<x <3}.∵0<9-x 2≤9,∴log 3(9-x 2)≤2.∴B =(-∞,2]故A ∩B ={x |-3<x ≤2}.答案:{x |-3<x ≤2}10.(2010·浙江,16)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是____________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即(t +115)(t -65)≥0.又∵t +115≥0, ∴t ≥65,∴1+x %≥65, ∴x %≥0.2,∴x ≥20.故x 的最小值是20.答案:2011.设x 、y ≥0,2x +y =6,则Z =4x 3+3xy +y 2-6x -3y 的最大值是__________,最小值是__________.分析:转化为一元函数最值,转化时注意挖掘出变元的取值范围(隐含条件).解析:由y =6-2x ≥0及x ≥0得0≤x ≤3,将y =6-2x 代入Z 中得Z =2x 2-6x +18(0≤x ≤3),从而解得:Z max =18,Z min =272. 答案:18 272 12.(2012·原创题)在实数的原有运算法则中,我们补充定义新运算“ ”如下:当a ≥b 时,a b =a ;当a <b 时,a b =b 2.则函数f (x )=(1 x )·x -(2 x )(x ∈[-2,2])的最大值等于________(“·”和“-”仍为通常的乘法和减法).解析:当x ∈[-2,1]时,f (x )=1·x -2=x -2,f (x )max =-1;当x ∈(1,2]时,f (x )=x 2·x -2=x 3-2,f (x )max =6,故填6.答案:6三、解答题(4×10=40分)13.求下列函数的值域:(1)y =x 2x +1;(2)y =x 2-x x 2-x +1; (3)y =x -1-2x ;(4)y =log 3x +log x 3-1.分析:解析:(1)解法一:(反函数法)因为函数y =x 2x +1的反函数为y =11-2x,后者其定义域为{x |x ≠12,x ∈R }, 故函数的值域为{y |y ≠12,x ∈R }. 解法二:(分离常数法)y =x 2x +1=x +12-122(x +12)=12-122x +1. ∵12(2x +1)≠0,∴函数的值域为{y |y ≠12,y ∈R }. (2)解法一:(配方法)∵y =1-1x 2-x +1,而x 2-x +1=(x -12)2+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1. 解法二:(判别式法)由y =x 2-x x 2-x +1,得(y -1)x 2+(1-y )x +y =0, ∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴必须△=(1-y )2-4y (y -1)≥0.∴-13≤y ≤1. ∵y ≠1,∴函数的值域为[-13,1). (3)解法一:(单调性法)定义域为{x |x ≤12},函数y =x ,y =-1-2x ,均在(-∞,12]上递增,则y =x -1-2x 在(-∞,12]上递增,故y ≤12-1-2×12=12.解法二:(换元法)令1-2x =t ,则t ≥0,且x =1-t 22.∴y =-12(t +1)2+1≤12(t ≥0), ∴y ∈(-∞,12]. (4)当x >1时,log 3x >0,故有y ≥2log 3x ·1log 3x-1=1. 当且仅当log 3x =1log 3x,即log 3x =1,即x =3时等号成立. 当0<x <1时,log 3x <0,-log 3x >0,∴y =log 3x +1log 3x -1=-(-log 3x -1log 3x)-1≤-2(-log 3x )·(-1log 3x )-1=-3. 当且仅当log 3x =1log 3x ,即x =13时等号成立, 综上可知,函数的值域为{y |y ≤-3或y ≥1}.14.对于函数f (x )=log 12(x 2-2ax +3),解答下列问题: (1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围;(3)若函数f (x )在[-1,+∞)内有意义,求实数a 的取值范围;(4)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值;(5)若函数f (x )的值域为(-∞,-1],求实数a 的值;(6)若函数f (x )在(-∞,1]内为增函数,求实数a 的取值范围.思路探究:定义域为自变量x 的取值范围,值域为对应函数值的集合,单调区间为定义域的子区间.解析:设u =g (x )=x 2-2ax +3=(x -a )2+3-a 2.(1)∵u >0对x ∈R 恒成立, ∴u min =3-a 2>0,∴-3<a <3(或由x 2-2ax +3>0的解集为R 得Δ=4a 2-12<0求出-3<a <3).(2)∵f (x )的值域为R ,∴u =g (x )的值域为(0,+∞),∴Δ=4a 2-12≥0,即a ≥3或a ≤- 3.∴实数a 的取值范围是(-∞,-3]∪[3,+∞).(3)由f (x )在[-1,+∞)上有意义,知u =g (x )=x 2-2ax +3>0对x ∈[-1,+∞)上恒成立.∵g (x )的对称轴为x =a ,∴当a <-1时,g (-1)>0,即⎩⎪⎨⎪⎧a <-12a +4>0,解得-2<a <-1.当a ≥-1时,Δ<0,即-3<a <3,∴-1≤a < 3.故所求a 的取值范围是(-2,-1)∪[-1,3),即(-2,3).(4)命题等价于x 2-2ax +3>0的解集为{x |x <1或x >3}.∴x 2-2ax +3=0的两根为1和3,∴2a =1+3,即a =2.(5)∵y =f (x )≤-1,∴u =g (x )的值域为[2,+∞).∴3-a 2=2,即a =±1.(6)命题等价于即所求a 的取值范围是[1,2).规律方法:(1)确定函数y =log a f (x )的定义域,即求不等式f (x )>0的解集;确定其值域,要根据f (x )的值域以及a 与1的大小关系.(2)函数y =log a f (x )的值域为R 的充要条件是:{y |y =f (x )}⊇(0,+∞).15.在经济学中,函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x >0)台的收入函数为R (x )=3000x -20x 2(单位:元),其成本函数为C (x )=500x +4000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x );(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?解析:(1)P (x )=R (x )-C (x )=(3000x -20x 2)-(500x +4000)=-20x 2+2500x -4000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2500(x +1)-4000-(-20x 2+2500x -4000)=2480-40x (x ∈[1,100]且x ∈N ).(2)P (x )=-20(x -1252)2+74125, 当x =62或63时,P (x )max =74125(元).因为MP (x )=2480-40x 是减函数,所以当x =1时,MP (x )max =2440(元).因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值.16.已知函数f (x )=x 2+2x +a x,x ∈[1,+∞). (1)当a =12时,求f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解析:(1)当a =12时,f (x )=x +12x+2, 设1≤x 1≤x 2,则f (x 2)-f (x 1)=(x 2-x 1)(1-12x 1x 2), ∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2.∴0<12x 1x 2<12,1-12x 1x 2>0.∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上为增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=72. (2)在区间[1,+∞)上f (x )>0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上是增函数. ∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.。