专题九 实际应用问题2

合集下载

中考数学专题复习实际生活应用问题(二)讲义(2021年整理)

中考数学专题复习实际生活应用问题(二)讲义(2021年整理)

2017-2018学年中考数学专题复习实际生活应用问题(二)讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年中考数学专题复习实际生活应用问题(二)讲义)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年中考数学专题复习实际生活应用问题(二)讲义的全部内容。

实际生活应用问题(二)课前预习1.已知二次函数y=x2—2mx+4m—8,若x≥2 时,函数值y 随x 的增大而增大,则m 的取值范围是;若x≤1 时,函数值y 随x 的增大而减小,则m 的取值范围是.提示:①根据开口方向向上,对称轴为直线x=m 画出大致图象;②由增减性可知,x≥2 在对称轴以右,确定x =2 和x=m 的相对位置.2.已知二次函数y=x 2+2x +m 的图象C1与x 轴有且只有一个交点,则m的值为;若y=x 2+2x+m 的函数值总为正数,则图象顶点在第象限,m 的取值范围是.提示:“函数值总为正数”能转化为函数y =x2+2x+m 与x 轴交点个数的问题吗?3.在解决“已知函数y1x2 2x 1,且 0<x≤5,则此函数2的最大值是多少?”这一问题时,小明采用了将二次函数化成顶点式的做法:y1x2 2x 1 21(x2 4x) 121(x2 4x4 4)121(x2 4x4) 4 121(x 2)2 52∵0<x≤5∴当x=2 时,y 最大=-5①提二次项系数②括号内配方③化简整理④观察小明的具体操作后,回答下列问题:在①,②,③,④的变形操作中错误的是.请写出正确的求解过程.试一试:你能借助二次函数图象解决这个问题吗?A 球网 边界知识点睛应用题的处理思路1. 理解题意,梳理信息结合图表理解题意,将实际场景与图象中轴、点、线对应起来理解分析.2. 辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3. 求解验证,回归实际精讲精练1. 如图,排球运动员站在点 O 处练习发球,将球从 O 点正上方2 m 的 A处发出,把球看成点,其运行的高度 y (m)与运行的水平距离 x (m)满足关系式 y =a (x -6)2+h .已知球网与 O 点的水平距离为 9 m ,高度为 2.43 m ,球场的边界距 O 点的水平距离为 18 m .(1)当 h =2。

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。

2023-2024学年初中物理人教版九年级全一册+期末物理复习+小专题九 欧姆定律的实际应用课件

2023-2024学年初中物理人教版九年级全一册+期末物理复习+小专题九 欧姆定律的实际应用课件

(2)由图乙所示图象可知,温度为40 ℃时,热敏电阻阻值为200 Ω,电路
最大电流为0.02 A,由I= U 可知,电路最小电阻:R最小= U = 5V
R
Imax 0.02A
=250 Ω,滑动变阻器的最小阻值:
R滑最小=R最小-Rt=250 Ω-200 Ω=50 Ω, 滑动变阻器的取值范围:50~150 Ω;
第 13 页
九年级 物理 上册 人教版
(3)在不改变电压表量程的情况下,即电压表示数最大为3 V不变,当压敏 电阻受到的压力越大,它的阻值越小,根据欧姆定律可知电路中的电流 会变大,所以要提高称量的最大值,可以减小电源电压。
第 14 页
九年级 物理 上册 人教版
6.(抚州黎川县校级月考)随着社会的发展和科技的进步,电路元件在各 行各业得到广泛的应用,其中热敏电阻就是其中之一。热敏电阻的阻值 会随温度的改变而改变。图甲是用热敏电阻测量环境温度的电路,电路 中电流表的量程为0~0.02 A,滑动变阻器R的铭牌上标有“150 Ω0.3 A”字 样。Rt为热敏电阻,其阻值随环境温度变化关系如图乙所示,电源电压 保持不变。请完成下列问题:
九年级 物理 上册 人教版
当油箱内油面高度最高时,R的金属滑片在最下端,油量表指针满偏;当 油箱内没有油时,R全部接入电路,油量表的读数最小,则R0的阻值是20 ቤተ መጻሕፍቲ ባይዱ,油量表的最小读数是 0.3A。通过计算分析可知油量表的刻度不均匀 (选填“均匀”或“不均匀”)。
第7页
九年级 物理 上册 人教版
4.【物理学与日常生活】(广元中考)如图所示是课外活动时,同学们设 计的电子身高测量仪的电路简图,绝缘板A与滑动变阻器R2的滑片P固定 在一起,且同步上下移动。
第5页

人教版九年级上册期末复习专题:一元二次方程实际应用专练(二)

人教版九年级上册期末复习专题:一元二次方程实际应用专练(二)

人教版九年级上册期末复习专题:一元二次方程实际应用专练(二)1.2020年,我国脱贫攻坚在力度、广度、深度和精准度上都达到了新的水平,重庆市深度贫困地区脱贫进程明显加快,作风治理和能力建设初见成效,精准扶贫、精准脱贫取得突破性进展.为助力我市脱贫攻坚,某村村委会在网上直播销售该村优质农产品礼包,该村在今年1月份销售256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.(1)若设2、3这两个月销售量的月平均增长率为a%,求a的值;(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?2.“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y(件)是销售价x(元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件.(1)试求出日销售量y(件)与销售价x(元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?3.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.该产品在第x周(x为正整数,且1≤x≤8)个销售周期的销售价格为y元,y与x之间满足如图所示的一次函数.(1)求y与x之间的函数关系;(2)产品在第x个销售周期的销售数量为p万台,p与x之间满足:.已知在某个销售周期的销售收入是16000万元,求此时该产品的销售价格是多少元?4.随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.6.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?7.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x的值.8.某商店分别花2000元和3000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多50千克.(1)该商品的进价是多少?(2)若该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,商品的售价定为多少元时,商店每天可以获利2210元?9.地铁东城某服装店销售一批衬衣,每件进价250元,开始以每件400元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经过两次降价后每件售价为324元,每星期能卖出172件.(1)已知两次降价的百分率相同,求每次降价的百分率;(2)喜欢研究数学的店长在降价的过程中发现,适当的降价可增加销售又可增加收入,且每件衬衣售价每降低1元,销售量会增加2件,若店长想要每星期获利11000元,为了让顾客得到更大的实惠,应把售价定为多少元?10.某商场一种商品的进价为每件40元,售价为每件60元,每天可以销售300件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件48.6元,求两次下降的百分率?(2)经调查,若该商品每降价0.5元,每天可多销售15件,那么每天要想获得6480元的利润,每件应降价多少元?11.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,销量为件;(用含x的式子表示)(2)为了扩大销售,尽快减少库存,商场决定釆取降价措施.但需要平均每天盈利1200元,求每件衬衫应降价多少元?12.2020年哈尔滨街头随处可见小蓝车“哈啰出行”,自行车正逐渐成为人们喜爱的交通工具,据统计,某商城3月份销售自行车64辆,5月份销售了100辆.(1)若该商城2020年3﹣5月的自行车销量的月平均增长率相同,求该商城自行车销量的月平均增长率是多少?(2)若自行车销量的月平均增长率保持不变,预计该商城6月份销售自行车多少辆?13.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.14.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.天气渐热,为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱饮料每降价1元,每天可多售出2箱.针对这种饮料的销售情况,请解答以下问题:(1)当每箱饮料降价20元时,这种饮料每天销售获利多少元?(2)在要求每箱饮料获利大于80元的情况下,要使每天销售饮料获利14400元,问每箱应降价多少元?15.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?16.在一块长16m、宽12m的矩形荒地上,要建一个花园,并使花园所占面积为荒地面积的一半,如果如图所示设计,并使花园四周小路宽度都相等,那么小路的宽是多少?17.如图,要利用一面墙(墙长为25米)建一个矩形场地,用100米的围栏围成三个大小相同的矩形,设矩形的边长AB为x米,矩形场地的总面积为y平方米.(1)请用含有x的式子表示y(不要求写出x的取值范围);(2)当x为何值时,矩形场地的总面积为400平方米?18.2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?19.受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.(1)求这种蔬菜的原价是每千克多少元?(2)政府采取增加采购渠道、财政补贴等多种措施,降低价格,方便老百姓的生活.这种蔬菜的批发价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.20.临近端午节,某超市计划购进一批粽子礼盒,每盒进价为30元,经过市场调研发现,当每盒售价为40元时,月销售量为600盒;售价每提高1元,销量将减少10盒;售价每降低1元,销量将增加10盒.假定该粽子礼盒的月销售量y(单位:盒)和销售单价x(单位:元)成一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此类商品的单件利润率不得高于100%,如果该超市想通过销售该礼盒获得10000元的月利润,则该礼盒的销售单价应定为多少元?参考答案1.解:(1)设2、3这两个月的月平均增长率为x.由题意得:256(1+x)2=400,解得:x1=25%,x2=﹣225%(舍去),即2、3这两个月的月平均增长率为25%,即a的值是25;(2)设当农产品礼包每包降价m元时,这种农产品在4月份可获利4620元.根据题意可得:(40﹣25﹣m)(400+5m)=4620,解得:m1=4,m2=﹣69(舍去),答:当农产品礼包每包降价4元时,这种农产品在4月份可获利4620元.2.解:(1)设y与x之间的函数关系式为y=kx+b,将(60,800)、(65,700)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣20x+2000.(2)根据题意得:(x﹣50)(﹣20x+2000)=12000,整理,得:x2﹣150x+5600=0,解得:x1=70,x2=80.∵减少库存积压,∴x=70.答:这种服装每件售价是70元.3.解:(1)设函数的解析式为:y=kx+b(k≠0),由图象可得,,解得,,∴y与x之间的关系式:y=﹣500x+7500;(2)根据题意得,(﹣500x+7500)(x+)=16000,解得x=7,此时y=﹣500×7+7500=4000(元)答:此时该产品每台的销售价格是4000元.4.解:(1)设现场购买每张电影票为x元,网上购买每张电影票为y元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m)[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m2﹣120m=0m(16m﹣120)=0解得m1=0(舍去)m2=7.5答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.5.解:(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.解:(1)设年平均增长率为x,由题意得:20(1+x)2=28.8,解得:x1=0.2=20%,x2=﹣2.2(舍).答:年平均增长率为20%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得:(y﹣6)[300+30(25﹣y)]=6300,整理得:y2﹣41y+420=0,解得:y1=20,y2=21.∵让顾客获得最大优惠,∴y=20.答:当每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.7.解:正方体的左面、右面标注的代数式分别为x2、3x﹣2,(2分)由题意,x2=3x﹣2.(3分)解得x1=1,x2=2.(5分)8.解:(1)设该商品的进价是x元,依题意,得:﹣=50,解得:x=20,经检验,x=20是原方程的解,且符合题意.答:该商品的进价是20元.(2)依题意,得:(x﹣20)(﹣10x+500)=2210,整理,得:x2﹣70x+1221=0,解得:x1=33,x2=37.答:商品的售价定为33元或37元时,商店每天可以获利2210元.9.解:(1)设每次降价的百分率为x,依题意,得:400(1﹣x)2=324,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:每次降价的百分率为10%.(2)设售价应定为y元,则每星期可售出[20+2(400﹣y)]件,依题意,得:(y﹣250)[20+2(400﹣y)]=11000,整理,得:y2﹣660y+108000=0,解得:y1=300,y2=360.∵让顾客得到更大的实惠,∴y=300.答:应把售价定为300元.10.解:(1)设每次降价的百分率为x,由题意,得60×(1﹣x)2=48.6,x=10%或190%(190%不符合题意,舍去).答:该商品连续两次下调相同的百分率后售价降至每件48.6元,两次下降的百分率10%;(2)每天要想获得6480元的利润,设每件商品应降价y元,且更有利于减少库存,由题意,得(60﹣40﹣y)(×15+300)=6480,解得:y1=8,y2=2.答:要使商场每天要想获得6480元的利润,每件应降价8元.11.解:(1)∵每件衬衫降价x元,∴每件衬衫的利润为(40﹣x)元,销量为(20+2x)件.故答案为:(40﹣x);(20+2x).(2)依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.答:每件衬衫应降价20元.12.解:(1)设该商城自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,答:该商城自行车销量的月平均增长率为25%;(2)100×(1+25%)=125(辆).答:预计该商城6月份销售自行车125辆.13.解:设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,由题意得x(20﹣2x)=50,解得:x1=x2=5,(20﹣2×5)=10(m).围成一面靠墙,其它三边分别为5m,10m,5m的矩形.答:不能围成面积52m2的矩形ABCD场地.理由:若能围成,则可列方程x(20﹣2x)=52,此方程无实数解.所以不能围成一个面积为52m2的矩形ABCD场地.14.解:(1)每箱应降价x元,依据题意得总获利为:(120﹣x)(100+2x),当x=20时,(120﹣x)(100+2x)=100×140=14000元;(2)要使每天销售饮料获利14400元,每箱应降价x元,依据题意列方程得,(120﹣x)(100+2x)=14400,整理得x2﹣70x+1200=0,解得x1=30,x2=40;∵要求每箱饮料获利大于80元,∴x=30答:每箱应降价30元,可使每天销售饮料获利14400元.15.解;设售价为x元,据题意得(x﹣8)(200﹣10×)=640,化简得x2﹣28x+192=0,解得x1=12,x2=16,又∵x﹣8≤8×60%,∴x≤12.8,∴x=16不合题意,舍去,∴x=12,200﹣10×=160(件).答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.16.解:将小路分别平移到最左边和最上边,如图所示.设小路的宽是xm.依题意,得(16﹣2x)(12﹣2x)=×16×12,整理,得x2﹣14x+24=0,∴(x﹣2)(x﹣12)=0,∴x1=2,x2=12(不合题意,舍去)答:小路的宽是2m.17.解:(1)依题意得,BC=100﹣4x.则y=(100﹣4x)x.(2)设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5,舍去.即AB=20,BC=20.答:当20为何值时,矩形场地的总面积为400平方米.18.解:(1)设三、四这两个月销售量的月平均增长率为x,依题意,得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:三、四这两个月销售量的月平均增长率为25%.(2)设口罩每袋降价y元,则五月份的销售量为(400+40y)袋,依题意,得:(14﹣y﹣8)(400+40y)=1920,化简,得:y2+4y﹣12=0,解得:y1=2,y2=﹣6(不合题意,舍去).答:当口罩每袋降价2元时,五月份可获利1920元.19.解:(1)设这种蔬菜的原价是每千克x元,则价格上涨后的价格是每千克1.5x元,依题意,得:﹣=2,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种蔬菜的原价是每千克8元.(2)设平均每次下调的百分率为y,依题意,得:10(1﹣y)2=6.4,解得:y1=0.2=20%,y2=1.8(不合题意,舍去).答:平均每次下调的百分率为20%.20.解:(1)依题意,得:y=600﹣10(x﹣40)=﹣10x+1000.(2)依题意,得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.当x=50时,利润率=×100%≈66.7%<100%,符合题意;当x=80时,利润率=×100%≈166.7>100%,不合题意,舍去.答:该礼盒的销售单价应定为50元.。

中考数学专题复习 之 函数实际应用型问题

中考数学专题复习 之 函数实际应用型问题

(2)若调价后每月支出的燃气费为y(元),每月的用气量x(m3),y 与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m中折线分为哪几段?
②折线图中线段OA,线段AB,射线BC,它们的自变量分别对应
【例题分层分析】
设乙用户2月份用气x m3,则3月份用气(175-x) m3, 问: ①2月份的用气量可以分布在哪几个区间? ②如果2月份的用气量在第3区间,那么3月份的用气量可以在 @ 哪几个区间? ③如果2月份的用气量在第2区间,那么3月份的用气量可以在 @ 哪几个区间?
解: (3)设乙用户2月份用气x m3,则3月份用气(175-x) m3 当x>125,175-x ≤ 75时 3x-50+2.5(175-x)=455 解得x=135,175-135=40,符合题意; 当75<x ≤ 125,175-x ≤ 75时 2.75x-18.75+2.5(175-x)=455 解得x=145,不符合题意,舍去; 当75<x≤125 ,75<175-x≤125时 2.75x-18.75+2.75(175-x)-18.75=455,此方程无解. ∴乙用户2、3月份的用气量分别是135 m3,40 m3.
设线段AB的解析式为y2 = k2x+b1,由图象得
187.5=75 k2 +b1 325=125k2 +b1

k2 = 2.75 b1= - 18.75
∴线段AB的解析式为y2 = 2.75x-18.75(75<x≤125)
(385-325)÷3 = 20,故C(145,385)
设射线BC的解析式为y3 = k3x+b2,由图象得

中考数学专题复习实际应用问题【含解析】

中考数学专题复习实际应用问题【含解析】

实际应用问题【专题点拨】实际应用问题是以贴近现实生活中的话题为背景,运用方程与不等式、函数与不等式等来解决的一类实际生活中的问题,这类问题往往文字信息量大,背景复杂,要求学生具有较强的阅读、收集信息及建立模型的能力,从而解决问题.【解题策略】实际应用问题解决的关键是理解题意,从中找出等量关系、不等关系或函数关系,建立数学模型来解决,当信息量较大,可以借助图表等方式帮助理解.【典例解析】类型一:方程或不等式的应用题例题1:(2016·青海西宁·10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【解析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.变式训练1:(2016·山东省济宁市·3分)某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?类型二:方程与函数的应用题例题2:(2016广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【解析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍【点评】此题考查了一次函数的实际应用.分式方程的应用,解题的关键是理解题意,能根据题意求得函数解析式,注意数形结合与方程思想的应用.变式训练2:(2016·浙江省绍兴市·8分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.类型三:方程、不等式和函数的综合应用题例题3:(2016·湖北随州·9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p198 140 80 20 (件)(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【考点】二次函数的应用;一元一次不等式的应用.【解析】(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)?p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.变式训练3:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.类型四:一次函数与反比例函数的综合应用题例题4:(2016·青海西宁·2分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【解析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.变式训练4:(2016·重庆市B卷·10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.。

中考数学专题复习:实际应用问题

中考数学专题复习:实际应用问题
m长的篱笆围成一个矩形花园(篱笆只围AB,BC两边).
(1)若围成的花园面积为91 m2,求花园的边长;
(2)在点P处有一棵树与墙CD,AD的距离分别为12 m和6 m,要能将这棵树围
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,
求此时花园的边长.
解:(1)设AB长为a m,则BC长为(20-a)m.
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花
园的边长.
解: (2)设花园的一边长为 x,面积为 y,
则 y=x(20-x)=-x2+20x=-(x-10)2+100,
≥ 6,
≥ 12,
由题意得

20- ≥ 12 20- ≥ 6,
解得:6≤x≤8 或 12≤x≤14.
(2)每台 A 型机器人售价 3 万元,每台 B 型机器人售价 2 万元,该公司计划采购 A,B 两种型号的机器
人共 20 台,必须满足每天搬运的货物不低于 1 800 吨,请根据以上要求,求出 A,B 两种机器人分别
采购多少台时,所需费用最低?最低费用是多少?
【自主解答】(1)设每台 A 型机器人每天搬运货物 x 吨,每台 B 型机器人每天搬运
二次函数应用题是中考的必考题,每年中考试题
都要考查二次函数应用题,其重要程度不言而喻.
专题四
例1
方程(组)、函数在商品销售利润问题中的应用
[安徽中考]某超市销售一种商品,成本为每千克40元,规定每千克售
价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千
克售价x(元)满足一次函数关系,部分数据如下表:
例题1 为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组

部编数学九年级上册专题09二次函数的实际应用—拱桥问题(解析版)含答案

部编数学九年级上册专题09二次函数的实际应用—拱桥问题(解析版)含答案

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题09 二次函数的实际应用—拱桥问题考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·虹口期末)如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米【答案】B 【解析】【解答】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax 2,∵O 点到水面AB 的距离为4米,∴A、B 点的纵坐标为-4,∵水面AB 宽为20米,∴A(-10,-4),B (10,-4),将A 代入y=ax 2,-4=100a ,∴125a =-,∴2125y x =-,∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为-1,∴21125x -=-∴x=±5,∴CD=10,故答案为:B .【思路引导】先建立平面直角坐标系,设抛物线的解析式为y=ax 2,再求出解析式,最后利用二次函数的性质求解即可。

2.(2分)(2021九上·安阳期中)有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125 x 2+ 58x B .y =-125 x 2+ 85 x C .y =- 58 x 2- 125 x D .y =- 125 x 2+ 85 x +16【答案】B 【解析】【解答】解:由图可知,该抛物线开口向下,对称轴为x =20,最高点坐标为(20,16),且经过原点,由此可设该抛物线解析式为 ()22016y a x =-+ ,将原点坐标代入可得 400160a += ,解得: 125a =- ,故该抛物线解析式为 ()22118201625255y x x x =--+=-+.故答案为:B.【思路引导】由题意可设抛物线解析式为y=a(x-20)2+16,将(0,0)代入可得a的值,据此可得抛物线的解析式.3.(2分)(2021九上·诸暨月考)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加( )A.1m B.2mC.(﹣4)m D.(﹣2)m【答案】C【解析】【解答】解:如图,建立直角坐标系,设y=a(x-2)(x+2),∴2=a(0-2)(0+2),∴a=-12,∴y=-12(x-2)(x+2),当水面下降1米时,y=-1,∴-1=-12(x-2)(x+2),解得,∴水平宽度增加:(-4)m.故答案为:C.【思路引导】根据题意建立直角坐标系,结合数据求出二次函数解析式,再把y=-1代入抛物线解析式,则可求出此时的水面宽度,即可得出答案.4.(2分)(2020九上·郁南期末)如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 2125y x =- ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A .2mB .4mC .10mD .16m【答案】B 【解析】【解答】解:根据题意得B 的横坐标为10,把x=10代入 2125y x =-,得y=-4,∴OD=4m,故答案为:B .【思路引导】将x=10代入函数解析式求出y=-4,再求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九 实际应用问题(二)四、几何应用题:常常以现实生活情景为背景,考查学生识别图形的能力、动手操作图形的能力、运用几何知识解决实际问题的能力以及探索、发现问题的能力和观察、想像、分析、综合、比较、演绎、归纳、抽象、概括、类比、分类讨论、数形结合等数学思想方法.例1.(10年福建漳州)27.(13分)如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.(1)请求出底边BC的长(用含x的代数式表示);(2)若∠BAD=60°, 该花圃的面积为S米2.①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=时x的值;②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?五、统计型应用问题:统计的内容有着非常丰富的实际背景,其实际应用性特别强.就是考查统计思想方法,同时考查学生应用数学的意识和处理数据解决实际问题的能力.例2、(2009年安徽)某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次跳绳次数人数O95105115125135145155(每组数据含左端点值不含右端点值)①③②④⑤⑥第21题图测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占94%吧。

丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.六、概率型应用问题:概率的引进更加丰富了中考的内容,会进行简单的概率计算,会列表或画树状图分析问题是学生必须具备的能力。

例3、(2009年山西省)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.当堂反馈:1、(10河北省)如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.(1)用含的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?图142、(10年黑龙江)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块120数B型板材块2m n数604040150 30单位:cmABB设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y 张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m = ,n = ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?3、(2009年广西钦州)如图是近三年广西生产总值增速(累计,%)的折线统计图,据区统计局初步核算,2009年一季度全区生产总值为155238亿元,与去年同一时期相比增长129%(如图,折线图中其它数据类同).根据统计图解答下列问题:(1)求2008年一季度全区生产总值是多少(精确到001亿元)?(2)能否推算出2007年一季度全区生产总值?若能,请算出结果(精确到001亿元).(3)从这张统计图中,你有什么发现?用一句话表达你的看法.球两红一红一白两白礼金券(元)105104、(10甘肃庆阳)甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:球两红一红一白两白礼金券(元)5105乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.5、(2009年铁岭市)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由课时二参考答案例1解:(1)∵AB=CD=x米,∴BC=40-AB-CD=(40-2x)米.……………………………………………………(3分)(2)①如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°∴AE=x,BE=x.同理DF=x,CF=x又EF=BC=40-2x∴AD=AE+EF+DF=x+40-2x+x=40-x……………………………(4分)∴S= (40-2x+40-x)·x=x(80-3x)= (0<x<20)…………………………………(6分)当S=时,=解得:x1=6,x2=(舍去).∴x=6………………………………(8分)②由题意,得40-x≤24,解得x≥16,结合①得16≤x<20………………………………………………………………(9分)由①,S==∵a=<0∴函数图象为开口向下的抛物线的一段(附函数图象草图如左).其对称轴为x=,∵16>,由左图可知,当16≤x<20时,S随x的增大而减小……………………………(11分)∴当x=16时,S取得最大值,………………………………………(12分)此时S最大值=.…………………(13分)例2解:(1)第①组频率为:∴第②组频率为:这次跳绳测试共抽取学生人数为:人∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.(2)第⑤、⑥两组的频率之和为由于样本是随机抽取的,估计全年级有人达到跳绳优秀(3)≈127次..例3解:(1)10,50;(2)解:解法一(树状图):102030102030102030103040103020203050203010503040第一次第二次和(6分)从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此(不低于30元)=解法二(列表法):第0102030一次第二次0102030101030402020305030304050(以下过程同“解法一”)1、解:(1)横向甬道的面积为:2分(2)依题意:4分整理得:(不符合题意,舍去) 6分甬道的宽为5米.(3)设建设花坛的总费用为万元.7分当时,的值最小. 8分因为根据设计的要求,甬道的宽不能超过6米,米时,总费用最少. 9分最少费用为:万元 10分2、解:(1)0 ,3.(2)由题意,得, ∴.,∴.(3)由题意,得.整理,得.由题意,得解得 x≤90.【注:事实上,0≤x≤90 且x是6的整数倍】由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.3、解:(1)根据题意,2009年一季度全区生产总值为155238亿元,设2008年一季度全区生产总值为x亿元,则=129%.解之,得x≈137500(亿元).答:2008年一季度全区生产总值约是137500亿元;(2)能推算出2007年一季度全区生产总值.设2007年一季度全区生产总值为y亿元,同理,由(1)得=113%.解之,得y≈123540(亿元).所以2007年一季度全区生产总值约是123540亿元;(3)近三年广西区生产总值均为正增长;2008年1季度增长率较2007年同期增长率有较大幅度下降;2009年1季度增长率较2008年同期增长率有所上升,经济发展有所回暖;2007年广西经济飞速发展;….等等,只要能有自己的观点即可给分.4、(1)树状图为:开始第1个球红白第2个球红白白红红白(2)方法1:∵ 去甲超市购物摸一次奖获10元礼金券的概率是(甲), 7分去乙超市购物摸一次奖获10元礼金券的概率是(乙),∴ 我选择去甲超市购物. 1方法2:∵ 两红的概率P=,两白的概率P=,一红一白的概率P==,∴ 在甲商场获礼金券的平均收益是:×5+×10+×5=;在乙商场获礼金券的平均收益是:×10+×5+×10=.∴ 我选择到甲商场购物.5、解:(1)根据题意可列表或树状图如下:第一1234次第二次1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4(4,1)(4,2)(4,3)——(1,2)(1,3)(1,4)2341(1,1)(2,3)(2,4)1342(3,1)(3,2)(3,4)1243(4,1)(4,2)(4,3)1234第一次摸球第二次摸球从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴(和为奇数)(2)不公平.∵小明先挑选的概率是(和为奇数),小亮先挑选的概率是(和为偶数),∵,∴不公平.。

相关文档
最新文档