人教八年级上数学期中试卷及答案
人教版八年级上册数学期中考试试题带答案

人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
人教版八年级上册数学期中试卷及答案【完整版】

人教版八年级上册数学期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.若式子x 1x+有意义,则x 的取值范围是__________. 3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在△OBC中,边BC的垂直平分线交∠BOC的平分线于点D,连接DB,DC,过点D作DF⊥OC于点F.(1)若∠BOC=60°,求∠BDC的度数;(2)若∠BOC= ,则∠BDC=;(直接写出结果)(3)直接写出OB,OC,OF之间的数量关系.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、B6、C7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、x 1≥-且x 0≠3、13k <<.4、145、1(21,2)n n -- 6、6三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =.2、333、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。
人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.长度分别为a ,2,4的三条线段能组成一个三角形,则a 的值可能是( ) A .1 B .2 C .3 D .62.如图,AM 是△ABC 的中线,△ABC 的面积为4cm 2,则△ABM 的面积为( )A .8cm 2B .4cm 2C .2cm 2D .以上答案都不对 3.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则△1的度数为( )A .45°B .65°C .70°D .75°4.如图所示,有一个简易平分角的仪器(四边形ABCD ),其中AB =AD ,BC =DC ,将点A 放在角的顶点处,AB 和AD 沿着角的两边张开,并分别与AQ ,AP 重合,沿对角线AC 画射线AE ,AE 就是△PAQ 的平分线这个平分角的仪器的制作原理是( )A .角平分线性质B .AASC .SSSD .SAS 5.如图,在ABC ∆中,AB BC =,AB△BC ,BE△AC ,△1=△2,AD=AB .下列结论中,正确的个数是( ) △△1=△EFD ; △BE=EC ; △BF=DF=CD ; △FD //BCA .1B .2C .3D .46.点(3,2)M 关于y 轴对称的点的坐标为( )A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)- 7.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的( )A .12B .14C .18D .116 8.如图,ABC 中,点D 在AC 上,连接BD ,△ABD=2△DBC ,△ADB=2△C ,△DBC=△A ,则图中共有等腰三角形( )A .0个B .1个C .2个D .3个9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .△EBC =△BACD .△EBC =△ABE 10.如图,△ABC 中,BD 平分△ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若△A=60°,△ABD=24°,则△ACF 的度数为( )A .48°B .36°C .30°D .24°二、填空题11.已知等腰三角形的一边长等于6,另一边长等于7,则它的周长为__________. 12.如图,BP 是ABC 中ABC ∠的平分线,CP 是ACB ∠的外角的平分线,如果20,ABP ∠=︒50ACP ∠=︒,则A ∠=____________.13.在ABC 中,已知3AB =,5AC =,AD 是BC 边上的中线,则AD 取值范围是____. 14.如图,G 、H 分别是四边形ABCD 的边AD 、AB 上的点,△GCH=45°,CD=CB=2,△D=△DCB=△B=90°,则△AGH 的周长为_______.15.如图,ABC ∠,ACB ∠的平分线相交于点F ,过点F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:△BDF ∆,CEF ∆都是等腰三角形;△DE BD CE =+;△ADE ∆的周长为+AB AC ;△BD CE =.其中正确的是________.16.如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,△AFB=_______°.三、解答题17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ABC中,D是BC的中点,DE△AB于E,DF△AC于点F,且△BDE=△CDF.求证:AD平分△BAC.19.如图,在ABC中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得EF ED=,连CF.()1求证:CF//AB()2若ABC 50∠=,连接BE ,BE 平分ABC ∠,AC 平分BCF ∠,求A ∠的度数.20.如图,已知等腰△ABC 顶角△A =36°.(1)在AC 上作一点D ,使AD =BD (要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD 是等腰三角形.21.如图,BD 平分ABC 的外角△ABP ,DA=DC ,DE△BP 于点E ,若AB=5,BC=3,求BE 的长.22.已知:如图,点B ,C ,D 在同一直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于点F ,AD 交CE 于点H ,(1)求证:△BCE△△ACD ;(2)求证:CF =CH ;(3)判断△CFH 的形状并说明理由.23.如图,在COP 中,OC=OP ,过点P 作PE ⊥OC 于点E ,点M 在OPE 内部,连接OM ,PM ,CM ,其中OM 、PM 分别平分EOP ∠、EPO ∠.(1)求OMP ∠的度数;(2)试判断CMP 的形状,并说明理由.24.如图,△ABC 中,△C =90°,△A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:DE =CD .25.如图,ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A ,C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B重合),过P作PE AB于点E,连接PQ交AB于点D.(1)若设AP=x,则PC= ,QC= ;(用含x的式子表示)(2)当△BQD=30°时,求AP的长;(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化,请说明理由.参考答案1.C【解析】【分析】根据三角形三边关系定理得出4-2<a<4+2,求出即可.【详解】由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有3.故选:C.【点睛】此题考查三角形三边关系定理,能根据定理得出5-3<a<5+3是解题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.C【详解】已知AM 是△ABC 的中线,△ABC 的面积为4cm 2,根据三角形的中线把三角形分成面积相等的两部分,可得△ABM 的面积为:21422cm ⨯=,故选C .3.D【解析】【分析】根据三角形内角和定理求出△DMC ,进而求出△AMF ,根据三角形外角性质得出△1=△A+△AMF ,代入求出即可.【详解】按如图方式标注各点,△△ACB=90°,△△MCD=90°,△△D=60°,△△DMC=30°,△△AMF=△DMC=30°,△△A=45°,△△1=△A+△AMF=45°+30°=75°,故选:D .【点睛】本题主要考查的是三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.4.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩△△ABC△△ADC (SSS ),△△BAC =△DAC .即AE 平分△BAD .△不论△DAB 是大还是小,始终有AE 平分△BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.5.C【解析】【分析】根据等腰直角三角形ABC 的“三合一”性质、角平分线的性质、全等三角形ADF ABF ∆≅∆的性质对以下选项进行一一验证即可.【详解】 解:在ABC ∆中,AB BC =,AB BC ⊥,BE AC ⊥,AE CE BE ∴==;故△正确;在ADF ∆和ABF ∆中,()12AD AB AF AF ⎧=⎪∠=∠⎨⎪=⎩公共边, ()ADF ABF SAS ∴∆≅∆,ADF ABF ∴∠=∠,,AB BC AB BC ⊥=,ABC ∴为等腰直角三角形,BE AC ⊥,90CEB AEB ∴∠=∠=︒,45ABF CBE ∴∠=∠=︒,45ADF ABF ∴∠=∠=︒45C ∠=︒,45ADF ABE ∴∠=∠=︒,45ADF C ∴∠=∠=︒,//DF BC ∴(同位角相等,两直线平行), 故△正确;ADF ABF ∆≅∆,DF BF ∴=(全等三角形的对应边相等). 又//DF BC ,BE EC =,EF DF ∴=,CD BF DF ∴==,故△正确;45EAB ∠=︒,12∠=∠,1122.52EAB ∴∠=∠=︒.又//DF BC ,45EFD EBC ∴∠=∠=︒,1EFD ∴∠≠∠;故△错误;综上所述,正确的说法有△△△三种;故选:C .【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定,解题的关键是充分利用了等腰三角形的“三合一”的性质.6.A【解析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】△y 轴对称的点的纵坐标相等,横坐标互为相反数,△点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.7.B【解析】【分析】设等腰直角三角形纸片的直角边为2,求出斜边,再根据折叠的特点发现规律,即可求解.【详解】解:设等腰直角三角形纸片的直角边为2=;2,周长为:;同理折叠二次后,直角边长为1=;1=+1;折叠四次后,直角边长为12=;△(1+2) △小等腰直角三角形的周长是原等腰直角三角形周长的14故选:B .【点睛】本题利用了:(1)折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)等腰直角三角形的性质,相似三角形的性质求解.8.D【分析】根据等腰三角形的判定分别证出DB=DC,AB=AD,AB=CB即可.【详解】解:图中共有等腰三角形3个,理由如下:△△ADB=△C+△DBC,△ADB=2△C,△△DBC=△C,△△BCD是等腰三角形,DB=DC,△△ABD=2△DBC,△△ABD=△ADB,△△ABD是等腰三角形,AB=AD,△△DBC=△A,△△A=△C,△△ABC是等腰三角形,AB=CB,故选:D.【点睛】本题考查了等腰三角形的判定以及三角形的外角性质;熟练掌握等腰三角形的判定是解题的关键.9.C【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】=,解:AB AC∴∠=∠,ABC ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,∴=,BE BC∴∠=∠,ACB BEC∴∠=∠=∠,BEC ABC ACB∴∠=∠,A EBC【点睛】本题考查了等腰三角形的性质,解题的关键是掌握当等腰三角形的底角对应相等时其顶角也相等,难度不大.10.A【解析】【详解】△BD平分△ABC,△△DBC=△ABD=24°,△△A=60°,△△ACB=180°﹣60°﹣24°×2=72°,△BC的中垂线交BC于点E,△BF=CF,△△FCB=24°,△△ACF=72°﹣24°=48°,故选A.11.19或20【解析】【分析】分腰长为6底为7和腰长为7底为6两种情况分类讨论即可求解.【详解】解:当等腰三角形腰长为6时,底为7,可以构成三角形,则周长为6+6+7=19;当等腰三角形腰长为7时,底为6,可以构成三角形,则周长为7+7+6=20.故答案为:19或20【点睛】本题考查了等腰三角形的定义和三角形三边关系,熟知等腰三角形边分为腰和底是解题关键,注意要判断三条线段是否构成三角形,这是求三角形周长的前提条件.12.60°【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出△A的度数.【详解】△BP是△ABC中△ABC的平分线,CP是△ACB的外角的平分线,△△ABC=2△ABP,△ACM=2△ACP,又△△ABP=20°,△ACP=50°,△△ABC=2×20°=40°,△ACM=2×50°=100°,△△A=△ACM-△ABC=60°,故答案为:60°.【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握“一个三角形的外角等于与它不相邻的两个内角之和”是解题的关键.13.1<AD<4.【解析】【分析】如图,首先倍长中线AD至E,连接CE,因此可以得到△ABD△△ECD,这样就有CE=AB,然后在△ACE中利用三角形的三边的关系即可求解.【详解】解:如图,延长AD至E,使DE=AD,连接CE,△AD是BC边上的中线,△BD=CD,△△ADB=△CDE,△△ABD△△ECD,△CE=AB,在△ACE中,AC−CE<AE<AC+CE,而AB=3,AC=5,△5−3<AE<5+3,△2<2AD<8,即1<AD<4.故答案为:1<AD<4.【点睛】此题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题.14.4【解析】【分析】≌,进而即可求解.把CDG绕点C逆时针旋转90°得到CBE△,可证CHG CHE【详解】解:△CD=CB=2,△D=△DCB=△B=90°,△四边形ABCD是正方形,△△A=90°,把CDG绕点C逆时针旋转90°得到CBE△,则CG=CE,△DCG=△BCE,△△GCH=45°,△△BCE+△BCH=△DCG+△BCH=90°-45°=45°,即:△HCE=△GCH,又△CH=CH,≌,△CHG CHE△GH=EH=BH+BE=BH+DG,△△AGH的周长= GH+AH+AG= BH+DG+AH+AG=AD+AB=2+2=4.【点睛】本题主要考查正方形的判定和性质,全等三角形的性质,添加辅助线构造全等三角形,是解题的关键.15.△△△【解析】【分析】△根据平分线的性质、平行线的性质以及等量代换可得△DBF=△DFB,即△BDF是等腰三角∆也是等腰三角形;△根据等腰三角形的性质可得:DF=BD,EF=EC,然后等量形,同理CEF代换即可判定;△根据等腰三角形的性质可得:DF=BD,EF=EC ,然后再判定即可;△无法判断.【详解】解:△△BF是△ABC的角平分线△△ABF=△CBF又△DE//BC△△CBF=△DFB△△ABF=△DFB△DB=DF,即△BDF是等腰三角形,∆是等腰三角形,故△正确;同理可得CEF△△△BDF是等腰三角形,△DB=DF同理:EF=EC△DE=DF+EF=BD+CE,故△正确;△△DF=BD,EF=EC△ADE∆的周长为AD+DE+AE=AD+DF+AE+EF= AD+BD+AE+CE=AB+AC,故△正确;△无法判断BD=CE,故△错误.故答案为△△△.【点睛】本题考查了等腰三角形的性质、角平分线的性质以及三角形内角和定理的应用,涉及面较广,因此灵活应用所学知识成为解答本题的关键.16.105°【解析】【分析】如图,作辅助线,构建全等三角形,证明△AEC△△CFH,得CE=FH,将CE转化为FH,与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时△AFB=105°.【详解】解:如图,作CH△BC,且CH=BC,连接BH交AD于M,连接FH,△△ABC是等边三角形,AD△BC,△AC=BC,△DAC=30°,△AC=CH,△△BCH=90°,△ACB=60°,△△ACH=90°−60°=30°,△△DAC=△ACH=30°,△AE=CF,△△AEC△△CFH,△CE=FH,BF+CE=BF+FH,△当F为AC与BH的交点时,BF+CE的值最小,此时△FBC=45°,△FCB=60°,△△AFB=105°,故答案为105°.【点睛】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.17.这个多边形的边数为7.【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和公式(n -2)•180°与外角和定理列出方程,求解即可.【详解】解:设这个多边形的边数为n ,根据题意,得(n -2)×180°=3×360°-180°,解得n=7.答:这个多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关. 18.证明见解析.【解析】【分析】求出△DEB =△DFC =90°,BD =CD ,根据全等三角形的判定得出△BED△△CFD ,根据全等三角形的性质得出DE =DF ,再推出答案即可.【详解】证明:△DE△AB ,DF△AC ,△△DEB =△DFC =90°,△D 是BC 的中点,△BD =CD ,在△BED 和△CFD 中,BDE CDF BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BED△△CFD (AAS ),△DE =DF ,△DE△AB 于E ,DF△AC 于点F ,△点D 在△BAC 的角平分线上,△AD 平分△BAC .【点睛】本题考查了全等三角形的性质和判定,角平分线的判定等知识点,能求出DE =DF 是解此题的关键.19.(1)证明见解析;(2)A 65∠=.【解析】【分析】(1)求出AED △CEF ,根据全等得出A ACF ∠∠=,根据平行线的判定得出即可; ()2求出A ACB ∠∠=,根据三角形内角和定理求出即可.【详解】()1证明:在AED 和CEF 中AE CE AED CEF DE FE =⎧⎪∠=∠⎨⎪=⎩AED ∴△()CEF SAS ,A ACF ∠∠∴=,CF//AB ∴;()2解:AC 平分BCF ∠,ACB ACF ∠∠∴=,A ACF ∠∠=,A ACB ∠∠∴=,A ABC ACB 180∠∠∠++=,ABC 50∠=,2A 130∠∴=,A 65∠∴=.【点睛】本题考查了全等三角形的性质和判定、平行线的性质和判定、三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.20.(1)见解析;(2)见解析【解析】【分析】(1)根据题意作AB 的垂直平分线;(2)根据题意求出△BDC=△C=72°,即可证明.【详解】(1)解:如图,点D为所作,;(2)证明:△AB=AC,△△ABC=△C=1(180°﹣36°)=72°,2△DA=DB,△△ABD=△A=36°,△△BDC=△A+△ABD=36°+36°=72°,△△BDC=△C,△△BCD是等腰三角形.【点睛】此题主要考查等腰三角形的性质,垂直平分线的尺规作图方法,以及垂直平分线的性质,解题的关键是熟知等腰三角形的判定与性质.21.1【解析】【分析】过点D作BA的垂线交AB于点H,分别证Rt△DEB△Rt△DHB和Rt△DEC△Rt△DHA,再利用全等三角形的性质即可求出BE的长.【详解】解:过点D作BA的垂线交AB于点H,△BD平分△ABC的外角△ABP,DH△AB,△DE=DH,在Rt△DEB 和Rt△DHB 中,DE DH DB DB=⎧⎨=⎩, △Rt△DEB△Rt△DHB (HL ),△BE =BH ,在Rt△DEC 和Rt△DHA 中,DE DH DC DA =⎧⎨=⎩, △Rt△DEC△Rt△DHA (HL ),△AH =CE ,由图易知:AH =AB−BH ,CE =BE +BC ,△AB−BH =BE +BC ,△BE +BH =AB−BC =5−3=2,而BE =BH ,△2BE =2,故BE =1.【点睛】本题考查全等三角形的性质与判定,通过观察题目,正确作出辅助线并通过三角形全等去推理是解题关键.22.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE△△ACD ;(2)利用△BCE△△ACD 得出△CBF=△CAH ,再运用平角定义得出△BCF=△ACH 进而得出△BCF△△ACH 因此CF=CH .(3)由CF=CH 和△ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)△△BCA=△DCE=60°,△△BCE=△ACD .又BC=AC 、CE=CD ,△△BCE△△ACD .(2)△△BCE△△ACD ,△△CBF=△CAH .△△ACB=△DCE=60°,△△ACH=60°.△△BCF=△ACH .又BC=AC ,△△BCF△△ACH .△CF=CH .(3)△CF=CH ,△ACH=60°,△△CFH 是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS .同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.23.(1)135︒;(2)CMP 是等腰直角三角形,理由见解析.【解析】【分析】(1)先求解90PEO ∠=︒,得到90EPO EOP ∠+∠=︒,由角平分线的性质证明()1452MPO MOP EPO EOP ∠+∠=∠+∠=︒,再利用三角形的内角和定理可得答案; (2)延长OM 交PC 于H , 利用等腰三角形的性质证明OH PC CH PH ⊥=,,再利用垂直平分线的性质证明:MC MP =,再求解=45CMH PMH ∠=∠︒,从而可得答案.【详解】解:(1) PE ⊥OC ,90PEO ∴∠=︒,90EPO EOP ∴∠+∠=︒,OM 、PM 分别平分EOP ∠、EPO ∠,1122MPO EPO MOP EOP ∴∠=∠∠=∠,,()11904522MPO MOP EPO EOP ∴∠+∠=∠+∠=⨯︒=︒, 18045135.OMP ∴∠=︒-︒=︒(2)CMP 是等腰直角三角形,理由如下:延长OM 交PC 于H ,OM 平分COP ∠,OC OP =,OH PC CH PH ∴⊥=,,MC MP ∴=,CMH PMH ∴∠=∠,135OMP ∠=︒,=45CMH PMH ∴∠=∠︒,90CMP ∴∠=︒,CPM ∴是等腰直角三角形.【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,等腰三角形的性质,垂直平分线的性质,等腰直角三角形的判定,掌握以上知识是解题的关键.24.(1)作图见解析;(2)证明见解析.【解析】【详解】【分析】(1)分别以A 、B 为圆心,以大于12AB 的长度为半径画弧,过两弧的交点作直线,交AC 于点D ,AB 于点E ,直线DE 就是所要作的AB 边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD ,再根据等边对等角的性质求出△DBA=△A=30°,然后求出△DBC=30°,从而得到BD平分△ABC,再根据角平分线的性质即可得.【详解】(1)如图,DE为所作;(2)如图,△DE垂直平分AB,△DA=DB,△△DBA=△A=30°,△△ABC=90°﹣△A=60°,△△CBD=30°,即BD平分△ABC,而DE△AB,DC△BC,△DE=DC.【点睛】本题考查了线段垂直平分线的作法、线段垂直平分线上的点到线段两端点的距离相等的性质、角平分线的性质,熟练掌握作图方法以及相关性质是解题的关键.25.(1)6−x,6+x;(2)2;(3)当点P、Q运动时,线段DE的长度不会改变.理由见解析【解析】【分析】(1)由△ABC是边长为6的等边三角形,设AP=x,则PC=6−x,QB=x,由此即可解决问题.(2)在Rt△QCP中,△BQD=30°,PC=12QC,即6−x=12(6+x),求出x的值即可;(3)作QF△AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q作匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE△△BQF,再由AE=BF,PE=QF且PE//QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=12AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【详解】解:(1)△△ABC是边长为6的等边三角形,△AB=BC=AC=6,设AP=x,则PC=6−x,QB=x,△QC=QB+BC=6+x,故答案为:6−x,6+x;(2)△在Rt△QCP中,△BQD=30°,△PC=12QC,即6−x=12(6+x),解得x=2,△AP=2;(3)当点P、Q运动时,线段DE的长度不会改变.理由如下:如图,作QF△AB,交直线AB的延长线于点F,连接QE,PF,又△PE△AB于E,△△DFQ=△AEP=90°,△点P、Q速度相同,△AP=BQ,△△ABC是等边三角形,△△A=△ABC=△FBQ=60°,在△APE和△BQF中,△△AEP=△BFQ=90°,△△APE=△BQF,△在△APE和△BQF中,AEP BFQA FBQAP BQ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△APE△△BQF(AAS),△AE=BF,PE=QF且PE△QF,△四边形PEQF是平行四边形,△DE=12EF,△EB+AE=BE+BF=AB,△DE=1AB,2又△等边△ABC的边长为6,△DE=3,△当点P、Q运动时,线段DE的长度不会改变.【点睛】本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.。
人教版八年级上学期期中数学试卷及答案

人教版八年级上学期期中数学试卷一、选择题。
(每题3分,共36分。
)1.(3分)在平面直角坐标系中,点(8,2)-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)如果点(1,1)M a a -+在x 轴上,则a 的值为( )A .1a =B .1a =-C .0a >D .a 的值不能确定3.(3分)在平面直角坐标系中,点A 的坐标为(2,1),将点A 向左平移3个单位长度,再向上平移1个单位长度得到点A ',则点A '的坐标为( )A .(1,2)-B .(5,0)C .(1,0)-D .(5,2)4.(3分)如果点(,)P m n 是第三象限内的点,则点(,0)Q n -在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上5.(3分)在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)6.(3分)下列函数(1)y x π=,(2)21y x =-+,(3)1y x =,(4)21y x =-中,是一次函数的有( ) A .4个 B .3个 C .2个 D .1个7.(3分)将直线31y x =+沿y 轴向下平移3个单位长度,平移后的直线所对应的函数关系式( )A .34y x =+B .32y x =-C .34y x =-D .32y x =+8.(3分)一次函数32y x =--的图象不经过第( )象限.A .一B .二C .三D .四9.(3分)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点(1,3)P ,则关于x 的不等式4x b kx +>+的解集是( )A .2x >-B .0x >C .1x >D .1x <10.(3分)若函数(0)y kx k =≠的图象过(2,3)-,则关于此函数的叙述不正确的是( )A .y 随x 的增大而增大B .32k =-C .函数图象经过原点D .函数图象过二、四象限11.(3分)以下列各组线段的长为边,能组成三角形的是( )A .2cm ,3cm ,4cmB .2cm ,3cm ,5cmC .2cm ,5cm ,10cmD .8cm ,4cm ,4cm12.(3分)如图,//a b ,165∠=︒,2140∠=︒,则3(∠= )A .100︒B .105︒C .110︒D .115︒二、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第一学期期中测试卷 .11 (考试时间:120分钟;分值:150分)
一.填空题(每空3分,共48分) 1. 9的平方根是________ 。
2. 点(2,3)关于y 轴对称的点的坐标为_________。
3. 函数2y x =
-中自变量x 的取值范围是_______________。
4. 已知一次函数y =(m+2)x+3,若y 随x 的增大而减小,则m 的取值范围
是_____________。
5. 过点(0,2)且与直线y =-x 平行的直线是__________。
6. 计算:2
)4(3-+-ππ的结果是_______________。
7. 在△ABC 中,AB=AC ,AB=8,∠B=15°,则AB 边上的高CD=______。
8. 等腰三角形的周长为30cm ,它的腰长为y cm 与底长x cm 的函数关系
式是_________________,自便量x 的取值范围为____________。
9.已知函数y=(k -2)
1
k x
-为正比例函数,则k=______。
10. 用“*”表示一种新运算:对于任意正实数b a 、,都有1+=*b b a 例如
41998=+=*,那么_______19615=*, _______)16(=**m m 。
11. 如图,在Rt △ABC 中,∠C=90°,直线BD 交AC 于D ,把直角三角形沿着直线
BD 翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A 等于____________。
12. 如图,DE 是AB 的垂直平分线,D 是垂足,DE 交BC 于E ,若BC=32cm ,AC=18cm ,则
△AEC 的周长为_______cm 。
.
13. 为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10t
时,水价为每吨1.2元;超过10t 时,超过部分按每吨1.8元收费.该市某户居民5月份用水x(t)(x>10),应交水费y 元,则y 与x 的函数关系式为_____________。
14. 点P 是等边三角形ABC 所在平面上一点,若P 和△ABC 的三个顶点所组成的△PAB 、
△PBC 、△PAC 都是等腰三角形,则这样的点P 有_______个。
二、选择题:(本大题共4小题,每小题3分,共12分)
A
D
C
E B
(第11题)
(第12题)
15.在下列实数中,无理数是 ( )
A .
13 B . π C . 16 D .227
16.下列各图中,为轴对称图形的是 ( )
17.等腰三角形的一个内角是50°,则另外两个角的度数分别是 ( )
A .65°,65°
B .50°,80°
C . 50°,50°
D . 65°,65°或50°,80° 18.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是 ( )
A .
B .
C .
D .
三、解答题
19. 计算(4分×2共8分)
(1)25—31-—144+327; (2)3(3+
3
)
20.(6分) 已知x 、y 都是实数,且y=2x -+2x -+8,求
x
y
的立方根。
21 .(6分)如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,.
(1)在图中作出ABC △关于y 轴的对称图形111A B C △.
A .
B .
C .
D .
(2)写出点111A B C ,,的坐标.
22.(8分) 已知一个一次函数y kx b =+,当4x =-时,y 的值为9,当2x =时,y 的
值为-3.
(1)求这个函数的解析式;
(2)在直角坐标系中画出这个函数的图象.
23.(8分) 已知直线y=kx+1交x 轴于A 点,直线y=mx+3交x 轴于B 点,两直线相交于
点C (—1,2)
(1)求A 点、B 点的坐标; (2)求△ABC 的面积。
24.(8分).如图,在四边形ABCD 中,AB=AD ,∠ABC=∠ADC 。
求证:BC=DC
第21题
x
y A
B C
O
5
2
4 6 -5
-2 A
25.(8分). 如图,在等边ABC △中,点D 、E 分别在边BC 、AB 上,且BD AE =,
AD 与CE 交于点F . (1)求证:AD CE =;
(2)求DFC ∠的度数.
26.(12分) 如图,在等腰R t △ABC 中,∠ACB =90°,D
为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)求证:AD ⊥CF ;
A E
F B
C
(2)连接AF,试判断△ACF是否为等腰三角形,并说明理由.
27.(12分)A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8
台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从
B市调运一台机器到C村和D村的运费分别是300元和500元。
(1)设B市运往C村机器x台,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?
28.(14分)如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB 上移动(0<x<3),过点P作直线l与x轴垂直。
(1)求点C的坐标;
(2)若A点坐标为(0,1),当点P运动到什么位置时,AP+CP最小;
(3)设△OBC 中位于直线l 左侧部分的面积为S ,求S 与x 之间的函数关系式。
制卷: 越江中学 李晓娴 审卷: 越江中学 高忠新
初二数学答案与提示
一.填空题(每空3分)
x
y
O
B
C
A
1.±3 2.(-2,3)3.X≥2
4. m<-2
5. y=-x+2
6. 1
7. 4
8. y=-1
2
x+15;0< x<15
9. -2
10. 15
11. 30°
12. 50
13. y=1.8x-6(x>10)
14. 10
二.选择题(每题3分)
15.B 16.C 17.D 18.C
三. 解答题
19. (1)-3; (2)4
20. x=2,y=8 立方根是 4.
21. (1)略 (2)A1(1,5)、 B1(1,0)、 C1(4,3) 22.(1)y=-2x+1 (2)图略
23. (1)A(1,0)B(-3,0)
(2)S△ABC=4
24.连结BD
∵AB=AD
∴∠ABD=∠ADB
∵∠ABC=∠ADC
∴∠CBD=∠CDB
∴BC=DC
25.(1)可由AE=BD,AC=AB,∠CAE=∠ABD
证△ABD≌△CAE
(2)由(1)可得∠ACE=∠BAD,
∠DFC=∠FAC+∠ACE
=∠FAC+∠BAD=∠BAC=60°
26. (1)证明:在等腰直角三角形ABC 中,
∵∠ACB =90o ,∴∠CBA =∠CAB =45°.
又∵DE ⊥AB ,∴∠DEB =90°,∴∠BDE =45°. 又∵BF ∥AC ,∴∠CBF =90°,
∴∠BFD =45°=∠BDE , ∴BF =DB .
又∵D 为BC 的中点,∴CD =DB ,即BF =CD . 在R t △CBF 和R t △ACD 中,
⎪⎩
⎪⎨⎧==∠=∠=︒,,90,AC CB ACD CBF CD BF ∴R t △CBF ≌R t △ACD , ∴∠BCF =∠CAD . 又∵∠BCF +∠GCA =90°,
∴∠CAD +∠GCA =90°,即AD ⊥CF ; (2) △ACF 是等腰三角形.
理由:由(1)知: CF =AD ,△DBF 是等腰直角三角形,且BE 是∠DBF 的平分线, ∴BE 垂直平分DF ,即AF =AD , ∴CF =AF ,
∴△ACF 是等腰三角形. 27. (1)w=200x+8600(0≤x ≤6)
(2)∵k=200>0 ∴W 随x 的增大而增大 ∴当x=0时总运费最少为8600元,调运方案为A 市运往C 村10台,运往D 村2台;
B 市6台全部运往D 村。
28. (1)C (2,2)
(2)点A 关于x 轴的对称点A 1为(0,-1),直线A 1C 的解析式为y=
3
2
x-1,直线A 1C 与x 轴的交点坐标是(
23,0),所以当点P 运动到(2
3
,0)时,AP+CP 最小; (3)当0<x ≤2时,S=
12
x 2; 当2<x <3时, S=3-(3-x)2 (或S=-x 2
+6x -6)。