高中物理连接体问题

合集下载

专题16 连接体问题 2022届高中物理常考点归纳

专题16  连接体问题  2022届高中物理常考点归纳

专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。

(1)求放手后A、B一起运动中绳上的张力F T。

(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。

解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。

【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。

支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。

【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。

高中物理连接体问题

高中物理连接体问题

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统 二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则隔离法三、连接体题型:1【例1】A 、B 平力N F A 6=推A ,用水平力N F B 3=拉B ,A 、B【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 物体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体1A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m2、连接体整体内部各部分有不同的加速度:【例2有一个环,箱和杆的总质量为M ,环的质量为m 加速度大小为a 时(a <g A. Mg + mg B. Mg —【练3】如图所示,一只质量为m 杆下降的加速度为( )A. gB. g M mC. g M m M +【练4个重4 N 的读数是(A.4 NB.23 NC.0 N【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。

当用火柴烧断O 处的细线瞬间,木块A 的加速度a A 多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。

要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)A BO球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。

高中物理复习--连接体问题

高中物理复习--连接体问题

如图1-15所示:把质量为M的的物体放在光滑的水平高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m的物体连接起来,求:物体M和物体m的运动加速度各是多大?⒈“整体法”解题采用此法解题时,把物体M和m看作一个整体,它们的总质量为(M+m)。

把通过细绳连接着的M与m之间的相互作用力看作是内力,既然水平高台是光滑无阻力的,那么这个整体所受的外力就只有mg了。

又因细绳不发生形变,所以M与m应具有共同的加速度a。

现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M和物体m所共有的加速度为:⒉“隔离法”解题采用此法解题时,要把物体M和m作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M与m之间的相互作用力T必须标出,而且对M和m单独来看都是外力(如图1-16所示)。

根据牛顿第二定律对物体M可列出下式:T=Ma ①根据牛顿第二定律对物体m可列出下式:mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M和物体m所共有的加速度为:最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M和m,已知M>m,可忽略阻力,求物体M和m的共同加速度a。

:【思路整理】⒈既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢?这有两方面的原因:①采用“整体法”解题只能求加速度a,而不能直接求出物体M与m之间的相互作用力T。

采用“隔离法”解联立方程,可以同时解出a与T。

因此在解答比较复杂的连接体运动问题时,还是采用“隔离法”比较全面。

②通过“隔离法”的受力分析,可以复习巩固作用力和反作用力的性质,能够使学生加深对“牛顿第三定律”的理解。

⒉在“连接体运动”的问题中,比较常见的连接方式有哪几种?比较常见的连接方式有三种:①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。

人教版高中物理必修第1册 第四章 专题1 连接体问题(整体法和隔离法)、临界问题

人教版高中物理必修第1册 第四章 专题1 连接体问题(整体法和隔离法)、临界问题
10.[河北衡水中学 2021 高一上月考]如图所示,质量 m=3 kg 的小球用细绳拴在倾角为 37°的光滑斜 面上,此时,细绳平行于斜面.g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是( AB )
A.当斜面以40 m/s2 的加速度向右加速运动时,细绳拉力为 40 N 3
解析
对五个物块整体受力分析有 F=5ma,物块 2 对物块 3 的作用力是物块 3、4、5 受到的合力,有 N=3ma, 解得 N=3F,A 错误;因为五个物块的加速度相等,质量相等,根据牛顿第二定律可知,每个物块受到的合
5 外力相等,B 错误;若把一块橡皮泥粘到物块 3 上,则整体的质量增加,其加速度减小,则物块 5 受到的合 外力减小,即物块 4 对 5 的作用力变小,C 正确;若撤走物块 5,物块 2 对 3 的作用力为 N′=12F,作用力变 小,D 错误.
A.从 0 到 t2 时刻,拉力 F 逐渐增大
B.t1 时刻,弹簧的形变量为 mgsin θ+ma k
C.t2 时刻,弹簧的形变量为
mgsin θ k
D.A、B 刚分开时的速度为 a(mgsin θ-ma) k
专题1 连接体问题(整体法和隔离法)、临界问题
刷题型
解析
从 0 到 t1 时刻,对 A、B 整体,根据牛顿第二定律得 F-2mgsin θ+kx=2ma,得 F=2mgsin θ-kx+2ma, 则知拉力 F 逐渐增大;从 t1 时刻 A、B 分离,t1~t2 时间内,对 B 分析,根据牛顿第二定律得 F-mgsin θ= ma,得 F=mgsin θ+ma,拉力 F 不变,故 A 错误.由题图乙可知,t1 时刻 A、B 分离,此时刻对 A 根据牛 顿第二定律有 kx1-mgsin θ=ma,解得 x1=mgsin θ+ma,开始时有 2mgsin θ=kx0,又 v12=2a(x0-x1),联

物理的连接体问题

物理的连接体问题

物理的连接体问题
物理的连接体问题是指在物理学中探讨物体之间如何相互连接、交互作用以及受力等问题。

在物理学中,物体之间的连接常常涉及到物体之间的接触、插入、固定等方式。

例如,一个简单的连接体问题可以是两个弹簧的连接方式,或者两个物体之间的摩擦力如何影响它们的运动。

连接体问题可以通过分析物体之间的接触面积、形状、材质等因素来研究。

例如,接触面积的大小决定了接触力的大小,形状的不匹配可能导致接触面不完全,从而影响连接体的稳定性。

此外,连接体问题还涉及到物体之间的受力情况。

通过分析连接体上的受力情况,可以研究物体之间的力的平衡和不平衡情况,以及力的传递和转化等问题。

为了解决连接体问题,物理学采用了多种分析方法和工具,如力学、力的平衡和受力分析、力矩分析、静力学、材料力学等。

总之,连接体问题是物理学中研究物体之间连接、交互作用和受力等问题的重要内容,对于理解物体之间的相互作用和力的传递具有重要意义。

高中物理课件(人教版2019必修第一册)专题 连接体问题(课件)

高中物理课件(人教版2019必修第一册)专题  连接体问题(课件)

F FBA
FAN
mA
mg
B
FmB
FN FAB
mg
解:(隔离法)对A、B分别进行受力分析
对B: FAB mBa 对A: F FBA mAa
a F mA mB
FAB
mB mA mB
F
【例题1】两个物体A和B,质量分别为mA和mB,互相接触放在光滑水平地面上,如 图所示,对物体A施以水平的推力F,则物体A对物体B的作用力是?
(3)竖直加速上升(不考虑阻力), FT =? F
mF/(m+M)
M
(4)斜面光滑,加速上升, FT =?
mF/(m+M)
m
F M m
结论
如图所示,一起做匀加速运动的物体系统,若外力F作用于1(质量为m1)上,则1和2的相互
作用力F12=
m2 F m1 m2
,若作用于2(质量为m2)上,则F12=
连接体共同加速专题,解决此类问题的方法是整体法和隔离法 (一)整体法 1.整体法是指把连接体内所有物体组成一个系统作为整体考虑,分析其受 力情况,对整体列方程求解。 2.整体法可以求系统的加速度或外界对系统的作用力。整体法不涉及系统 间物体相互作用的内力。 3.若系统内各个物体具有相同的加速度a,整体所受到的合力为F,牛顿第 二定律整体法的方程为:F=(m1+m2+m3+…+mn)a
m1 F m1 m2
。此“协议”与有无摩
擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物
、何种连接物(轻绳、轻杆、轻弹簧)无关,与物体系统处于平面、斜面、竖直无关。
四.连接体问题的分析方法——整体法与隔离法
项目

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型考点一连接体问题[知能必备]1.连接体问题模型弹力连接、摩擦力连接、轻绳连接、轻杆连接、弹簧连接.2.解题方略:要充分利用“加速度相等”这一条件或题中特定条件,交替使用整体法与隔离法解题.可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.[典例剖析](多选)如图,三个质量均为1 kg的物体A、B、C叠放在水平桌面上,B、C用不可伸长的轻绳跨过一光滑轻质定滑轮连接,A与B之间、B与C之间的接触面以及轻绳均与桌面平行,A与B之间、B与C之间以及C与桌面之间的动摩擦因数分别为0.4、0.2和0.1,重力加速度g取10 m/s2,设最大静摩擦力等于滑动摩擦力.用力F沿水平方向拉物体C,以下说法正确的是()A.拉力F小于11 N时,不能拉动CB.拉力F为17 N时,轻绳的拉力为4 NC.要使A、B保持相对静止,拉力F不能超过23 ND.A的加速度将随拉力F的增大而增大【思路点拨】解此题关键有两点:(1)利用整体法和隔离法选取研究对象,进行正确受力分析,注意摩擦因数的不同及摩擦力的大小和方向.(2)正确判断“相对滑动”的临界条件.解析:AC当C物体即将运动时,C物体水平方向受桌面给C的向右的摩擦力f桌,绳子向右的拉力T,B给C向右的摩擦力f BC,其中f桌=0.1(m A+m B+m C)g=3 N,f BC=0.2(m A +m B)=4 N,当即将滑动时应有F=f桌+f BC+T,T=f BC=4 N,可解得F=11 N,故A正确;因此B和C的加速度大小相等,在A和B即将发生相对滑动,对A受力分析可得,f AB=0.4m A g =m A a,对AB整体受力分析可得T-f BC=(m A+m B)a,对C物体受力分析可得F-T-f BC-f 桌=m C a ,联立解得F =23 N ,说明A 和B 发生相对滑动的临界力大小为F =23 N ,故C 正确;当F =17 N 时,A 和B 没有发生相对滑动,此时对AB 整体T -f BC =(m A +m B )a 1,对C 物体受力分析F -T -f BC -f 桌=m C a 1,联立解得T =8 N ,故B 错误;当拉力增大,A 和B 发生相对滑动时,则A 物体受到滑动摩擦力,加速度为a =0.4g =4 m/s 2,加速度不变,D 错误.[题组精练]1.如图所示,在倾角为30°的光滑斜面上,有质量相等的两物块用轻绳连接,用沿斜面的力F =40 N 使两物块一起向上加速运动.则轻绳的拉力为( )A .10 NB .20 NC .30 ND .40 N解析:B 以两物块为研究对象,利用牛顿第二定律,有F -2mg sin 30°=2ma ,以靠下的物块为研究对象,设轻绳的拉力为F T ,根据牛顿第二定律,有F T -mg sin 30°=ma ,代入数据,解得F T =20 N ,ACD 错误,B 正确.2.(2021·苏州一模)如图所示,光滑水平面上放置质量分别为m 、2m和3m 的三个木块,其中质量为2m 和3m 的木块间用一不可伸长的水平轻绳相连,轻绳能承受的最大拉力为F T .现用水平拉力F 拉质量为3m 的木块,使三个木块以同一加速度运动,则以下说法正确的是( )A .质量为2m 的木块受到四个力的作用B .当F 逐渐增大到F T 时,轻绳刚好被拉断C .当F 逐渐增大到1.5F T 时,轻绳还不会被拉断D .轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为23F T 解析:C 质量为2m 的木块受五个力的作用,A 项错误;当绳的拉力为F T 时,对m 和2m 有F T =3ma ,此时对整体有F =6ma ,可得F =2F T ,故B 项错误,C 项正确;轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为13F T ,故D 项错误. 3.如图所示,一根不可伸长的轻绳一端系住小球,另一端固定在光滑直角斜劈顶端O 点,轻绳与斜面平行,斜劈底面水平.使小球和斜劈做下列运动,下面5种运动中,小球对斜面的压力可能为零的是( )①一起水平向左加速; ②一起水平向右加速;③一起竖直向上加速; ④一起竖直向下加速;⑤绕过O点的竖直轴一起匀速转动.A.①②③B.②③⑤C.②④⑤D.①③④解析:C①若一起水平向左加速,小球受合外力水平向左,斜面对小球的支持力的水平分力与绳子拉力的水平分力的合力水平向左,因此支持力不可能为零,①错误;②一起水平向右加速,当绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,绳子拉力的水平分力就是合外力,②正确;③一起竖直向上加速,绳子拉力与支持力的合力竖直向上,大于重力,绳子拉力不可能为零,因此支持力不可能为零,③错误;④一起竖直向下加速,当加速度等于g时,绳子拉力减小为零时,此时斜面的支持力也为零,④正确;⑤绕过O点的竖直轴一起匀速转动,合力指向转轴,当角速度足够大时,绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,⑤正确.考点二板块模型[知能必备]1.审题建模:求解时应先仔细审题,弄清楚题目的含义、分析清楚每一个物体的受力情况、运动情况.2.求加速度:准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变).3.做好两分析[典例剖析](经典高考题)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B 上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A 被敲击后获得的初速度大小v A ;(2)在左边缘再次对齐的前、后,B 运动加速度的大小a B 、a B ′;(3)B 被敲击后获得的初速度大小v B .【解题策略】(1)读题审题:①A 与B 、B 与地面间的动摩擦因数均为μ――→想到地面与B 间的摩擦力是A 与B 间的摩擦力的2倍②左边缘再次对齐时恰好相对静止――→想到B 与A 的位移差等于第一次A 的位移(2)情境转化:①敲击A 后―→A 做匀减速直线运动②敲击B 后―→B 做匀减速直线运动、A 做匀加速直线运动③A 、B 相对静止后―→A 、B 整体做匀减速直线运动解析:(1)由牛顿运动定律知,A 加速度的大小a A =μg由匀变速直线运动得2a A L =v 2A 解得v A =2μgL (2)设A 、B 的质量均为m对齐前,B 所受合外力大小F =3μmg由牛顿运动定律F =ma B ,得a B =3μg对齐后,A 、B 整体所受合外力大小F ′=2μmg由牛顿运动定律F ′=2ma B ′,得a B ′=μg(3)经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a A 则v =a A t ,v =v B -a B tx A =12a A t 2,x B =v B t -12a B t 2 且x B -x A =L解得v B =22μgL答案:(1)2μgL (2)3μg μg (3)22μgL解答“板块”问题时要注意:“一个转折、两个关联”(1)一个转折:即滑块与长木板达到相同的速度时或滑块离开长木板时的受力情况以及运动状态的变化为转折点.(2)两个关联:即发生转折前后滑块和长木板的受力情况以及滑块与长木板的位移之间的关联,必要时要通过作草图把握关系.当有外力作用在木板上的物块或木板上时,一般用动力学观点借助牛顿运动定律和运动学公式就能求解,做好两物体的受力分析和运动过程分析是解决此类问题的关键点和突破口.[题组精练]1.如图所示,静止在水平地面上的木板(厚度不计)质量为m1=1 kg,与地面间的动摩擦因数μ1=0.2,质量为m2=2 kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v0=4 m/s的水平速度从左端滑上木板,经过t=0.6 s滑离木板,g取10 m/s2,以下说法正确的是() A.木板的长度为1.68 mB.小物块离开木板时,木板的速度为1.6 m/sC.小物块离开木板后,木板的加速度大小为2 m/s2,方向水平向右D.小物块离开木板后,木板与小物块将发生碰撞解析:D由于μ2m2g>μ1(m1+m2)g,对木板由牛顿第二定律得μ2m2g-μ1(m1+m2)g=m1a1,解得a1=2 m/s2,即物块在木板上以a2=μ2g=4 m/s2向右减速滑行时,木板以a1=2 m/s2向右加速运动,在0.6 s时,物块的速度v2=1.6 m/s,木板的速度v1=1.2 m/s,B错误;物块滑离木板时,物块位移为x2=v0+v22t=1.68 m,木板位移x1=v12t=0.36 m,两者相对位移为x=x2-x1=1.32 m,即木板长度为1.32 m,A错误;物块离开木板后,木板做减速运动,加速度大小为a1′=2 m/s2,方向水平向左,C错误;分离后,在地面上物块会滑行x2′=v222a2=0.32m,木板会滑行x1′=v212a1′=0.36 m,所以两者会相碰,D正确.2.如图甲所示,一长方体木板B放在水平地面上,木板B的右端放置着一个小铁块A,在t=0时刻,同时突然给A、B初速度,其中A的初速度大小为v A=1 m/s,方向水平向左;B的初速度大小为v B=14 m/s,方向水平向右,木板B运动的v­t图像如图乙所示.已知A、B的质量相等,A与B及B与地面之间均有摩擦(动摩擦因数不等),A与B之间的最大静摩擦力等于滑动摩擦力,A始终没有滑出B,取重力加速度g=10 m/s2.(提示:t=3 s时刻,A、B达到共同速度v=2 m/s;3 s时刻至A停止运动前,A向右运动的速度始终大于B的速度)求:(1)小铁块A向左运动相对地面的最大位移;(2)B运动的时间及B运动的位移大小.解析:(1)由题图乙可知,0~3 s内A做匀变速运动,速度由v A=-1 m/s变为v=2 m/s则其加速度大小为a A =v -v A t 1=2-(-1)3m/s 2=1 m/s 2,方向水平向右. 当A 水平向左运动速度减为零时,向左运动的位移最大,则s =v 2A 2a A=0.5 m. (2)设A 与B 之间的动摩擦因数为μ1,由牛顿第二定律得μ1mg =ma A则μ1=a A g=0.1 由题图乙可知,0~3 s 内B 做匀减速运动,其速度由v B =14 m/s 变为v =2 m/s则其加速度大小为a B =v B -v t 1=14-23m/s 2=4 m/s 2 方向水平向左设B 与地面之间的动摩擦因数为μ2,由牛顿第二定律得μ1mg +2μ2mg =ma B则μ2=a B -μ1g 2g=0.15 3 s 之后,B 继续向右做匀减速运动,由牛顿第二定律得2μ2mg -μ1mg =ma B ′则B 的加速度大小为a B ′=2μ2g -μ1g =2 m/s 2方向水平向左3 s 之后运动的时间为t 2=v a B ′=22s =1 s 则B 运动的时间为t =t 1+t 2=4 s0~4 s 内B 的位移x B =v B +v 2t 1+v 2t 2=25 m ,方向水平向右. 答案:(1)0.5 m (2)4 s 25 m3.(2021·山东省泰安市高三检测)如图所示,水平面上有一长度为L 的平板B ,其左端放置一小物块A (可视为质点),A 和B 的质量均为m ,A 与B 之间、B 与水平面之间的动摩擦因数均为μ=0.50,开始时A 和B 都静止,用一个水平推力作用到平板B 上,使A 和B 恰好能保持相对静止一起向右匀加速运动.当位移为x 时,将原来的推力撤去并同时用另一水平推力作用到A 上,使A 保持原来的加速度继续匀加速运动,直到脱离平板.已知重力加速度为g .求:(1)平板B 的最大速度;(2)物块A 脱离平板时的速度大小v .解析:(1)设A 和B 一起做匀加速运动的加速度大小为a ,对A ,有μmg=ma解得a=0.5g将原推力撤去时平板B的速度最大,得v2m=2ax解得B的最大速度v m=gx(2)推力作用到A上之后,A保持匀加速运动,有x A=v m t+12at2v=v m+atv2-v2m=2ax A平板B做匀减速运动,有μ·2mg-μmg=ma′解得a′=0.5g讨论两种情况:(a)物块A脱离平板时平板未停下,则对B,有x B=v m t-12a′t2A、B的位移关系满足x A-x B=L联立可解得t=2L g代入数据可得A脱离平板时的速度v=gx+0.5gL此时B的速度满足v B=v m-a′t>0可解得相应的条件为L<2x(b)物块A脱离平板时平板停下,则对B,有v2m=2a′x BA、B的位移关系同样满足x A-x B=L解得A脱离平板时的速度v=2gx+gL相应的条件为L≥2x答案:(1)gx(2)见解析考点三传送带模型[知能必备]1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看作“传送带”模型,如图(a)(b)(c)所示.2.解题关键(1)关注两个时刻①初始时刻:物体相对于传送带的速度或滑动方向决定了该时刻的摩擦力方向.②物体与传送带速度相等的时刻:摩擦力的大小、方向或性质(滑动摩擦力或静摩擦力)可能会发生突变.(2)注意过程分解①摩擦力突变点是加速度突变点,也是物体运动规律的突变点,列方程时要注意不同过程中物理量莫混淆.②摩擦力突变点对应的状态是前一过程的末状态,也是后一过程的初状态,这是两个过程的连接点.(3)物体在倾斜传送带上运动,物体与传送带速度相同后需比较tan θ与μ的大小关系:μ>tan θ,速度相等后一起匀速;μ<tan θ,速度相等后物体的加速度向下,根据v与a的方向关系即可判定运动情况.[典例剖析]如图所示,一水平传送带以4 m/s的速度逆时针传送,水平部分长L=6 m,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个可视为质点的物块无初速度地放在传送带最右端,已知物块与传送带间的动摩擦因数μ=0.2,g取10 m/s2.求物块从放到传送带上到第一次滑回传送带最远端所用的时间.【解题指导】解析:物块在传送带上,根据牛顿第二定律得,μmg=ma解得a =μg =2 m/s 2设经过时间t 1物块的速度与传送带的速度相同,则有:v =at 1,解得t 1=v a =42 s =2 s ; 经过的位移x 1=v 22a=4 m<6 m , 在传送带上匀速运动的时间t 2=L -x 1v =0.5 s物块在斜面上的加速度a ′=mg sin 30°m=5 m/s 2, 在斜面上的运动时间t 3=2v a ′=85s =1.6 s , 返回传送带在传送带上减速到零(即第一次滑回传送带最远端)的时间t 4=v a =42s =2 s 则t =t 1+t 2+t 3+t 4=6.1 s.答案:6.1 s传送带问题的分析技巧(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.[题组精练]1.如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v ­t 图像(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用解析:B 0~t 1时间内小物块向左做匀减速直线运动,t 1时刻小物块向左速度减为零,此时离A 处的距离达到最大,故A 错误;t 2时刻前小物块相对传送带向左运动,之后小物块相对传送带静止,t 2时刻小物块相对传送带滑动的距离达到最大,故B 正确;0~t 2时间内小物块先减速,后反向加速,小物块受到大小不变,方向始终向右的摩擦力作用,故C 错误;t 2时刻小物块向右速度增加到与传送带相等,t 2时刻之后小物块与传送带保持相对静止随水平传送带一起匀速运动,摩擦力消失,故D 错误.2.(2021·湖北荆州二模)如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB 足够长,传送皮带轮以大小为v =2 m/s 的恒定速率顺时针转动.一包货物以v 0=12 m/s 的初速度从A 端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8)(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A 端共用了多长时间?解析:(1)设货物刚滑上传送带时加速度为a 1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f =ma 1垂直传送带方向:mg cos θ=F N又F f =μF N由以上三式得:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s 2=10 m/s 2,方向沿传送带向下.(2)货物速度从v 0减至传送带速度v 所用时间设为t 1,位移设为x 1,则有:t 1=v -v 0-a 1=1 s ,x 1=v 0+v 2t 1=7 m. (3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a 2,则有mg sin θ-μmg cos θ=ma 2,得:a 2=g (sin θ-μcos θ)=2 m/s 2,方向沿传送带向下.设货物再经时间t 2,速度减为零,则t 2=0-v -a 2=1 s 货物沿传送带向上滑的位移x 2=v +02t 2=1 m 则货物上滑的总距离为x =x 1+x 2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a 2.设下滑时间为t 3,则x =12a 2t 23,代入解得t 3=2 2 s. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为t =t 1+t 2+t 3=(2+22) s. 答案:(1)10 m/s 2,方向沿传送带向下 (2)1 s 7 m (3)(2+22) s3. (2021·安徽省马鞍山市高三下学期二模)有一水平足够长的传送带,以3 m/s 的速度沿顺时针方向匀速运转,传送带右端与倾角为37°的粗糙固定斜面底端B 平滑连接,一质量为1 kg 的小滑块从斜面上A 点由静止释放,经过一段时间后,最终停在传送带与斜面的连接处.小滑块与斜面、传送带之间的动摩擦因数均为0.5,A 、B 间距离为4 m .重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块从释放到第一次到达B 点经历的时间;(2)小滑块第三次通过B 点的速度大小;(3)从释放到最终停止,小滑块运动的总路程.解析:(1)小滑块从A 点由静止释放向下运动mg sin θ-μmg cos θ=ma 1得a 1=2 m/s 2s AB =12a 1t 21得t 1=2 s(2)小滑块第一次滑上传送带的速度为v =a 1t 1=4 m/s此后先向左匀减速,而后向右匀加速,v =4 m/s>v 0=3 m/s ,当滑块和传送带速度相同时开始匀速,所以滑块返回B 点时速度为v 0=3 m/s滑块沿斜面向上运动的加速度为ma 2=mg sin θ+μmg cos θ解得a 2=10 m/s 2滑块第一次以初速度v 0冲上斜面后上升的最大距离x 1,滑块第三次到B 时速度为v 1,则v 20=2a 2x 1v 21=2a 1x 1联立得v 1=v 0 15=355m/s (3)滑块第一次以v 滑上传送带,向左运动的位移为s 1=v 22μg=1.6 m 滑块第二次以初速度v 1滑上传送带,由于v 1<v 0,滑块从传送带上返回B 点时速度大小仍为v 1,由第(2)问的分析知,此后滑块每次滑下斜面的速度大小是滑上斜面速度的 15 v 1=v 015 v 2=v 0⎝⎛⎭⎫152 v 3=v 0⎝⎛⎭⎫153 ……滑块第一次滑上斜面之后在斜面上的总路程s 2=2v 202a 2+2v 212a 2+2v 222a 2+… 联立可得s 2=1.125 m滑块第三次滑上传送带之后在传送带上的总路程s 3=2v 212μg +2v 222μg +2v 232μg+… 联立可得s 3=0.45 m小滑块运动的总路程s 总=s AB +2s 1+s 2+s 3=8.775 m答案:(1)2 s (2)355m/s (3)8.775 m 限时规范训练(三) 连接体问题、板块模型、传送带模型建议用时60分钟,实际用时________一、单项选择题 1.如图所示,质量分别为3 kg 、5 kg 的P 、Q 两滑块,用轻弹簧连接后置于光滑水平地面上.现用大小F =8 N 的水平拉力拉Q ,使P 、Q 一起向右做匀加速直线运动.则此过程中弹簧的弹力大小为( )A .3 NB .4 NC .5 ND .8 N解析:A 对PQ 的整体,由牛顿第二定律F =(m P +m Q )a ,对P ,T =m P a, 解得T =3 N ,故选项A 正确.2.(2021·山东省聊城市高三下学期模拟)车厢中用细线悬挂小球,通过细线的倾斜程度来检测车辆在行进过程中的加速度.如图所示,质量相同的两个光滑小球通过轻质细线分别系于车的顶部,左侧小球与车厢左侧壁接触,两细线与竖直方向的夹角相同,拉力大小分别为T 1和T 2.下列说法正确的是( )A .车可能正在向左做加速运动B .两细线的拉力T 1=T 2C .当汽车加速度增大时,T 1变小D .当汽车加速度减小时,T 2增大解析:B 对右边小球进行受力分析,沿细线方向斜右上方的拉力,和竖直向下的重力.设细线与竖直方向夹角为θ,根据牛顿第二定律有ma =mg tan θ,T 2=mg cos θ,加速度水平向右,可以判断小车可能向右加速,或者向左减速,故A 错误;同理,对左边小球受力分析,可得ma =F N -T 1sin θ,T 1=mg cos θ,联立可得T 1=T 2,故B 正确;根据上面选项的分析,可知当汽车加速度增大时, T 1不变,故C 错误;根据上面选项的分析,可知当汽车加速度减小时,小球2的细线的夹角变小,T 2变小.故D 错误.3.如图所示,在平直公路上行驶的厢式货车内,用轻绳AO 、BO 在O 点悬挂质量为5 kg 的重物,轻绳AO 、BO 与车顶部夹角分别为30°、60°.在汽车加速行驶过程中,为保持重物悬挂在O 点位置不动,重力加速度为g ,厢式货车的最大加速度( )A.g 2B .3g 3 C.3g 2 D .3g解析:B 对小球受力分析可得F A sin 30°+F B sin 60°=mg ,F B cos 60°-F A cos 30°=ma ,联立解得12·⎝⎛⎭⎫233mg -33F A -32F A =ma ,整理得33mg -233F A =ma ,当F A =0时,a 取得最大值a =33g .故选B 项. 4.如图所示,一水平方向足够长的传送带以恒定的速度v 1=2 m/s 沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2=5 m/s 沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为v 2′,物体与传送带间的动摩擦因数为0.2,则下列说法正确的是( )A .返回光滑水平面时的速率为v 2′=2 m/sB .返回光滑水平面时的速率为v 2′=5 m/sC .返回光滑水平面的时间为t =3.5 sD .传送带对物体的摩擦力先向右再向左解析:A 因为传送带足够长,且顺时针转动,又因为v 1<v 2,则物体会先向左减速直到速度为0,再向右加速,最后匀速,则物体返回光滑水平面时的速率为v 2′=2 m/s ,故A 正确,B 错误;由牛顿第二定律得a =f m =μmg m =μg =2 m/s 2,则物体减速的时间为t 1=v 2a=2.5 s ,物体减速的位移为x 1=12at 21=6.25 m ,物体反向加速的时间为t 2=v 1a=1 s ,反向加速的位移为x 2=12at 22=1 m ,物体匀速的时间为t 3=x 1-x 2v 1=2.625 s ,故物体返回光滑水平面的时间为t =t 1+t 2+t 3=6.125 s ,故C 错误;由于物体是先向左减速,后反向加速,最后匀速返回,所以传送带对物体的摩擦力先向右后为0,故D 错误.5.质量为1 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示.A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 运动的v ­t 图像如图乙所示,取g =10 m/s 2,则物块A 的质量为( )A .1 kgB .2 kgC .3 kgD .6 kg解析:C 由图像可知,物块在0~1 s 内的加速度大小为a 1=2 m/s 2,以物块为研究对象,由牛顿第二定律得μ1mg =ma 1,解得:μ1=0.2,木板在0~1 s 内的加速度大小为a 2=2 m/s 2,在1 s ~3 s 内物块与木板相对静止,一起做匀减速运动,加速度大小为a 3=1 m/s 2,AB 同速后整体为研究对象,由牛顿第二定律得:μ2(M +m )g =(M +m )a 3,解得:μ2=0.1,再以B 为研究对象,在0~1 s 内水平方向受到两个滑动摩擦力,由牛顿第二定律得:μ1mg -μ2(M +m )g =Ma 2代入数据解得A 的质量m =3 kg.6.用货车运输规格相同的两层水泥板,底层水泥板固定在车厢内,为防止货车在刹车时上层水泥板撞上驾驶室,上层水泥板按如图所示方式放置在底层水泥板上.货车以3 m/s 2的加速度启动,然后以12 m/s 匀速行驶,遇紧急情况后以8 m/s 2的加速度刹车至停止.已知每块水泥板的质量为250 kg ,水泥板间的动摩擦因数为0.75,最大静摩擦力等于滑动摩擦力,取g =10 m/s 2,则( )A .启动时上层水泥板所受摩擦力大小为1875 NB .刹车时上层水泥板所受摩擦力大小为2000 NC .货车在刹车过程中行驶的距离为9 mD .货车停止时上层水泥板相对底层水泥板滑动的距离为0.6 m解析:C 摩擦力提供给水泥板最大的加速度为a ′=μg =7.5 m/s 2启动时,加速度小于最大加速度,上层水泥板所受摩擦力为静摩擦力,大小为f =ma =250×3 N =750 N ,A 错误;刹车时,加速度大于最大加速度,上层水泥板所受摩擦力为滑动摩擦力,其大小为f =μmg=1875 N ,B 错误;货车在刹车过程中行驶的距离为s =v 22a=9 m ,C 正确;货车停止时间为t =v a =1.5 s ,该时间内,上层水泥板滑动的距离为s ′=v t -12μgt 2=18-8.4375=9.5625 m ,货车停止时上层水泥板相对底层水泥板滑动的距离为Δs =s ′-s =0.5625 m ,D 错误.7.(2021·山东济宁高三检测)如图所示,三个物体A 、B 和C 的质量分别为2m 、m 和m ,A 、B 叠放在水平桌面上,A 通过跨过光滑定滑轮的轻绳与C 相连,定滑轮左端的轻绳与桌面平行,A 、B 间的动摩擦因数为μ(μ<1),B 与桌面间的动摩擦因数为μ3,A 、B 、桌面之间的最大静摩擦力等于相对应的滑动摩擦力,重力加速度为g ,下列说法正确的是( )A .三个物体A 、B 、C 均保持静止B .轻绳对定滑轮的作用力大小为2mgC .若A 、B 之间发生相对滑动,则需满足μ<0.2D .若A 、B 之间未发生相对滑动,则A 受到的摩擦力大小为1+2μ3mg 解析:C 物块A 与B 之间的最大静摩擦力f 1=2μmg ,物块B 与桌面间的最大静摩擦力f 2=3mg ×μ3=μmg ,显然f 2<f 1,由于μ<1,即μmg <mg ,物块B 一定与桌面间发生相对滑动,A 错误;由于物块C 加速下降,绳子拉力T <mg ,因此轻绳对定滑轮的作用力大小F =2T <2mg ,B 错误;若A 与B 间恰好将发生相对滑动时,A 与B 的加速度恰好相等,此时对物块B :f 1-f 2=ma ,对A 、B 整体:T -f 2=3ma ,对物块C: mg -T =ma ,解得μ=0.2,因此若A 、B 之间发生相对滑动,则需满足μ<0.2,C 正确;若A 、B 之间未发生相对滑动,则对整体mg -f 2=4ma ,对物块B :f -f 2=ma ,可得A 受到的摩擦力大小f =1+3μ4mg ,D 错误. 8.(2021·湖北省八市高三下学期3月联考)如图所示,传送带以10 m/s 的速度逆时针匀速转动,两侧的传送带长都是16 m ,且与水平方向的夹角均为37°.现有两个滑块A 、B (可视为质点)从传送带顶端同时由静止滑下,已知滑块A 、B 的质量均为1 kg ,与传送带间动摩擦因数均为0.5,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )A .滑块A 先做匀加速运动后做匀速运动B .滑块A 、B 同时到达传送带底端C .滑块A 、B 到达传送带底端时的速度大小相等D .滑块A 在传送带上的划痕长度为5 m解析:D 两滑块都以10 m/s 的初速度沿传送带下滑,且mg sin 37°>μmg cos 37°,故传送带对两滑块的滑动摩擦力均沿斜面向上,大小也相等,故两滑块沿斜面向下的加速度大小相同,为a =g sin 37°+μg cos 37°=10 m/s 2,滑块A 先加速,加速到传送带速度所需位移为x 1=v 202a =5 m<16 m ,所需时间为t 1=v 0a=1 s ,加速到传送带速度后,由于mg sin 37°>μmg cos 37°,故不能和传送带保持相对静止,摩擦力反向,之后加速度为a ′=g sin 37°-μg cos 37°=2 m/s 2,加速到传送带底端L -x 1=v 0t 2+12a ′t 22,解得时间t 2=1 s ,到达底端共用时t =t 1+t 2=2 s ,B 滑块一直以加速度a ′加速至传送带底端L =12a ′t ′2,解得t ′=4 s ,AB 错误;A 到达底端时的速度为v A =v 0+a ′t 2=10 m/s +2×1 m/s =12 m/s ,B 到达底端时的速度为v B =a ′t ′=2×4 m/s =8 m/s ,C 错误;加速到传送带速度之时的相对位移为Δx 1=v 0t 1-x 1=10×1 m -5 m =5 m ,加速到传送带速度以后,相对位移为Δx 2=11-v 0t 2=1 m ,滑块比传送带速度快,会覆盖之前的划痕,滑块A 在传送带上的划痕长度为5 m ,D 正确.二、多项选择题9.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6 s 时恰好到达B 点,重力加速度g 取10 m/s 2,则( )。

人教版高中物理必修第一册精品课件 第四章 运动和力的关系 08-重难专题11 动力学连接体问题

人教版高中物理必修第一册精品课件 第四章 运动和力的关系 08-重难专题11 动力学连接体问题
第四章 运动和力的关系
关联的物体连接(叠放,并排或由轻绳、细杆联系)在一起的物体组称为连 接体。连接体一般具有相同的运动情况(速度、加速度)。 2.常见连接体模型
3.连接体的外力和内力 如果以物体(包括物体间的绳、弹簧等)组成的系统为研究对象,则系统之外的作用 力为该系统受到的外力,而系统内各物体间的相互作用力为该系统的内力。 4.处理连接体问题的常用方法 (1)整体法:若连接物具有相同的加速度,可以把连接体看成一个整体作为研究对象, 只分析外力,不分析内力,然后依据牛顿第二定律列方程求解。 (2)隔离法:把研究的物体从周围物体中隔离出来,单独进行分析,从而求解物体之间 的相互作用力。
D
十年寒窗磨利剑, 一朝折桂展宏图!
注意:①此“协议”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须 相同); ②此“协议”与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关; ③物体系统处于水平面、斜面或竖直方向上一起加速运动时此“协议”都成立。
D
(1)求滑块的加速度大小;
(2)求绳对滑块的水平拉力大小;
5.整体法与隔离法的选择 (1)整体法的研究对象少,受力少,方程少,所以连接体问题优先采用整体法。 (2)涉及物体间相互作用的内力时,必须采用隔离法。 (3)若连接体内各物体具有相同的加速度且需要求解物体间的相互作用力,就可以先 用整体法求出加速度,再用隔离法分析其中一个物体的受力,即“先整体求加速度,后 隔离求内力”。 (4)若已知某个物体的受力情况,可先隔离该物体求出加速度,再以整体为研究对象 求解外力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采用整体法求解)【例1】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为,,今用水平力推A,用水平力拉B,A、B间的作用力有多大?【练1】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为,物体B与斜面间无摩擦。

在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为,物体B的质量为m,则它们的加速度a及推力F的大小为()A.B.C.D.【练2】如图所示,质量为的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为的物体,与物体1相连接的绳与竖直方向成角,则()A. 车厢的加速度为B. 绳对物体1的拉力为C. 底板对物体2的支持力为D. 物体2所受底板的摩擦力为2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M,环的质量为m。

已知环沿着杆向下加速运动,当加速度大小为a时(a<g),则箱对地面的压力为()A. Mg + mgB. Mg—maC. Mg + maD. Mg + mg – ma【练3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖直杆。

当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。

则杆下降的加速度为()A. B. C. D.【练4】如图所示,在托盘测力计的托盘内固定一个倾角为30°的光滑斜面,现将一个重4 N的物体放在斜面上,让它自由滑下,那么测力计因4 N物体的存在,而增加的读数是()N 3 N N N【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。

当用火柴烧断O 处的细线瞬间,木块A 的加速度a A 多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。

要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。

f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( )A .a 最大B .c 最大C .同样大D .b 最小4、如图所示,小车的质量为M,正在向右加速运动,一个质量为m 的木块紧靠在车的前端相对于车保持静止,则下列说法正确的是( )A.在竖直方向上,车壁对木块的摩擦力与物体的重力平衡B.在水平方向上,车壁对木块的弹力与物体对车壁的压力是一对平衡力C.若车的加速度变小,车壁对木块的弹力也变小D.若车的加速度变大,车壁对木块的摩擦力也变大 5、物体A 、B 叠放在斜面体C 上,物体B 的上表面水平,如图所示,在水平力F 的作用下一起随斜面向左匀加速运动的过程中,物体A 、B 相对静止,设物体B 给物体A 的摩擦力为,水平地面给斜面体C 的摩擦力为,(),则( )A. B. 水平向左 C. 水平向左 D. 水平向右6、如图3所示,质量为M 的斜劈形物体放在水平地面上,质量为m 的粗糙物块以某一初速度沿劈的斜面向上滑,至速度为零后加速返回,而物体M 始终保持静止,则在物块m 上、下滑动的整个过程中( )A BCOF a b cA. 地面对物体M的摩擦力方向没有改变;B. 地面对物体M的摩擦力先向左后向右;C. 物块m上、下滑时的加速度大小相同;D. 地面对物体M的支持力总小于7、如图所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=,小车足够长,求物体从放在小车上开始经t=通过的位移大小.(g取10m/s2)8、如图6所示,质量为的物体A沿直角斜面C下滑,质量为的物体B上升,斜面与水平面成θ角,滑轮与绳的质量及一切摩擦均忽略不计,求斜面作用于地面凸出部分的水平压力的大小。

9、如图10所示,质量为M的滑块C放在光滑的桌面上,质量均为m两物体A和B用细绳连接,A平放在滑块上,与滑块间动摩擦因数为,细绳跨过滑轮后将B物体竖直悬挂,设绳和轮质量不计,轮轴不受摩擦力作用,水平推力F作用于滑块,为使A和B与滑块保持相对静止,F至少应为多大?10、在粗糙的水平面上有一质量为M的三角形木块,两底角分别为、,在三角形木块的两个粗糙斜面上,有两个质量为、的物体分别以、的加速度沿斜面下滑。

三角形木块始终是相对地面静止,求三角形木块受到静摩擦力和支持力?§ 牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为 。

二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。

应用牛顿第二定律列方程不考虑 力。

如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。

三、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+D.F m21扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。

例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?【针对训练】1.如图光滑水平面上物块A 和B 以轻弹簧相连接。

在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为( ) 、0、0C.BA A m m am +、B A A m m a m +-、a m m BA-2.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。

撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( ) =f 2=0 =0,f 2=F =3F ,f 2=F 32=F ,f 2=0 3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=,要使物体不致下滑,车厢至少应以多大的 加速度前进?(g =10m/s 2)4.如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=。

在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直 方向θ=30°角,则F 应为多少?(g =10m/s 2)【能力训练】1.如图所示,质量分别为M、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ2.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。

小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加 速度大小为( ) B.g m m M - D.g mmM + 3.如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( ) 增大 增大 变小不变4.为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( )A.(M+m )gB.(M+m )g -maC.(M+m )g+maD.(M -m )g 5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计 的薄板,将薄板上放一重物,并用手将重物往下压,然后突 然将手撤去,重物即被弹射出去,则在弹射过程中,(即重 物与弹簧脱离之前),重物的运动情况是( ) A.一直加速B.先减速,后加速C.先加速、后减速D.匀加速6.如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块 C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和A = ,a B= 。

7.如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块 A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当滑块至 少以加速度a =向左运动时,小球对滑块的压力等 于零。

当滑块以a =2g 的加速度向左运动时,线的拉力大小 F = 。

8.如图所示,质量分别为m 和2m的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A、B 上的最大拉力F A 与F B 之比为多少?9.如图所示,质量为80kg 的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N ,则斜面的倾角θ为多少?物体对磅秤的静摩擦力为多少?10.如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,弹簧的长度比自然长度伸长了L 。

相关文档
最新文档