高考物理连接体模型问题归纳
高考物理连接体模型问题归纳

高考物理连接体模型问题归纳
高考物理连接体模型是指物理学中用来研究物体在力的作用下受到的变形和位移的模型。
连接体模型可以帮助我们理解物体在力的作用下的运动规律,并为解决工程中的问题提供理论支持。
下面是一些关于高考物理连接体模型的问题归纳:
力的三要素:力的大小、方向和作用点。
力的平衡:力的总和为零。
力的合成:多个力可以合成为一个力。
力的叉积:力可以产生转动效应。
力的平衡方程:对于一个物体,所有作用在物体上的力的总和为零。
力的矩:力可以产生弯曲效应。
力的压弯:力可以产生压弯效应。
专题05 连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)

专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。
专题16 连接体问题 2022届高中物理常考点归纳

专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。
(1)求放手后A、B一起运动中绳上的张力F T。
(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。
解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。
【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。
支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。
【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。
高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳广西合浦廉州中学秦付平两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题就是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,就是力学中能考查的重要内容。
从连接体的运动特征来瞧,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
从能量的转换角度来说,有动能与势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。
一、判断物体运动情况例1如图1所示,在不计滑轮摩擦与绳质量的条件下,当小车匀速向右运动时,物体A的受力情况就是( )A.绳的拉力大于A的重力B.绳的拉力等于A的重力C.绳的拉力小于A的重力D.拉力先大于A的重力,后小于重力解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向与与绳垂直的方向进行正交分解,分别就是v2、v1。
如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。
A的速度等于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。
点评:此类问题通常就是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体与被动运动物体的加速、减速的不一致性。
解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。
二、求解连接体速度例2质量为M与m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。
求当M滑至容器底部时两球的速度。
两球在运动过程中细线始终处于绷紧状态。
解析:设M滑至容器底部时速度为,m的速度为。
根据运动效果,将沿绳的方向与垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能守恒定律有:,联立两式解得:,方向水平向左;方向竖直向上。
点评:作为连接两个物体的介质绳,能实现力与能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。
新高考物理专题-机械能守恒的连接体模型

机械能守恒的连接体模型江苏省姜堰中学 唐玉兵【要点分析】模型一、速率相等的连接体模型如图所示,是A 、B 两物体组成的系统,当释放B而使A 、B 运动的过程中,A 、B 的速度均沿绳子方向,在相等时间内A 、B 运动的路程相等,则A 、B的速率相等。
【典型例题】例1、如图所示,B 物体的质量是A 物体质量的12,在不计摩擦阻力的情况下,A 物体自H 高处由静止开始下落。
以地面为参考平面,当物体A 的动能与其势能相等时,物体A 距地面的高度是( )A.15HB.25HC.45HD.13H 【参考答案】B【解析】 设当物体A 距离地面h 时,其动能与势能相等,对A 、B 组成的系统由机械能守恒定律得:又根据题意可知, 解得: 故选项B 正确。
【要点分析】模型二、角速度相等的连接体模型如图所示,是A 、B 两物体组成的系统,当释放A 、B 后,绕垂直纸面的固定轴O 转动(图中未画出),在相同时间内,A 、B 转过的角度相等,则A 、B 转过的角速度相等。
【典型例题】211()()22A A A m g H h m m v -=+例2、如图,质量分别为m和2m的两个小球A和B,中间用长为2L的轻杆相连,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止释放,在B球顺时针转动到最低位置的过程中( )A.A、B两球的角速度大小始终相等B.重力对B球做功的瞬时功率一直增大C.B球转动到最低位置时的速度大小为23 gLD.杆对B球做正功,B球机械能不守恒【参考答案】A C【解析】A、B两球用轻杆相连,角速度大小始终相等,选项A正确;杆在说位置时,重力对B球做功的瞬时功率为零,杆在竖直位置时,B球的重力和速度方向垂直,重力对B球做功的瞬时功率也为零,但在其他位置重力对B球做功的瞬时功率不为零,因此,重力对B球做功的瞬时功率先增大后减小,选项B错误;设B 球转动到最低位置时的速度为v,两球角速度大小相等,转动半径相等,所以两球的线速度大小也相等,对A、B两球和杆组成的系统,由机械能守恒定律得:解得:选项C正确;B球的重力势能减少了2mgL,动能增加了2mgL/3,机械能减少了,所以杆对B球做负功,选项D错误。
高中物理连体模型总结

精讲3 牛顿运动定律连体问题在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问题。
常见的连体模型:①用轻绳连接②直接接触③靠摩擦接触连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
处理方法:整体法与隔离法相结合例1:如图所示,U形框B放在粗糙斜面上刚好静止。
若将物体A放入放入U形框B内,问B是否静止。
例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。
原来说F约为mg,为什么?拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。
(g取10m/s2)例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。
若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么?例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。
开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少?拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于()A.1:1 B.m1:m2C.m2:m1D.m12:m22小结1.连接体问题,和解决连接体问题的方法,即整体法和隔离法。
2.整体法就是把整个系统作为一个研究对象来分析的方法。
不必考虑系统的内力的影响,只考虑系统受到的外力,依据牛顿第二定律列方程求解 .一般用整体法求加速度.3.隔离法是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。
需要求内力时,一般要用隔离法。
高中物理专题连接体模型

专题1:连接体模型1、如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力()A.方向向右,逐渐减小B.方向向左,逐渐减小C.方向向右,大小不变D.方向向左,大小不变2、(多选)如图所示,在光滑的地面上,水平外力F 拉动小车和木块一起做加速运动,小车质量为M ,木块质量为m ,设加速度大小为a ,木块和小车之间的动摩擦因数为µ,则在这个过程中,木块受到的摩擦力大小是()A.F-MaB.maC.m mM FD.µmg3、如图所示,有材料相同的P 、Q 两物块通过轻绳相连,并在拉力F 作用下沿斜面向上运动,轻绳与拉力F 的方向均平行于斜面。
当拉力F 一定时,Q 受到绳的拉力()A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关4、物块A 、B 放在光滑的水平地面上,其质量之比m A ∶m B =2∶1。
现用水平3N 的拉力作用在物体A 上,如图14所示,则A 对B 的拉力等于()A.1NB.1.5NC.2ND.3N5、a 、b 两物体的质量分别为m 1、m 2,由轻质弹簧相连。
当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,如图所示。
则()A.x 1一定等于x 2B.x 1一定大于x 2C.若m 1>m 2,则x 1>x 2D.若m 1<m 2,则x 1<x 26、(多选)如图所示,质量为m2的物体,放在沿平直轨道向左行驶的车厢底板上,并用竖直细绳通过光滑的定滑轮连接质量为m 1的物体。
当车向左匀加速运动时,与物体m 1相连接的绳与竖直方向成θ角,m 2与车厢相对静止。
则()A.车厢的加速度为gsinθB.绳对物体m1的拉力T为m1gcosθC.底板对物体m2的支持力FN为(m2-m1)gD.物体m2所受底板的摩擦力f为m2gtanθ7、如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。
高考经典物理模型:连接体问题

连接体问题的求解思路【例题精选】【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。
当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大?分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。
对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。
因此,这一道连接体的问题可以有解。
解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。
因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。
A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。
对两个物体分别列牛顿第二定律的方程:对m A满足F-T= m A a ⑴对m B满足T = m B a ⑵⑴+⑵得 F =(m A+m B)a ⑶经解得: a = F/(m A+m B)⑷将⑷式代入⑵式可得T= Fm B/(m A+m B)小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。
如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。
若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。
②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,同学们必须掌握。
【例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力。
分析:仔细分析会发现这一道题与例1几乎是一样的。
把第1、第2木块看作A 物体,把第3、4、5木块看作B 物体,就和例1完全一样了。
因5个木块一起向右运动时运动状态完全相同,可以用整体法求出系统的加速度(也是各个木块共同加速度)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳牵连物”连接体模型问题归纳
广西合浦廉州中学秦付平
两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。
从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。
一、判断物体运动情况
例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是()
A.绳的拉力大于A的重力
B.绳的拉力等于A的重力
C.绳的拉力小于A的重力
D.拉力先大于A的重力,后小于重力
解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。
如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。
A的速度等
于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。
点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。
解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。
二、求解连接体速度
例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。
求当M滑至容器底部时两球的速度。
两球在运动过程中细线始终处于绷紧状态。
解析:设M滑至容器底部时速度为,m的速度为。
根据运动效果,将沿绳的方向和垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能
守恒定律有:,联立两式解得:,方向水平向左;方向竖直向上。
点评:作为连接两个物体的介质绳,能实现力和能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。
三、考查机械能守恒定律应用
例3如图3所示,一轻绳绕过无摩擦的两个轻质小定滑轮O1、O2和质量m B=m的小球连接,另一端与套在光滑直杆上质量m A=m的小物块连接,已知直杆两端固定,与两定滑轮在同一竖直平面内,与水平面的夹角θ=60°,直杆上C点与两定滑轮均在同一高度,C点到定滑轮O1的距离为L,重力加速度为g,设直杆足够长,小球运动过程中不会与其他物体相碰。
现将小物块从C点由静止释放,试求:
(1)小球下降到最低点时,小物块的机械能(取C点所在的水平面为参考平面);
(2)小物块能下滑的最大距离;
(3)小物块在下滑距离为L时的速度大小.
解析:(1)设此时小物块的机械能为E1.由机械能守恒定律得:
;
(2)设小物块能下滑的最大距离为s m,由机械能守恒定律有:,而:
,代入解得:。
(3)设小物块下滑距离为L时的速度大小为v,此时小球的速度大小为v B,则:,
,解得:。
例4如图4所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮,一柔软的细线跨过定滑轮,两端分别与物块A和B连接,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升,物体A与斜面间无摩擦,设当A沿斜面下滑s距离后,细线突然断了,求物块B上升的最大高度H.
解析:设物块沿斜面下滑 s距离时的速度为v,由机械能守恒得(4m+m)v2=4mgssin30°-mgs①,细线突然断开的瞬间,物块B竖直上升的速度为v,此后B做竖直上抛运动,设继续上升的距离为h,由机
械能守恒得mv2=mgh②,物块B上升的最大高度H=h+s③,由①②③解得H=1.2s。
点评:应用机械能守恒定律求解多个物体组成的系统问题是近几年物理高考的热点,系统应用机械能守恒必须注意外力只有重力(或弹力)做功,内力做功但代数和必须为零,解题的关键是正确分析问题所涉及的物理过程。
四、考查研究对象的选取
例5如图5所示,半径为R的定滑轮不计质量,不计轮轴的摩擦,滑轮上挂一条长为L的铁链(L>10R),两边垂下相等的长度,由于轻微的干扰,使滑轮转动,且铁链与滑轮无相对滑动,当滑轮转过90°时,其角速度多大?
解析:滑轮转动而带动铁链,滑轮边缘的线速度等于铁链移动的瞬时速度。
对于铁链,只有重力做功,
符合机械能守恒定律。
此过程中铁链随滑轮转过的长度:,如图5所示,整条铁链的动能可看作是由原部分移至位置,其重力势能的减少转变而来的,而之外的其余部分可认为对整条铁链动能的变化无贡献。
设单位长度铁链的质量为m,则对铁链,根据机械能守恒定律有:
,得铁链的速度,因,故滑轮在此时刻的角速度,
,以上解法不仅巧用等效研究对象,而且运用机械能守恒定律的另一种表达式,避开了参考平面的选择,简化了解题过程。
点评:本题解决的关键是要选取研究对象,还注意运动过程的分析,同时也要求对运动的合成与分解有一定的掌握。
五、考查功能关系
例6 如图6所示,光滑的圆柱被固定在水平台上,用轻绳跨过圆柱体与质量分别为的两小球相连,开始时让方在平台上,两边绳绷直,两球从静止开始运动,其中上升,下降,当上升到圆柱体的最高点时,绳子突然崩裂,发现恰能做平抛运动,求应为的多少倍?
解析:系统运动过程中只有系统的重力做功,机械能守恒,设球上升到圆柱体最高点的时候速度为,在该过程中绳长保持不变,在任意时刻两球具有相同的速率。
由题意分析可知球上升的高度为
,经过的路程为,等于球下落的高度,则:
,球做平抛运动,在顶点处仅受到重力,又因为该过程是圆周运动的一部分,在顶点处:,解得,代入上式解得:。
六、与弹簧联系考查
例7如图7所示,已知轻弹簧发生弹性形变时所具有的弹性势能E p=kx2,其中k为弹簧的劲度系数,x为其形变量.现有质量为m1的物体与劲度系数为k的轻弹簧相连并静止地放在光滑的水平桌面上,弹簧的另一端固定,按住物块m1,弹簧处于自然长度,在m1的右端连一细线并绕过光滑的定滑轮接一个挂钩.现在将质量为m2的小物体轻轻地挂在挂钩上,设细线不可伸长,细线、挂钩、滑轮的质量及一切摩擦均不计,释放m1求:(1)m1速度达最大值时弹簧伸长的长度;(2)m2的最大速度值。
解析:(1)根据题意有:F T-kx=m1a①,m2g-F T=m2a②,由①②得m2g-kx=(m1+m2)a③,当a=0时,m1、m2速率达最大值,所以x=。
(2)系统机械能守恒,以弹簧原长处为弹性势能零点,m2刚挂上时的位置为重力势能零点,则系统初态机械能为零,故有:(m1+m2)v2+kx2-m2gx=0⑤,将④式代入⑤式解得v=±,故m2的最大速度为。
结语:以上举例仅仅是以绳为介质构成的连接体在重力场中的问题,在其他受力场也同样出现,在电磁场中两个以上的细杆动生切割磁感线,在闭合回路中产生感应电流,进而通过安培力的作用,使两杆彼此产生制约,从而实现能量的传递,就构成了电磁场的连接体问题。
它的原型就来源于绳连物问题,因此通过力学绳连物问题的分析,培养物理过程分析能力,尤其是加强矢量合成与分解、功能思想和几何关系等知识点的强化,提高运用数学知识解决物理问题的能力,是深化提高学生学科思维品质的重要切入点。