2.1随机变量及其分布函数

合集下载

第二章 随机变量及其分布(第2讲)

第二章  随机变量及其分布(第2讲)
分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ

e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效

应用数理统计第二章

应用数理统计第二章
x1 x2 { | X () x1} { | X () x2}.
3、右连续性:F ( x 0) F ( x); 至多可列个间断点.
4、F () lim F ( x) lim P( X x) 0; F () lim F ( x) lim P( X x) 1.
n
称X 服从参数为n, p的二项分布,记X ~ B(n, p).
2、二项分布 B(n, p) 当n 1时即退化为两点分布.
参数n, p对分布的影响.
若P( X k0 ) max P( X k ), 则称k0为最可能出现次数.
k
b(k ; n, p) (n 1) p k 1 . 设0 p 1, b(k; n, p) P( X k ), 则有 b(k 1; n, p) k (1 p)
解 :由性质4得, F () A 1;
x 0 0
故B 1.
又由右连续性得, lim F ( x) A B F (0) 0;
1 e x , x 0; 从而r.v. X 的分布函数为F ( x) 0, x 0.
例2 : 在半径为2的圆内等可能地任意投点,以X 表示投 的点与圆心的距离试求 . X的分布函数.
解 : a 若x 0, 则{X x}是不可能事件, 于是F ( x) 0;
x2 b 若0 x 2, 则F ( x) P{ X x} P{0 X x} ; 4
c 若x 2, 则{X x}是必然事件, 于是F ( x) 1.
0, x 0; 1 2 从而X 的分布函数F ( x) x , 0 x 2; 4 1, x 2.
k 2

概率论 高等院校概率论课件JXHD2-1

概率论 高等院校概率论课件JXHD2-1

第二章随机变量及其分布§2.1随机变量及其分布函数§2.2 离散型随机变量及概率分布§2.3 连续型随机变量及概率分布§2.4 多维随机变(向)量及其分布§2.5 随机变量的独立性§2.6随机变量函数的分布基本要求重点与难点JXHD2-7概率篇CH2LX基本要求1.理解随机变量、随机变量的分布函数概念及性质。

2.理解概率分布的概念及其性质。

3.会利用概率分布及分布函数计算有关事件的概率。

4.掌握六种常用分布,会查泊松分布、正态分布表。

5.了解多维随机变量的概念。

了解二维随机变量的联合分布函数及其性质,了解二维随机变量的联合概率分布及其性质,并会用它们计算有关事件的概率。

6.知道二维随机变量的边缘分布以及与联合分布的关系,了解条件分布。

7.理解随机变量独立性的概念及应用独立性进行有关计算。

8.会求简单随机变量函数的概率分布及两个独立随机变量的函数(和、最大值、最小值)的分布。

重点与难点1.随机变量的分布函数概念及性质。

2.概率分布(离散型随机变量的分布律,连续型随机变量的概率密度)的概念及性质。

3.概率分布与分布函数的关系及正态分布的有关计算。

4.二维随机变量的边缘分布以及与联合分布的关系。

5.随机变量独立性及应用。

6.简单随机变量函数的分布。

1.随机变量的分布函数、概率分布及其关系。

2.二维随机变量的边缘分布及计算。

3.随机变量函数的分布及两个独立随机变量的函数的分布。

§2.1 随机变量及其分布函数掷骰子试验}654321{,,,,,=Ω; 掷硬币试验}{T H ,=Ω 一.随机变量 [引例1] 掷骰子试验,}654321{,,,,,=Ω,令 ),,,,,(654321)(==i i i X 则X 是定义在Ω上的单值实函数,称X 为随机变量。

[引例2] 掷硬币试验,样本空间}{T H ,=Ω,令⎩⎨⎧===Te H e e Y ,,01)(则Y 是定义在Ω上的单值实函数,称 Y 为随机变量。

随机变量及其分布

随机变量及其分布


p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率

概率论与数理统计-随机变量及其分布

概率论与数理统计-随机变量及其分布


直接对上式求导有
二、连续型随机变量函数的分布
81
例 18

二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2

三、离散型随机变量及其分布律
18

四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布

随机变量及其分布

随机变量及其分布
• 定义1如果对于随机变量X及其分布函数F(x),存在非负可积函数 • f(x),使得对于任意实数x有
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回

概率论与数理统计课件第2章

概率论与数理统计课件第2章

2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =


X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数

分布函数

分布函数

F () lim F ( x) 1, F () lim F ( x) 0
x
x
(3) 右连续性:F(x)是右连续函数,即对任意的x0,有
lim
x
x
0F(x)F来自(x0)
➢这三个基本性质是判别分布函数的充要条件。
2
§ 2.1 随机变量及其分布函数
一、随机变量的分布函数

例1
证明F ( x) 1 [arctan x ], x
2
➢是一个分布函数。
证 显然F(x)在整个数轴上是连续、单调严增函数,且
F () lim F ( x) 1, F () lim F ( x) 0
x
x
因此它满足分布函数的三条基本性质,故F(x)是一个分布 函数。
该函数称为柯西分布函数。
3
§2.1 随机变量及其分布函数
例2 设随机变量的分布函数为:
A Bex x 0 F(x)
0 x0
其中 0 是常数。 求 A, B。
解 因为分布函数右连续,故
又由F () 1得A 1, 从而B 1
§2.1 随机变量及其分布函数
二、用分布函数求事件的概率
随机变量X 的分布函数F(x)=P{Xx}本身就是事件的概率。
容易得到 P{X a} F (a) F (a 0) 前面已得到 P{a X b} F (b) F (a)
P{a X b}
F(b) F(a)
1
二、随机变量的分布函数
2、分布函数的性质
F(x) P{X x}
容易证明分布函数F(x)具有以下三条基本性质:
(1) 单调性:F(x)是定义在整个实数轴(–,+)上的单调 非减函数,即对任意的x1 < x2,有 F(x1) F(x2);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布函数具有以下基本性质: 1、F ( x )为单调不减的函数 事实上:F ( x2 ) F ( x1 ) P{ x1 x x2 } 0
想 想 2、0 F ( x ) 1,且 lim F ( x ) 1,常记为F ( ) 1 为 x lim F ( x ) 0,常记为F ( ) 0 什 x 么 3、F ( x 0) F ( x ),即F ( x )为又连续函数 ?
容易知道对于任意实数x1 , x2 x1 x2),有 ( P{ x1 X x2 } P{ X x2 } P( X x1 ) F ( x2 ) F ( x1 ) 因此,若已知X 的分布函数,就能知道X 落在任一区间 (x1 , x2 ]上的概率,
在这个意义上说,分布函数完整地描述了随机变量的统计规律性
概率论主要是利用随机变量来描述和研究随机现象, 而利用分布函数就能很好的表示各事件的概率
例如: P{ X a} 1 P{ X a} 1 F ( a ) P{ X a} F ( a 0) P{ X a} F ( a ) F ( a 0) P{a X b} F (b 0) F ( a )等等
在有些试验中,试验结果看来与数值无 关,但我们可以引进一个变量来表示它的各 种结果.也就是说,把试验结果数值化. 正如裁判员在运动场上不叫运动员的名 字而叫号码一样,二者建立了一种对应关系.
定义
设随机试验为 E ,其样本空间为
, 如果对于每个 ,都有一个实数
X ( ) 和它对应,于是就得到一个定义在 上的实值单值函数 X ( ) ,称 X ( ) 为随机变

二、随机变量与随机事件的关系 对所考察的随机现象,当引入随机变量以 后,随机事件即可用随机变量满足某关系式来 描述,反之,给出随机变量X满足某关系式, 它将表达随机现象中的某个事件。 比如:例1中,
例2中,事件{点数不少于3次}可表示为X 3.
X 1 X 0
表示该试验中“正面朝上”事件。
量。


X ( )
R
随机变量通常用大写字母 X,Y,Z或希腊字母ζ,η等表示
而表示随机变量所取的值 时,一般采用小写字母x,y,z等.
例如,从某一学校随机选 一学生,测量他的身高.
我们可以把可能的身高看作随机变量X, 然后我们可以提出关于X 的各种问题. 如 P(X>1.7)=? P(X≤1.5)=? P(1.5<X<1.7)=?
表示该试验中“反面朝上”事件。
三、随机变量的分类 通常分为两类: 随 机 变 量 离散型随机变量
所有取值可以逐个 一一列举
连续型随机变量
全部可能取值不仅 无穷多,而且还不 能一一列举,而是 充满一个区间.
随机变量概念的产生是概率论发展史上的
重大事件。引入随机变量后,对随机现象统计
规律的研究,就由对事件及事件概率的研究扩
P{x1 X x2 }
但由于
P{x1 X x2} P{X x2} P{X x1}
由此可见要研究 P{x1 X x2} 就归结为研究形如
P{ X x2 }
的概率问题
不难看出 P{ X x}的值常随不同的x而变化, 他是x的函数,我们称这函数为分布函数 定义 2.2 设X 是随机变量,x是任意实数, F ( x ) P{ X x}称为X 的分布函数
大为对随机变量及其取值规律的研究。 这两种类型的随机变量因为都是随机变量, 自然有很多相同或相似之处,但因其取值方式
不同,又有其各自的特点。
学习时请注意它们各自的特点和描述方法。
四、分布函数 为了研究随机变量的概率规律,并由于随机变 量X的可能取值不一定能逐一列出,因此我们在 一般情况下需要研究随机变量落在某区间 ( x1 , x2 ] 中的概率,即求
, 2, 3, 4, 5, 6 1
这个试验结果本身就是一个数.(与数值有关) 我们引入一个变量 X
X X () k ,

是随机变量, k 时,X k ,这里 X
它是依试验结果的不同而随机地取值1,2, 3,4,5,6。
类似的例子: 七月份长沙的最高温度; 每天从长沙站下火车的人数; 昆虫的产卵数;
例1 投掷一枚硬币,观察出现正反面的 情形。试验有两个可能结果:
1 — 出现正面 2 — 出现反面
我们引入一个变量如下:
1, X X ( ) 0,
ቤተ መጻሕፍቲ ባይዱ
1 2
这个变量可以看作是定义在样本空间
1 , 2
上的函数,称其为随机变量。实际上此变量 是依试验结果的不同而随机地取值1或0。 例2 掷一枚骰子面上出现的点数。
第一节
随机变量及分布函数
一、随机变量的定义
在上一章中,我们研究了随机事件与概率 的一些基本概念和理论。为了更深入地研究随 机试验的结果,揭示其相应的随机现象的统计 规律性,从本章起,我们将引进随机变量的概 念。其基本想法是把随机试验的结果数量化, 即用一个变量X 来描述试验的结果。先看下面 的例子。
相关文档
最新文档