2018届高中毕业班数学学科备考关键问题指导系列(不等式选讲)
2018年高考数学二轮复习专题七系列4选讲第二讲不等式选讲教案

第二讲 不等式选讲(选修4-5)[考情分析]不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法以及数学归纳法在不等式中的应用等,命题的热点是绝对值不等式的解法,以及绝对值不等式与函数的综合问题的求解.本部分命题形式单一、稳定,是三道选考题目中最易得分的,所以可重点突破.[真题自检]1.(2017·高考全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解析:(1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2016·高考全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解析:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得-1<x ≤-12;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得12≤x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.3.(2015·高考全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解析:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a+1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).含绝对值不等式的解法[方法结论]1.|ax +b |≤c ,|ax +b |≥c 型不等式的解法:(1)若c >0,则|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c , 然后根据a ,b 的取值求解即可;(2)若c <0,则|ax +b |≤c 的解集为∅,|ax +b |≥c 的解集为R . 2.|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: (1)令每个绝对值符号里的一次式为0,求出相应的根; (2)把这些根由小到大排序,它们把数轴分为若干个区间;(3)在所分区间上,根据绝对值的定义去掉绝对值符号,讨论所得的不等式在这个区间上的解集; (4)这些解集的并集就是原不等式的解集.[题组突破]1.设函数f (x )=|x +2|-|x -1|. (1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围. 解析:(1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意;当-2<x <1时,f (x )=2x +1>1,得x >0,即0 <x <1; 当x ≥1时,f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥|1-2m |有解等价于(f (x )+4)max ≥|1-2m |,由(1)可知f (x )max =3(也可由|f (x )|=||x +2|-|x -1||≤|(x +2)-(x -1)|=3,得f (x )max =3), 即|1-2m |≤7,解得-3≤m ≤4. 故实数m 的取值范围为[-3,4].2.(2017·广州模拟)设函数f (x )=|kx -1|(k ∈R ).(1)若不等式f (x )≤2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤1,求k 的值; (2)若f (1)+f (2)<5,求k 的取值范围. 解析:(1)由|kx -1|≤2,得-2≤kx -1≤2, ∴-1≤kx ≤3,∴-13≤k3x ≤1.由已知,得k3=1,∴k =3.(2)由已知,得|k -1|+|2k -1|<5.当k ≤12时,-(k -1)-(2k -1)<5,得k >-1,此时-1<k ≤12;当12<k ≤1时,-(k -1)+(2k -1)<5,得k <5,此时12<k ≤1; 当k >1时,(k -1)+(2k -1)<5,得k <73,此时1<k <73.综上,k 的取值范围是⎝ ⎛⎭⎪⎫-1,73. [误区警示]利用零点分段讨论法,解绝对值不等式时易遗漏区间的端点值.不等式的证明[方法结论]证明不等式的5个基本方法 (1)比较法:作差或作商比较.(2)综合法:根据已知条件、不等式的性质、基本不等式,通过逻辑推理导出结论. (3)分析法:执果索因的证明方法. (4)反证法:反设结论,导出矛盾.(5)放缩法:通过把不等式中的部分值放大或缩小的证明方法.[题组突破]1.已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.证明:(1)∵1+a ≥2a ,1+b ≥2b ,1+c ≥2c , ∴(1+a )(1+b )(1+c )≥2a ·2b ·2c =8abc , ∵abc =1,∴(1+a )(1+b )(1+c )≥8. (2)∵ab +bc ≥2ab 2c =2b ,ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c ,上面三式相加得,2ab +2bc +2ca ≥2a +2b +2c , 即ab +bc +ca ≥a +b +c . 又1a +1b +1c=ab +bc +ac ,∴a +b +c ≤1a +1b +1c.2.(2017·武汉调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解析:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤23x -5,x >2.当x ≤2时,由f (x )=x -1≤-1,解得x ≤0, 此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}. (2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-(x -12)2+14.令g (x )=-(x -12)2+14,则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.3.设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.证明:由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0得0<a <1;同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立. 4.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:要证 b 2-ac <3a ,只需证b 2-ac <3a 2. ∵a +b +c =0,只需证b 2+a (a +b )<3a 2.只需证2a 2-ab -b 2>0, 只需证(a -b )(2a +b )>0, 只需证(a -b )(a -c )>0. ∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立. [类题通法]不等式证明的常用方法有比较法、分析法、综合法、反证法等.(1)如果已知条件与待证结论直接联系不明显,可考虑用分析法;(2)如果待证命题是否定性命题、唯一性命题或以“至少”“至多”等方式给出的,则考虑用反证法;(3)如果待证不等式与自然数有关,则考虑用数学归纳法.在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.含绝对值不等式的恒成立问题[方法结论]绝对值不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.[典例] (2017·惠州模拟)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 解析:(1)由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5}, 所以⎩⎪⎨⎪⎧a -3=-1a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.因为|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立), 所以g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 则实数m 的取值范围是(-∞,5]. [类题通法]1.绝对值不等式中蕴含最佳思想,即可利用|||a |-|b |≤|a ±b |≤|a |+|b |去求形如f (x )=|x -a |+|x -b |或f (x )=|x -a |-|x -b |的最值.2.不等式恒成立问题关键在于利用转化思想,常见的有:f (x )>a 恒成立⇔f (x )min >a ;f (x )<a 恒成立⇔f (x )max <a ;f (x )>a 有解⇔f (x )max >a ;f (x )<a有解⇔f (x )min <a ;f (x )>a 无解⇔f (x )max ≤a ;f (x )<a 无解⇔f (x )min ≥a .[演练冲关]1.(2017·合肥模拟)已知函数f (x )=|x -m |-|x +3m |(m >0). (1)当m =1时,求不等式f (x )≥1的解集;(2)对于任意实数x ,t ,不等式f (x )<|2+t |+|t -1|恒成立,求m 的取值范围. 解析:(1)f (x )=|x -m |-|x +3m |=⎩⎪⎨⎪⎧-4m ,x ≥m -2x -2m ,-3m <x <m .4m ,x ≤-3m当m =1时,由⎩⎪⎨⎪⎧-2x -2≥1-3<x <1,或x ≤-3,得x ≤-32,∴不等式f (x )≥1的解集为{x |x ≤-32}.(2)不等式f (x )<|2+t |+|t -1|对任意的实数t ,x 恒成立,等价于对任意的实数x ,f (x )<(|2+t |+|t -1|)min 恒成立,即[f (x )]max <(|2+t |+|t -1|)min , ∵f (x )=|x -m |-|x +3m |≤|(x -m )-(x +3m )|=4m , |2+t |+|t -1|≥|(2+t )-(t -1)|=3, ∴4m <3,又m >0,∴0<m <34.2.(2017·高考全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解析:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54,且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.。
2018年高考数学考试大纲解读 专题16 不等式选讲 理

专题16 不等式选讲选考内容(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b +≤+ .(2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:||||||.⋅≥⋅αβαβ(2)22222()(+)()a b c d ac bd +≥+.(3(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题.6.会用数学归纳法证明伯努利不等式:了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、 柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.所以a 的取值范围为[1,1]-.【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.考向二含绝对值不等式的恒成立问题样题2 已知函数.(1)当时,求的解集;(2)若不等式对任意实数恒成立,求的取值范围.样题3 已知函数.(1)若不等式的解集为,求实数的值;(2)若不等式对任意恒成立,求实数的取值范围.【解析】(1)由题意知,不等式的解集为,由得,∴,解得.(2)不等式等价于,因为不等式对任意恒成立,所以,因为,- 3 -所以,解得或.考向三不等式的证明样题4 已知函数的单调递增区间为.(1)求不等式的解集;(2)设,证明:.百度文库是百度发布的供网友在线分享文档的平台。
专题21 不等式选讲(教学案)-2018年高考理数二轮复习精品资料(原卷版)

预测高考对不等式选讲的考查仍以绝对值不等式的解法、性质为主,解含两个绝对值号的不等式是解答题题型的主流,并配以不等式的证明和函数图象的考查.一、含有绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法(1)若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然后根据a,b的值解出即可.(2)若c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R.2.|x-a|+|x-b|≥c(c>0),|x-a|+|x-b|≤c(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|<c(c>0)或|x-a|-|x-b|>c(c>0)的不等式,利用绝对值的几何意义求解更直观.3.|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法(1)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).(2)|f(x)|<g(x)⇔-g(x)<f(x)<g(x).知识点二不等式的证明1.证明不等式的常用结论(1)绝对值的三角不等式定理1:若a,b为实数,则|a+b|≤|a|+|b|,当且仅当ab≥0,等号成立.定理2:设a,b,c为实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.推论1:||a|-|b||≤|a+b|.推论2:||a |-|b ||≤|a -b |.(2)三个正数的算术—几何平均不等式:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时等号成立.(3)基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均值不小于它们的几何平均值,即a 1+a 2+…+a n n≥n a 1·a 2·…·a n ,并且仅当a 1=a 2=…=a n 时等号成立. (4)一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,并且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.2.证明不等式的常用方法(1)比较法一般步骤:作差—变形—判断—结论.为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以判断其正负.(2)综合法利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法.(3)分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫作反证法.②证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种方法叫作放缩法. 学*考点一 解绝对值不等式例1.【2017课标1,理】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【变式探究】【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.(2015·重庆,16)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________.【变式探究】不等式|x -1|+|x +2|≥5的解集为________.考点二 不等式的证明例2.【2017课标II ,理23】已知330,0,2a b a b >>+=。
课标通用2018年高考数学一轮复习不等式选讲学案理选修4_52017101421

§选修4-5不等式选讲考纲展示►1.理解绝对值三角不等式的代数证明和几何意义,能利用绝对值三角不等式证明一些简单的绝对值不等式.2.掌握|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≤c型不等式的解法.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法,并能用它们证明一些简单不等式.考点1含绝对值不等式的解法1.绝对值三角不等式(1)定理1:如果a,b是实数,则|a+b| ≤________,当且仅当________时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:如果a,b,c是实数,则|a-c|≤________,当且仅当________时,等号成立.答案:(1)|a|+|b|ab≥0(3)|a-b|+|b-c|(a-b)(b-c)≥02.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解法不等式a>0 a=0 a<0|x|<a ________ ________ _______|x|>a ________ ________ R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔____________;②|ax+b|≥c⇔____________.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法解法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法二:利用“零点分段法”求解,体现了分类讨论的思想;解法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.答案:(1){x|-a<x<a}∅∅{x|x>a,或x<-a}{x|x∈R,且x≠0}(2)①-c≤ax+b≤c②ax+b≥c或ax+b≤-c[典题1]解不等式|x-1|+|x+2|≥5.[解]解法一:如图,设数轴上与-2,1对应的点分别是A,B,则不等式的解就是数轴上到A,B两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A向左移动一个单位到点A1,此时|A1A|+|A1B|=1+4=5.把点B向右移动一个单位到点B1,此时|B1A|+|B1B|=5,故原不等式的解集为(-∞,-3]∪[2,+∞).解法二:原不等式|x-1|+|x+2|≥5⇔Error!或Error!或Error!解得x≥2或x≤-3,∴原不等式的解集为(-∞,-3]∪[2,+∞).解法三:将原不等式转化为|x-1|+|x+2|-5≥0.令f(x)=|x-1|+|x+2|-5,则f(x)=Error!作出函数的图象如图所示.由图象可知,当x∈(-∞,-3]∪[2,+∞)时,y≥0,∴原不等式的解集为(-∞,-3]∪[2,+∞).[点石成金]形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.x 解不等式|x+3|-|2x-1|<+1.2解:①当x<-3时,x 原不等式化为-(x+3)-(1-2x)<+1,2解得x<10,∴x<-3.1 ②当-3≤x<时,2x 原不等式化为(x+3)-(1-2x)<+1,22解得x<-,52∴-3≤x<-.51 ③当x≥时,2x 原不等式化为(x+3)-(2x-1)<+1,2解得x>2,∴x>2.2 综上可知,原不等式的解集为xx<-或x>2.5考点2含参数的绝对值不等式问题[典题2]已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;2- 3 -[解](1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=Error!其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.∴原不等式的解集是{x|0<x<2}.a 1(2)∵a>-1,则-<,2 2∴f(x)=|2x-1|+|2x+a|=Error!a 1当x∈[-,2)时,f(x)=a+1,2a 1即a+1≤x+3在x∈[ 2)上恒成立.-,2a 4∴a+1≤-+3,即a≤,2 34( 3].∴a的取值范围为-1,[点石成金]不等式有解是不等式的存在性问题,只要求存在满足条件的x即可;不等式的解集为R是指不等式的恒成立,而不等式的解集∅的对立面(如f(x)>m的解集是空集,则f(x)≤m恒成立)也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.- 4 -(3)不等式的解集为∅.解:解法一:因为|x+1|-|x-3|表示数轴上的点P(x)与两定点A(-1),B(3)距离的差,即|x+1|-|x-3|=|PA|-|PB|.由绝对值的几何意义知,|PA|-|PB|的最大值为|AB|=4,最小值为-|AB|=-4,即-4≤|x+1|-|x-3|≤4.(1)若不等式有解,a只要比|x+1|-|x-3|的最大值小即可,故a<4.(2)若不等式的解集为R,即不等式恒成立,只要a比|x+1|-|x-3|的最小值还小,即a<-4.(3)若不等式的解集为∅,a只要不小于|x+1|-|x-3|的最大值即可,即a≥4.解法二:由|x+1|-|x-3|≤|x+1-(x-3)|=4,|x-3|-|x+1|≤|(x-3)-(x+1)|=4,可得-4≤|x+1|-|x-3|≤4.(1)若不等式有解,则a<4.(2)若不等式的解集为R,则a<-4.(3)若不等式解集为∅,则a≥4.考点3不等式的证明方法1.基本不等式定理1:设a,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.a+b定理2:如果a,b为正数,则≥ab,当且仅当a=b时,等号成立.2a +b+c定理3:如果a,b,c为正数,则≥3 abc,当且仅当a=b=c时,等号成立.3定理4:(一般形式的算术—几何平均不等式)如果a1,a2,…,a n为n个正数,则a1+a2+…+a n≥,当且仅当a1=a2=…=a n时,等号成立.n a1a2…a nn2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.①求差比较法a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明________即可,这种方法称为求差比较法.②求商比较法aa>b>0⇔>1且a>0,b>0,因此当a>0,b>0时要证明a>b,只要证明________即可,这种b方法称为求商比较法.(2)分析法从待证不等式出发,逐步寻求使它成立的________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式________的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.a答案:(1)①a-b>0②>1(2)充分条件b(4)相反[典题3]设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥3;a b c(2) ++≥3( a+b+c).bc ac ab[证明](1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证a2+b2+c2≥ab+bc+ca.a2+b2 b2+c2 c2+a2而这可以由ab+bc+ca≤++=a2+b2+c2(当且仅当a=b=c时等号2 2 2成立)证得.∴原不等式成立.a b c a+b+c(2) ++=.bc ac ab abc由于(1)中已证a+b+c≥3,1因此要证原不等式成立,只需证明≥a+b+c,abc即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.ab+ac而a bc=ab·ac≤,2ab+bc bc+acb ac≤,c ab≤,2 2∴a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=∴原不等式成立.3时等号成立).3[点石成金] 1.分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.[2015·新课标全国卷Ⅱ]设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2) a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为( a+b)2=a+b+2 ab,( c+d)2=c+d+2 cd,由题设a+b=c+d,ab>cd,得( a+b)2>( c+d)2.因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②若a+b>c+d,则( a+b)2>( c+d)2,即a+b+2 ab>c+d+2 cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.[方法技巧] 1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x-a|+|x-b|>m或|x-a|+|x-b|<m(m为正常数),利用实数绝对值的几何意义求解较简便.2.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.[易错防范] 1.理解绝对值不等式的几何意义.2.掌握分类讨论的标准,做到不重不漏.3.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式的特征.4.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.真题演练集训1.[2016·新课标全国卷Ⅰ]已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)f(x)=Error!y=f(x)的图象如图所示.(2)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;1当f(x)=-1时,可得x=或x=5.3故f(x)>1的解集为{x|1<x<3};所以|f(x)|>1的解集为2.[2016·新课标全国卷Ⅲ]已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a.所以当x∈R时,- 9 -f(x)+g(x)≥3等价于|1-a|+a≥3.①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).a a3.[2016·江苏卷]设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.3 3a a证明:因为|x-1|< ,|y-2|< ,3 3所以|2x+y-4|=|2(x-1)+(y-2)|a a≤2|x-1|+|y-2|<2×+=a.3 31 14.[2016·新课标全国卷Ⅱ]已知函数f(x)=x-+x+,M为不等式f(x)<2的解集.2 2(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|.(1)解:f(x)=Error!1当x≤-时,由f(x)<2得-2x<2,解得x>-1;21 1当-<x< 时,f(x)<2;2 21当x≥时,由f(x)<2得2x<2,2解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)·(1-b2)<0.因此|a+b|<|1+ab|.5.[2015·新课标全国卷Ⅰ]已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,2 解得<x<1;3当x≥1时,不等式化为-x+2>0,解得1≤x<2.- 10 -所以f(x)>1的解集为Error!.(2)由题设可得,f(x)=Error!2a-1所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A ( ,0),B(2a+1,0),C(a,3a+1),2△ABC的面积为(a+1)2.32由题设得(a+1)2>6,故a>2.3所以a的取值范围为(2,+∞).课外拓展阅读绝对值三角不等式的应用应用绝对值三角不等式|a|-|b|≤|a±b|≤|a|+|b|可以很方便地解决很多问题,比如求最值、证明等,但要注意在应用绝对值三角不等式的过程中,至少有一步是放大或缩小的,在放大或缩小时,若从小的一边入手,则只能放大;若从大的一边入手,则只能缩小.[典例1]求函数f(x)=|x-1|+|x+1|的最小值.对原绝对值利用绝对值三角不等式转化不等式求最值[思路分析]→[解]|x-1|+|x+1|=|1-x|+|x+1|≥|1-x+x+1|=2,当且仅当(1-x)(x+1)≥0,即-1≤x≤1时等号成立.故当-1≤x≤1时,函数f(x)=|x-1|+|x+1|取得最小值2.[温馨提示](1)要注意对原绝对值不等式进行转化,使之适合用绝对值三角不等式求最值;(2)求最值时要注意等号成立的条件.1 1[典例2]已知x,y∈R,且|x+y|≤,|x-y|≤,求证:|x+5y|≤1.6 4[思路分析]先将x+5y写成3(x+y)-2(x-y),然后利用绝对值三角不等式即可证得.[证明]∵|x+5y|=|3(x+y)-2(x-y)|,∴由绝对值不等式的性质,得|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x+y|+2|x-y|1 1≤3×+2×=1.6 4即|x+5y|≤1.[典例3]若对任意实数x,不等式|x+1|-|x-2|>a恒成立,求a的取值范围.- 11 -[思路分析][解析]因为a<|x+1|-|x-2|对任意实数x恒成立,所以a<(|x+1|-|x-2|)min.因为||x+1|-|x-2||≤|(x+1)-(x-2)|=3,所以-3≤|x+1|-|x-2|≤3.所以(|x+1|-|x-2|)min=-3.所以a<-3,即a的取值范围为(-∞,-3).- 12 -。
2018届高三数学(文理通用)不等式选讲解题方法规律技巧详细总结版

2018届高三理科数学不等式选讲解题方法规律技巧详细总结版【简介】不等式选讲是新课标的新增内容,也是选考内容.从能力要求上看,主要考查学生了解不等式、应用不等式的能力,分析问题和解决问题的能力.(1)考查含绝对值不等式的解法与含绝对值符号的函数的最值、恒成立问题;(2)考查了不等式的证明,会用综合法,分析法等证明不等式,往往难度不大,加以适当的训练是完全可以掌握的.【3年高考试题比较】不等式选讲内容,在高考题中以选作的形式出现,难度一般不大,比较这三年的高考题,出现频率较高的有:解绝对值不等式,作含绝对值的函数图像,含参的绝对值恒成立有解问题,不等式证明,一般以分析法证明为主.【必备基础知识融合】1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.3.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.(1)比较法①求差比较法知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明a-b>0即可,这种方法称为求差比较法.②求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明a b>1即可,这种方法称为求商比较法. (2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.4.几个常用基本不等式 (1)柯西不等式:①柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2(当且仅当ad =bc 时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.③柯西不等式的三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R , 则(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 3)2+(y 1-y 3)2.④柯西不等式的一般形式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. (2)算术—几何平均不等式若a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n≥a 1=a 2=…=a n 时,等号成立.【解题方法规律技巧】典例1:(1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值.【规律方法】求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区间法.典例2:设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥ 3.(2)abc+bac+cab≥3(a+b+c).【规律方法】当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.典例3:已知a>0,b>0,a+b=1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9. 证明 (1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab=2⎝ ⎛⎭⎪⎫1a +1b=2⎝⎛⎭⎪⎫a +b a +a +b b =2⎝ ⎛⎭⎪⎫b a +a b +4≥4b a ×ab+4=8. ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)∵⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =1a +1b +1ab+1,由(1)知1a +1b +1ab≥8.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9.【规律方法】(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.典例4:已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.【规律方法】(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边常数且应注意等号成立的条件.典例5:已知不等式.(1)当时,求不等式的解集;(2)若不等式的解集为,求的范围.【答案】(Ⅰ);(Ⅱ)是【解析】试题分析:试题解析:(1)由已知,可得当时,若,则,解得若,则,解得若,则,解得综上得,所求不等式的解集为;(2)不妨设函数,则其过定点,如图所示,由(1)可得点,由此可得,即. 所以,所求实数的范围为.【规律方法】(1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.典例6:(1)解关于的不等式(2)关于的不等式有解,求实数的范围。
2018届高考理科数学二轮专题复习讲义 不等式选讲

专题八 选修系列第2讲 不等式选讲考情考向分析本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点分类突破热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a .(2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R.(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6.当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅; 当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4. 综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎡⎦⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)证明 由柯西不等式,有 (-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值.解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1, 解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc +3abc ≥23abc·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4,即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。
2018届高考数学复习不等式选讲(选修4-5)练习题

2018届高考数学复习不等式选讲(选修4-5)练习题1.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.2.设函数f (x )=|2x +2|-|x -2|.(1)求不等式f (x )>2的解集;(2)若∀x ∈R ,f (x )≥t 2-72t 恒成立,求实数t 的取值范围.解析:(1)不等式f (x )>2等价于⎩⎨⎧ x <-1,-(2x +2)+(x -2)>2或⎩⎨⎧ -1≤x ≤2,(2x +2)+(x -2)>2或⎩⎨⎧x >2,(2x +2)-(x -2)>2,解得x <-6或23<x ≤2或x >2,∴x >23或x <-6.∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >23或x <-6. (2)∵f (x )=⎩⎨⎧ -x -4,x <-1,3x ,-1≤x <2,x +4,x ≥2,∴f (x )min =f (-1)=-3, 若∀x ∈R ,f (x )≥t 2-72t 恒成立,则只需f (x )min =-3≥t 2-72t ⇒2t 2-7t +6≤0⇒32≤t ≤2,综上所述,32≤t ≤2.3.(2017·安徽皖南八校联考)已知函数f (x )=|2x -1|+|x +1|.(1)求不等式f (x )≥2的解集;(2)若关于x 的不等式f (x )<a 的解集为∅,求a 的取值范围.解析:(1)当x >12时,f (x )=3x ≥2,解得x ≥23,当-1≤x ≤12时,f (x )=2-x ≥2,解得-1≤x ≤0,当x <-1时,f (x )=-3x ≥2,解得x <-1.综上,不等式的解集为(-∞,0]∪⎣⎢⎡⎭⎪⎫23,+∞. (2)由题意知,f (x )≥a 对一切实数x 恒成立,当x >12时,f (x )=3x >32,当-1≤x ≤12时,f (x )=2-x ≥32,当x <-1时,f (x )=-3x >3,综上,f (x )min =32,故a ≤32.4.已知函数f (x )=|2x +1|-|x -1|.(1)求不等式f (x )<2的解集;(2)若关于x 的不等式f (x )≤a -a 22有解,求a 的取值范围. 解析:(1)当x >1时,f (x )=2x +1-(x -1)=x +2,∵f (x )<2,∴x <0,此时无解;当-12≤x ≤1时,f (x )=2x +1-(1-x )=3x ,∵f (x )<2,∴x <23,此时-12≤x <23;当x <-12时,f (x )=-2x -1-(1-x )=-x -2,∵f (x )<2,∴x >-4,此时-4<x <-12.综上所述,不等式f (x )<2的解集为⎝ ⎛⎭⎪⎫-4,23. (2)f (x )≤a -a 22有解⇔f (x )min ≤a -a 22.由(1)可知f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.当x <-12时,f (x )>-32;当-12≤x ≤1时,-32≤f (x )≤3; 当x >1时,f (x )>3. ∴f (x )min =-32,故-32≤a -a 22⇒a 2-2a -3≤0⇒-1≤a ≤3.。
2018版高考数学 考点56 不等式选讲试题解读与变式

考点56 不等式选讲【考纲要求】1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:①|a +b |≤|a |+|b |(a ,b ∈R ).②|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ; |ax +b |≥c ; |x -c |+|x -b |≥a .3.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.【命题规律】不等式选讲近几年高考中是在解答题中第23题考查,一般设计绝对值不等式的解法、不等式恒成立问题以及不等式的证明问题,难度中等.【典型高考试题变式】(一)绝对值不等式的解法例1.【2017新课标1】已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求实数a 的取值范围.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数, 借助图象解题.【变式1】【2018陕西山大附中等晋豫名校联考】已知函数()1f x x =-(1)求不等式()210f x x +->的解集; (2)设()3g x x m =-++,若关于x 的不等式()()f x g x <的解集非空,求实数m 的取值范围.【解析】(1)原不等式可化为: 211x x ->-,即 211x x ->-或211x x -<-,由211x x ->-得1x >或2x <-,由211x x -<-得1x >或0x <,综上原不等式的解为1x >或0x <.(2)原不等式等价于13x x m -++<的解集非空,令()13h x x x =-++,即()min 13h x x x m =-++<, 由13134x x x x -++≥---=,所以()min 4h x =,所以4m >.【变式2】【2017湖北省荆州市质检】已知函数()()21f x x a x a R =-+-∈.(1)当1a =时,求()2f x ≤的解集;(2)若()21f x x ≤+的解集包含集合1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围.【解析】(1)当1a =时,()121f x x x =-+-,()21212f x x x ≤⇒-+-≤,上述不等式可化为1,21122,x x x ⎧≤⎪⎨⎪-+-≤⎩或11,21212,x x x ⎧<<⎪⎨⎪-+-≤⎩或1,1212,x x x ≥⎧⎨-+-≤⎩ 解得1,20,x x ⎧≤⎪⎨⎪≥⎩或11,22,x x ⎧<<⎪⎨⎪≤⎩或1,4,3x x ≥⎧⎪⎨≤⎪⎩所以102x ≤≤或112x <<或413x ≤≤, 所以原不等式的解集为403x x ⎧⎫≤≤⎨⎬⎩⎭(二)不等式的证明例2.【2017年新课标2】已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【分析】(1)展开所给的式子,然后结合题意进行配方即可证得结论,注意向332a b +=靠拢;(2)利用均值不等式的结论结合题意证得()38a b +≤即可得出结论.【解析】(1)()()556556a b a b a ab a b b ++=+++ ()()()223333442224 4.a b a b ab a b ab a b =+-++=+-≥ (2)因为()3322333a b a a b ab b +=+++ ()()()()23332322,44a b a b ab a b a b ++=++≤++=+ 所以()38a b +≤,因此2a b +≤.【名师点睛】利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题.若不等式恒等变形之后与二次函数有关,可用配方法.【变式1】若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.【变式2】【2017河北邯郸联考】设()10f x x x =++.(1)求()15f x x +≤的解集M ;(2)当a b M ∈,时,求证:525a b ab ++≤.【解析】(1)由()15f x x ≤+()15f x x ≤+得:150,10,1015x x x x x +≥⎧⎪≤-⎨⎪---≤+⎩或150,100,1015x x x x x +≥⎧⎪-<<⎨⎪-++≤+⎩或150,0,1015x x x x x +≥⎧⎪≥⎨⎪++≤+⎩, 解得55x -≤≤,所以()15f x x ≤+()15f x x ≤+的解集为[]5,5M =-.(2)当,a b M ∈,即55,55a b -≤≤-≤≤时, 要证525a b ab +≤+,即证()()222525a b ab +≤+.因为()()()()222222252525250625a b ab a ab b a b ab +-+=++-++()()222222252562525250a b a b a b =+--=--≤,所以()()222525a b ab +≤+,即525a b ab +≤+.(三)绝对值不等式的恒成立、参数范围问题例3.【2017新课标3】已知函数f (x )=│x +1│–│x –2│.(1)求不等式f (x )≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【分析】(1)将函数零点分段然后求解不等式即可;(2)由题意结合绝对值不等式的性质有 25124x x x x +---+≤,则m 的取值范围是54⎛⎤∞ ⎥⎝⎦-,. 【解析】(1)()31211232,x f x x ,x ,x -<-⎧⎪=--≤≤⎨⎪>⎩,当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤;当2x >时,由()1f x ≥解得2x >.所以()1f x ≥的解集为{}1x x ≥.(2)由()2f x x x m ≥-+得212m x x x x ≤+---+,而 2223551212244x x x x x x x x x ⎛⎫+---+≤++--+=-+≤ ⎪⎝⎭-,且当32x =时,25124x x x x +---+=. 故实数m 的取值范围为54⎛⎤∞ ⎥⎝⎦-,.【名师点睛】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【变式1】【2018河南中原名校质检】已知关于x 的不等式32x x a -+-<.(1)当3a =时,解不等式;(2)如果不等式的解集为空集,求实数a 的取值范围.【解析】(1)原不等式变为233x x -+-<.当2x <时,原不等式化为523x -<,解得1x >,所以12x <<当23x ≤≤时,原不等式化为13<,所以23x ≤≤.当3x >时,原不等式化为253x -<,解得4x <,所以34x <<.综上,原不等式解集为}{|14 x x <<.【变式2】已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围.【解析】(1)原不等式等价于⎩⎪⎨⎪⎧x >32,(2x +1)+(2x -3)≤6或⎩⎪⎨⎪⎧-12≤x ≤32,(2x +1)-(2x -3)≤6或⎩⎪⎨⎪⎧x <-12,-(2x +1)-(2x -3)≤6,解得32<x ≤2或-12≤x ≤32或-1≤x <-12. 所以原不等式的解集为{x |-1≤x ≤2}.(2)因为f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,所以|a -1|>4,所以a <-3或a >5,所以实数a 的取值范围为(-∞,-3)∪(5,+∞).【数学思想】① 数形结合思想.② 分类讨论思想.③转化与化归思想.④函数方程思想.【温馨提示】①绝对值不等式中含参数时,通常要进行分类探求,注意分类要做到不重不漏;注意在分段时不要遗漏区间的端点值.②分析法证明不等式是“执果索因”,要注意书写的格式和语言的规范.③用综合法证明不等式时,应注意观察不等式的结构特点,选择恰当的公式作为依据,其中均值不等式是最常用的.【典例试题演练】1.【2018辽宁鞍山中学二模】已知函数()211f x x x =+--.(1)求不等式()2f x <的解集;(2)若关于x 的不等式()22a f x a ≤-有解,求实数a 的取值范围. 【解析】(1)当1x ≥时,无解; 当112x -<<时, 1223x -<<; 当12x ≤-时, 142x -<≤-. 综上,实数a 的取值范围为 2(4,)3-.(2)函数()f x 的最小值为32-, 2322a a -≥-,所以[]1,3a ∈-. 2.【2018广西贺州桂梧高中联考】已知函数()()130f x x a x a =-+--≠的一个零点为2.(1)求不等式()2f x ≤的解集;(2)若直线2y kx =-与函数()f x 的图象有公共点,求k 的取值范围.【解析】(1)由()2220f a =--=, 0a ≠,得4a =,所以()4132f x x x =-+--≤,所以1222x x ≤-≤⎧⎨⎩或14 02x <<≤⎧⎨⎩或4 282x x ≥-≤⎧⎨⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[]0,5. (2)()22,1413{0,14 28,4x x f x x x x x x -≤=-+--=<<-≥,作出函数()f x 的图象,如图所示,直线2y kx =-过定点()0,2C -,当此直线经过点()4,0B 时, 12k =; 当此直线与直线AD 平行时, 2k =-.故由图可知, ()1,2,2k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭.3.【2017四川省凉山州检测】已知函数()|1|||f x x x a =+-+.(1)若不等式()0f x ≥的解集为空集,求实数a 的取值范围;(2)若方程()f x x =有三个不同的解,求实数a 的取值范围.【解析】 (1)令()1g x x x =+-,则min ()0()()f x g x a g x a ≥⇔≥-⇔≥-,1,1,()|1|||21,10,1,0,x g x x x x x x -<-⎧⎪=+-=+-≤<⎨⎪≥⎩作出函数()g x 的图象,由图可知,函数()g x 的最小值为min ()1g x =-,所以1a -≤-,即1a ≥,综上,实数a 的取值范围为[1,)+∞.(2)在同一坐标系内作出函数()|1|||g x x x =+-图象和y x =的图象如下图所示,由题意可知,把函数()y g x =的图象向下平移1个单位以内(不包括1个单位)与y x =的图象始终有3个交点,从而10a -<<.4.【20176广西柳州市模拟】已知函数()|1|||f x x x a =-+-.(1)若1a =-,解不等式()3f x ≥;(2)如果x R ∀∈,()2f x ≥,求a 的取值范围.(2)若1a =,21,,()1,1,2(1),1,x a x a f x a a x x a x -++≤⎧⎪=-<<⎨⎪-+≥⎩()f x 的最小值为1a -;若1a >,21,1,()1,1,2(1),,x a x f x a x a x a x a -++≤⎧⎪=-<<⎨⎪-+≥⎩()f x 的最小值为1a -. 所以x R ∀∈,()f x 2≥,所以实数a 的取值范围是(,1][3,)-∞-+∞.5.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13; (2)2a 2b +b 2c +c 2a≥1. 【证明】(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 6.【2018河南漯河中学三模】若关于x 的不等式32310x x t ++--≥的解集为R ,记实数t 的最大值为a .(1)求a ;(2)若正实数,m n 满足45m n a +=,求14233y m n m n=+++的最小值. 【解析】(1)因为32310x x t ++--≥,所以32311x x ++-≥, 又因为()()323132133x x x x ++-≥++-=,所以3t ≤,从而实数t 的最大值3a =.(2)因为()()()141445233233233m n m n m n m n m n m n m n ⎛⎫⎛⎫⎡⎤++=++++ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭29≥=, 所以1439233m n m n ⎛⎫+≥ ⎪++⎝⎭,从而3y ≥,当且仅当14233m n m n=++,即13m n==时等号成立,所以14233ym n m n=+++的最小值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届高中毕业班数学学科备考关键问题指导系列之不等式选讲不等式选讲为高考选考内容之一。
一道解答题,满分10分,考查难度定位中等偏易,是考生容易突破的一道题目,主要考查解绝对值不等式,根据给定条件求参数的取值范围,用基本不等式研究代数式的最值及不等式证明的比较法、综合法、分析法等,交汇考查集合的概念、绝对值的概念、函数的概念、函数的图像与性质、二次不等式、基本不等式等.下面从学生存在的主要问题剖析出发,提出相应的教学对策。
一、存在的问题及原因分析 (一)绝对值不等式求解技能掌握不到位【例题1】(2017高考全国Ⅰ卷23)已知函数4)(2++-=ax x x f ,11)(-++=x x x g .(Ⅰ)当1=a 时,求不等式)()(x g x f ≥的解集;【解析】(Ⅰ)当1=a 时,)()(x g x f ≥等价于2411x x x x -++≥++- ①.当1-<x 时,①等价于0432≤--x x ,此时不等式无解; 当11≤≤-x 时,①等价于022≤--x x ,从而11≤≤-x ; 当1>x 时,①等价于042≤-+x x ,从而21711+-≤<x . 所以()()f x g x ≥解集1x x ⎧⎪-<≤⎨⎪⎪⎩⎭.【评析】本题主要的易错点在于分类后的“整合”.其一是“整合”错误,误以为得到解集为所分类各不等式解集的交集.另一是没有进行“整合”,认为解集为三种情况:当1-<x 时,原不等式的解集为{}41≤≤-x x ;当11≤≤-x 时,原不等式的解集为{}21≤≤-x x ;当1>x 时,原不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-≤≤--21712171x x ,错因在于与因参数对解集的影响而分类讨论的问题混淆,对解绝对值不等式的基本原理认识不到位所致.(二)不能对条件进行正确的等价转化【例题2】(2017高考全国Ⅰ卷23)已知函数()24f x x ax =-++,()11g x x x =++-.(Ⅱ)若不等式)()(x g x f ≥的解集包含]1,1[-,求a 的取值范围.【解析】(Ⅱ)不等式)()(x g x f ≥的解集包含]1,1[-等价于)()(x g x f ≥在]1,1[-上恒成立, 即242x ax -++≥在]1,1[-恒成立,即220x ax --≤在]1,1[-恒成立,所以()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解得11a -≤≤,故a 取值范围是]1,1[-. 【评析】本题主要考查不等式解集的概念、绝对值的意义、函数图像与性质等基础知识. 解答中的主要问题在于题意的理解与问题的等价转化. 不能将条件“不等式)()(x g x f ≥的解集包含]1,1[-”等价转化为“不等式)()(x g x f ≥在]1,1[-上恒成立”的问题来处理,反映出学生对于解集的概念理解还不透彻,导致对“解集包含]1,1[-”的含义不理解.【例题3】(2017高考全国Ⅲ卷23)已知函数21)(--+=x x x f .(Ⅱ)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【解析】(Ⅱ)原式等价于存在x R ∈,使2()f x x x m -+≥成立,即 2max [()]f x x x m -+≥设2()()g x f x x x =-+由已知得 2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,22111()3()(1)524=-+-=---≤-=-g x x x x g , 当21<<-x 时,22355()31()244=-+-=--+≤g x x x x , 当2≥x 时,1)2(413)21(3)(22=≤+--=++-=g x x x x g ,综上述得45)(max =x g ,故m 的取值范围为]45,(-∞. 【评析】本题主要考查不等式解集的概念、绝对值的意义、二次函数区间上最值等基础知识. 解答中的主要问题还是在题意的理解与问题的等价转化. 错点一,将“不等式()2f x x x m ≥-+的解集非空”等价转化为max ()f x ≥)2f x x x m ≥-+解集非空,忽略了右边的代数式也是随着x 的变化而变化,左右两边的x 表示的是同一个数;错点二,将“不等式()2f x x x m ≥-+的解集非空”等价转化为“min ()m g x ≤”,错在对“解集非空”的理解上. 所谓“解集非空”即存在x 使得不等式()2f x x x m ≥-+成立,等价于存在x 使得不等式212x x x x m +---+≥成立,等价于2max (12)x x x x m +---+≥即可.(三)不等式证明思路不清,无法迅速找到切合题意的证明方法.【例题3】(2017高考全国Ⅱ卷23)已知2,0,033=+>>b a b a ,证明: (Ⅰ)4))((55≥++b a b a ; (Ⅱ)2≤+b a .【解析】(Ⅰ)655655))((b b a ab a b a b a +++=++()()a ba b ab a b =+-++233334424)(4222≥-+=b a ab(Ⅱ)因为33223()33a b a a b ab b +=+++()()()()ab a b a b a b a b =+≤=+2323+3+3+2++244所以()3+8≤a b ,因此a+b ≤2.【评析】本题主要考查证明不等式的基本方法、均值不等式及其应用. 难点在于寻找突破口,如何发现欲证不等式左边的代数式与已知条件之间的联系,从而迅速寻得解题思路. (四)知识掌握不到位,无法优选算法化简求解过程【例题4】(2014高考全国Ⅱ卷24)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;【解析】法一:因为0a >,所以12,11(),112.x a x a a f x a x a aa x a x a a ⎧+-≥⎪⎪⎪=+-<<⎨⎪⎪--+≤-⎪⎩当x a ≥时,1()2f x x a a =+-为增函数,所以1()()2f x f a a a≥=+≥, 当1x a a -<<时,1()2f x a a=+≥, 当1x a ≤-时,1()2f x x a a =--+为减函数,所以11()()2f x f a a a≥-=+≥ 综上述得()2f x ≥成立.法二:因为111x x a x a x a a a a++-=++-≥+,又0a >所以1()2f x a a≥+≥. 【评析】法二根据绝对值不等式的性质直接证得结论,相比法一快捷明了.本题的主要问题在于对绝对值不等式的性质掌握不到位,导致无法快速求解.二、解决问题的思考与对策 (一)强化绝对值不等式的求解训练高考全国卷从2007年起,除了2014年外每年都涉及绝对值不等式求解问题的考查,应加强这一方面的专项训练,让学生熟练掌握零点分段法解绝对值不等式的方法、步骤,做到既能正确分类,又能合理整合,准确快捷解答,同时注意引导学生对求解过程等价性的关注.【例题5】(2007年高考全国课标卷24)设函数()214f x x x =+--. (I )解不等式()2f x >;【解析】(Ⅰ)1521()334254x x f x x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥当12x ≤-时,原不等式可化为52x -->,解得7x <-,此时原不等式的解是7x <-;当142x -<<时,原不等式可化为332x ->,解得53x >,此时原不等式的解是543x <<;当4x ≥时,原不等式可化为52x +>,解得3x >-,此时原不等式的解是4x ≥;综上可知,原不等式的解集为5(,7)(,)3-∞-+∞U(二)加强对不等式“恒成立”、“能成立”、“恰成立”几种模型的识别及求解能力.不等式“恒成立”、“能成立”、“恰成立”是高考的常见模型,解决问题的关键是对其进行恰当的等价转换,并借助函数与方程思想,数形结合思想,利用函数图象、函数最值等来解决问题.复习教学中可通过一题多变强化对上述各种模型的识别,掌握其解决方案.【例题6】(2017高考全国Ⅰ卷23)已知函数()24f x x ax =-++,()11g x x x =++-.(II )若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.【解析】(II )不等式()()f x g x ≥的解集包含[]1,1-等价于()()f x g x ≥在[]1,1-上恒成立,即242x ax -++≥在[]11-,恒成立.即220x ax --≤在[]11-,恒成立. 则只须()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解得11a -≤≤.故a 取值范围是[]11-,. 【变式一】已知函数()24f x x ax =-++,()11g x x x =++-.若存在]1,1[-∈x 使得不等式()()f x g x ≥成立,求a 的取值范围.【解析】存在]1,1[-∈x 使得不等式()()f x g x ≥成立,等价于存在]1,1[-∈x 使得不等式242x ax -++≥成立,即存在]1,1[-∈x 使得220x ax --≤,等价于]1,1[-∈x 时0)2(min 2≤--ax x .所以⎪⎪⎩⎪⎪⎨⎧≤--≤≤-0481212a a 或⎪⎩⎪⎨⎧≤-->02112a a 或⎪⎩⎪⎨⎧≤-+-<02112a a 解得22≤≤-a 或2>a 或2-<a 所以满足条件的a 的取值范围是R .【变式二】已知函数()24f x x ax =-++,()11g x x x =++-.是否存在实数a 的值,使得不等式()()f x g x ≥的解集为[]1,1-,若存在,求a 的取值范围;若不存在说明理由.【解析】由242x ax -++≥的解集为[]1,1-,即220x ax --≤的解集为[]1,1-,得220x ax --=的两根为-1,1,即⎩⎨⎧=--=-+021021a a 方程无解,所以不存在实数a 的值,使得不等式()()f x g x ≥的解集为[]1,1-.(三)关注均值不等式、绝对值不等式性质的应用均值不等式、绝对值不等式性质在求最值、证明不等式等方面都有很重要的作用. 应用均值不等式或绝对值不等式性质求最值时,均应注意等号成立的条件是否具备,仅当等号成立的条件具备时方可应用其求最值,这也是用均值不等式或绝对值不等式性质求最值的一个易错点,应提醒学生关注.【例题7】(2014高考全国课标Ⅰ卷24)若,0,0>>b a 且ab ba =+11 (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在b a ,,使得632=+b a ?并说明理由.11a b =+≥,得2ab ≥,且当a b ==,故33332b a b a ≥+,且当a b ==,∴33a b +的最小值为.(Ⅱ)由623a b =+≥32ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立. 【例题8】已知函数()21f x x =-,x R ∈. (Ⅰ)解不等式()1f x x <+;(Ⅱ)若对于x ,y R ∈,有113x y --≤,1216y +≤求证:()1f x <. 【解析】(Ⅰ)()1f x x <+等价于|21|1x x -<+,即210211x x x -⎧⎨-<+⎩≥或210121x x x -<⎧⎨-<+⎩求得02x <<,故不等式()1f x x <+的解集为(0,2).(Ⅱ)1|1|3x y --≤Q ,1|21|6y +≤, ∴()|21|f x x =-=|2(1)(21)|x y y --++|2(1)||21|x y y --++≤112136⋅+<≤ 三、典型问题剖析 (一)含绝对值不等式的求解【例题9】【2013课标全国Ⅰ,文24】 已知函数()|21||2|,() 3.f x x x a g x x =-++=+ (Ⅰ)当2a =-时,求不等式()g()f x x <的解集; (Ⅱ)设1a >-,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围. 【解析】(Ⅰ)法一:当2a =-时,()g()f x x <等价于|21||22|3x x x -+-<+ ①. 当12x ≤时,①等价于21223x x x -+-+<+,从而102x <≤; 当112x <≤时,①等价于21223x x x --+<+,从而112x <≤; 当1x >时,①等价于21223x x x -+-<+,从而12x <<; 综上述知,原不等式的解集为{|02}.x x <<法二:当2a =-时,不等式()g()f x x <化为|21||22|30.x x x -+---< 设函数y |21||22|3x x x =-+---,则15,,212,1,236, 1.x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当(0,2)x ∈时,0y <.所以原不等式的解集是{|02}.x x <<(Ⅱ)当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()1f x a =+. 不等式()g()f x x <化为13a x +≤+. 所以2x a >+对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故22a a -≥-,即43a ≤,从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.【评析】对于含绝对值的不等式的求解方法一般采用零点分段法,其解题步骤大致为:①求零点;②分区间、去绝对值号;③分别解各区间上所得不等式;④取所得结果的并集. 注意在分段时不要遗漏区间的端点值.也可以采用图像法,通过作出函数图像,利用数形结合的思想求解.【例题10】2016课标1卷已知函数321)(--+=x x x f . (Ⅰ)在右图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集. 【解析】(Ⅰ)4,1,3()32,1,234 2.x x f x x x x x ⎧⎪-≤-⎪⎪=--<≤⎨⎪⎪-+>⎪⎩)(x f y =的图像如图所示.(Ⅱ)由()f x 的表达式及图像,当()1f x =时,可得x =1或x =3;当()1f x =-时,可得13x =或5x =,故()1f x >的解集为{}13x x <<;()1f x <-的解集为153x x x ⎧⎫<>⎨⎬⎩⎭或 所以1)(>x f 的解集为11353x x x x ⎧⎫<<<>⎨⎬⎩⎭或或.【评析】本题的关键在于能准确作出函数的图像才能通过图像判断不等式的解集. (二)给定条件,求参数的取值范围【例题11】(2012高考全国课标卷24)已知函数()2f x x a x =++- (Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。