北师大文科数学高考总复习教师用书:归纳与类比 含答案

合集下载

高考数学一轮复习课后限时集训35归纳与类比理含解析北师大版

高考数学一轮复习课后限时集训35归纳与类比理含解析北师大版

高考数学一轮复习课后限时集训35归纳与类比理含解析北师大版课后限时集训(三十五) 归纳与类比(建议用时:60分钟)A组基础达标一、选择题1.给出下面类比推理(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数为( )A.1 B.2 C.3 D.4B[类比结论正确的有①②.]2.如图,根据图中的数构成的规律,得a表示的数是( ) A.12 B.48C.60D.144D[由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a =12×12=144.]3.(2019·郑州调研)平面内凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,以此类推,凸13边形对角线的条数为 ( )A.42 B.65 C.143 D.169B[由题意得凸n边形的对角线C2n-n,当n=13时,C213-13=65.所以选B.]4.某次数学考试成绩公布后,甲、乙、丙、丁四人谈论成绩情况.甲说:“我们四个人的分数都不一样,但我和乙的成绩之和等于丙、丁两人的成绩之和.”乙说:“丙、丁两人中一人分数比我高,一人分数比我低.”丙说:“我的分数不是最高的.”丁说:“我的分数不是最低的.”则四人中成绩最高的是( )A.甲 B.乙 C.丙 D.丁D[∵乙说:“丙、丁两人中一人分数比我高,一人分数比我低”,丙说:“我的分数不是最高的”,∴成绩最高的只能是甲或丁中的一个人.∵甲和乙两人的成绩之和等于丙、丁两人的成绩之和, 丙、丁两人中一人分数比乙高,一人分数比乙低, ∴丁的成绩比甲的成绩高,∴四人中成绩最高的是丁.故选D .]5.(2019·潍坊模拟)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )A .己亥年B .戊戌年C .庚子年D .辛丑年C [由题意知2014年是甲午年,则2015年到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.]二、填空题6.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.x 0x a 2-y 0y b 2=1 [类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为 x 0x a 2-y 0yb 2=1.] 7.观察下列等式: 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 ……照此规律,第n 个等式为________.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 [由前4个等式可知,第n 个等式的左边第一个数为n ,且连续2n -1个整数相加,右边为(2n -1)2,故第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.]8.(2019·银川模拟)周末,某高校一学生宿舍甲、乙、丙、丁四位同学正在做四件不同事情:看书、写信、听音乐、玩游戏.下面是关于他们各自所做事情的一些判断:①甲不在看书,也不在写信; ②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在写信; ④丙不在看书,也不在写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是:________. 看书 [由于这些判断都是正确的,那么由①可知甲在听音乐或玩游戏;由②可知乙在看书或玩游戏;由④可知丙在听音乐或玩游戏;那么甲与丙一个在听音乐一个在玩游戏,由此可知乙肯定在看书.]三、解答题9.给出下面的数表序列:其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).[解] 表4为它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.10.如图,平面上,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,则有S △PAB S △PCD=PA ·PBPC ·PD(其中S △PAB ,S △PCD 分别为△PAB ,△PCD 的面积);空间中,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,点E ,F 为射线PL 上的两点,求V P ­ABEV P ­CDF的值(其中V P ­ABE ,V P ­CDF 分别为四面体P ­ABE ,P ­CDF 的体积). [解] 设PM 与平面PDF 所成的角为α,则A 到平面PDF 的距离h 1=PA sin α,C 到平面PDF 的距离h 2=PC sin α,∴V P ­ABE =V A ­PBE=13S △PBE ·h 1, V P ­CDF =V C ­PDF =13S △PDF ·h 2,∴V P ­ABE V P ­CDF =13S △PBE ·h 113S △PDF ·h 2=13PB ·PE ·PA sin α13PD ·PF ·PC sin α =PA ·PB ·PEPC ·PD ·PF.B 组 能力提升1.(2018·重庆二模)为培养学生分组合作能力,现将某班分成A ,B ,C 三个小组,甲、乙、丙三人分到不同组.某次数学建模考试中三人成绩情况如下:在B 组中的那位的成绩与甲不一样,在A 组中的那位的成绩比丙低,在B 组中的那位的成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是 ( )A .甲、丙、乙B .乙、甲、丙C .乙、丙、甲D .丙、乙、甲C [在B 组中的那位的成绩与甲不一样,说明甲不在B 组,在B 组中的那位的成绩比乙低,说明乙不在B 组,所以丙在B 组,且乙的成绩高于丙,在A 组中的那位的成绩比丙低,说明甲在A 组,且甲的成绩低于丙,所以甲、乙、丙三人按数学建模考试成绩由高到低排序是乙、丙、甲,故选C.]2.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B .5-12C.5-1 D .5+1A [设“黄金双曲线”方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c,0),A (a,0).在“黄金双曲线”中, 因为FB →⊥AB →,所以FB →·AB →=0. 又FB →=(c ,b ),AB →=(-a ,b ).所以b 2=ac .而b 2=c 2-a 2,所以c 2-a 2=ac . 在等号两边同除以a 2,得e =5+12.] 3.(2018·广州一模)我国南宋数学家杨辉所著的《详解九章算法》中,用图1的三角形形象地表示了二项式系数规律,俗称“杨辉三角”.现将杨辉三角中的奇数换成1,偶数换成0,得到图2所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为S n ,如S 1=1,S 2=2,S 3=2,S 4=4,…,则S 126=________.图1 图264 [题图2中的三角形数表,从上往下数,第1次全行的数都为1的是第1行,有1个1,第2次全行的数都为1的是第2行,有2个1,第3次全行的数都为1的是第4行,有4个1,依此类推,第n 次全行的数都为1的是第2n -1行,有2n -1个1.第1行,1个1,第2行,2个1,第3行,2个1,第4行,4个1;第1行1的个数是第2行1的个数的12,第2行与第3行1的个数相同,第3行1的个数是第4行1的个数的12;第5行,2个1,第6行,4个1,第7行,4个1,第8行,8个1;第5行1的个数是第6行1的个数的12,第6行与第7行1的个数相同,第7行1的个数是第8行1的个数的12.根据以上规律,当n =8时,第28-1行有128个1,即S 128=128,第127行有64个1,即S 127=64,第126行有64个1,即S 126=64.]4.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心; (2)计算f ⎝⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫42 019+…+f ⎝ ⎛⎭⎪⎫2 0182 019.[解] (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1,所以f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,即f (x )+f (1-x )=2. 故f ⎝⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫2 0182 019=2,f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫2 0172 019=2,f ⎝⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫2 0162 019=2,…,f ⎝⎛⎭⎪⎫2 0182 019+f ⎝ ⎛⎭⎪⎫12 019=2.所以f ⎝ ⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫42 019+…+f ⎝ ⎛⎭⎪⎫2 0182 019=12×2×2 018=2 018.。

{北师大版}2020高考数学文科一轮复习课后练35《归纳与类比》附答案详析

{北师大版}2020高考数学文科一轮复习课后练35《归纳与类比》附答案详析

8=3; 7
若 a1a2…am=2 016(m∈N*),则 m 的值为( )
A.22 016+2
B.22 016
C.22 016-2
D.22 016-4
4.(2019·新余模拟)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割
之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达
a1a2a3a4a5a6=log23·log34…log78=llgg
3·lg 2 lg
Hale Waihona Puke 4…lg 3 lg8=3; 7
若 a1a2…am=2 016(m∈N*),则 m 的值为( )
A.22 016+2
B.22 016
C.22 016-2
D.22 016-4
C
[因为 a1a2…am=log23log34…logm+1(m+2)=llgg
中心.若 f(x)=1x3-1x2+3x- 5 ,请你根据这一发现,
32
12
(1)求函数 f(x)的对称中心;
1
2
3
4
2 018
(2)计算 f 2 019 +f 2 019 +f 2 019 +f 2 019 +…+f 2 019 .
-4-
解析
{北师大版}2020 高考数学文科一轮复习课后练
35《归纳与类比》
A.甲、丙
B.乙、丁
C.丙、丁
D.乙、丙
D [甲、乙两人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确, 此时乙正确,故选 D.]
二、填空题
6.已知点 A(x1,x21),B(x2,x22)是函数 y=x2 的图像上任意不同的两点,依据图像可知,线段 AB 总是

高中数学第一章推理与证明1归纳与类比课后篇巩固提升含解析北师大版选修2_2

高中数学第一章推理与证明1归纳与类比课后篇巩固提升含解析北师大版选修2_2

第一章DIYIZHANG推理与证明§1归纳与类比课后篇巩固提升A组1.下列图形都是由同样大小的正方形按一定的规律组成,其中第1个图形由1个小正方形组成,第2个图形由3个小正方形组成,第3个图形由7个小正方形组成,第4个图形由13个小正方形组成,……,那么第8个图形中小正方形的个数是()A.72B.73C.57D.581个图形中的小正方形个数为1;第2个图形中的小正方形个数为1+2=3;第3个图形中的小正方形个数为1+2+4=7;第4个图形中的小正方形个数为1+2+4+6=13;所以第8个图形中的小正方形个数为1+2+4+6+8+10+12+14=57.故选C.2.下列几种推理中是合情推理的是()①由圆的性质类比出球的有关性质.②由直角三角形、等腰三角形、等边三角形的内角和均为180°,归纳出所有三角形的内角和均为180°.③教室内有一把椅子坏了,猜想该教室内所有的椅子都坏了.④由a1=1,a2=3,a3=5,a4=7,归纳出数列{a n}的通项公式为a n=2n-1.A.①②B.①③④C.①②④D.②④是类比推理,②④是归纳推理,故①②④都是合情推理.3.下面使用类比推理恰当的是()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“a+bc =ac+bc(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”4.已知数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是()A.(3,8)B.(4,7)C.(4,8)D.(5,7),数对中两数之和为2的有1个,为3的有2个,为4的有3个,…,为11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),….故选D .5.在平面直角坐标系中,点(x 0,y 0)到直线Ax+By+C=0的距离d=00√A 2+B 2,类比可得在空间直角坐标系中,点(2,3,4)到平面x+2y+2z-4=0的距离为( ) A.4B.5C.163D.203,点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的距离为d=000√A 2+B 2+C 2,故点(2,3,4)到平面x+2y+2z-4=0的距离d=√12+22+22=4.故选A .6.若数列{a n }是等差数列,则数列b n =a n+1+a n+2+…+a n+mm(m ∈N *)也为等差数列,类比上述性质,相应地,若正项数列{c n }是等比数列,则数列d n = 也是等比数列.√c n+1c n+2…c n+m7.观察下列等式:sin30°+sin90°cos30°+cos90°=√3,sin15°+sin75°cos15°+cos75°=1,sin20°+sin40°cos20°+cos40°=√33. 照此规律,对于一般的角α,β,有等式 .,发现tan 30°+90°2=√3,tan15°+75°2=1,tan20°+40°2=√33,故对于一般的角α,β的等式为sinα+sinβcosα+cosβ=tan α+β2.tanα+β28.阅读以下求1+2+3+…+n (n ∈N +)的过程:因为(n+1)2-n 2=2n+1,n 2-(n-1)2=2(n-1)+1,…,22-12=2×1+1, 以上各式相加得(n+1)2-12=2(1+2+…+n )+n ,所以1+2+3+…+n=n 2+2n -n2=n (n+1)2.类比上述过程,可得12+22+32+…+n 2= (n ∈N +).(n+1)3-n 3=3n 2+3n+1,n 3-(n-1)3=3(n-1)2+3(n-1)+1,…,23-13=3×12+3×1+1,以上各式相加得(n+1)3-13=3(12+22+…+n 2)+3(1+2+…+n )+n ,所以12+22+32+…+n 2=n (n+1)(2n+1)6.9.已知数列{a n }满足a 1=1,a na n+1=nn+1(n ∈N +).(1)求a 2,a 3,a 4,a 5,并猜想通项公式a n ;(2)根据(1)中的猜想,有下面的数阵:S1=a1S2=a2+a3S3=a4+a5+a6S4=a7+a8+a9+a10S5=a11+a12+a13+a14+a15试求S1,S1+S3,S1+S3+S5,并猜想S1+S3+S5+…+S2n-1的值.因为a1=1,由a na n+1=nn+1,知a n+1=n+1na n,故a2=2,a3=3,a4=4,a5=5,可归纳猜想出a n=n(n∈N+).(2)根据(1)中的猜想,数阵为:S1=1S2=2+3=5S3=4+5+6=15S4=7+8+9+10=34S5=11+12+13+14+15=65故S1=1=14S1+S3=1+15=16=24S1+S3+S5=1+15+65=81=34可猜想S1+S3+S5+…+S2n-1=n4.10.在Rt△ABC中,∠C=90°,当n>2时,有c n>a n+b n成立,请你类比直角三角形的这个性质,猜想一下空间四面体的性质.,与Rt△ABC对应的是四面体P-DEF;与Rt△ABC的两条边交成一个直角相对应的是四面体P-DEF的三个面在一个顶点D处构成3个直二面角;与Rt△ABC直角边a,b相对应的是四面体P-DEF 的平面△DEF,△FPD,△DPE的面积S1,S2,S3;与Rt△ABC的斜边c相对应的是四面体P-DEF的平面△PEF的面积S.由此猜想:当n>2时,S n>S1n+S2n+S3n.B组1.已知点P(10,3)在椭圆C:x2a2+y299=1上.若点N(x0,y0)在圆M:x2+y2=r2上,则圆M过点N的切线方程为x0x+y0y=r2.由此类比得椭圆C在点P处的切线方程为()A.x33+y11=1 B.x110+y99=1C.x11+y33=1 D.x99+y110=1P(10,3)在椭圆C:x 2a2+y299=1上,故可得100a 2+999=1,解得a 2=110.由类比可得椭圆C 在点P 处的切线方程为10x110+3y99=1,整理可得x11+y33=1.故选C .2.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点1,2,3,4,5,6的横、纵坐标分别对应数列{a n }{n ∈N +}的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2 013+a 2 014+a 2015=()A.1 006B.1 007C.1 008D.2 015,偶数项的值等于其项数的一半,则a 4n-3=n ,a 4n-1=-n ,a 2n =n ,∵2013=4×504-3,2015=4×504-1, ∴a 2013=504,a 2015=-504,a 2014=1007. ∴a 2013+a 2014+a 2015=1007.3.记等差数列{a n }的前n 项和为S n ,利用倒序求和法,可将S n 表示成首项a 1,末项a n 与项数n 的一个关系式,即S n =n (a 1+a n )2;类似地,记等比数列{b n }的前n 项积为T n ,且b n >0(n ∈N +),试类比等差数列求和的方法,可将T n 表示成首项b ,末项b n 与项数n 的一个关系式,即T n =( ) A.n (b 1+b n )2B.(b 1+b n )n2C.√b 1b n nD.(b 1b n )n 2,若m+n=p+q ,则b m ·b n =b p ·b q ,利用倒序求积法可得{T n =b 1·b 2·…·b n ,T n =b n ·b n -1·…·b 1,两式相乘得T n 2=(b 1b n )n ,故T n =(b 1b n )n2.4.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+12+…+120212< .:1+122<32,1+122+132<53,1+122+132+142<74,…,1+122+132+…+1n 2<2n -1n,故可得1+122+132+…+120212<40412021.5.在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,请在立体几何中,给出类比猜想.,如图.ABCD中,cos2α+cos2β=(ac )2+(bc)2=a2+b2c2=c2c2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.证明如下:cos2α+cos2β+cos2γ=(ml )2+(nl)2+(gl)2=m2+n2+g2l2=l2l2=1.6.一种十字绣作品由相同的小正方形构成,图①②③④分别是制作该作品前四步所对应的图案,按照如此规律,第n步完成时对应图案中所包含小正方形的个数记为f(n).(1)求出f(2),f(3),f(4),f(5)的值;(2)利用归纳推理,归纳出f(n+1)与f(n)的关系式;(3)猜想f(n)的表达式,并写出推导过程.图①中只有一个小正方形,得f(1)=1;图②中有3层,以第2层为对称轴,有1+3+1=5(个)小正方形,得f(2)=5;图③中有5层,以第3层为对称轴,有1+3+5+3+1=13(个)小正方形,得f(3)=13;图④中有7层,以第4层为对称轴,有1+3+5+7+5+3+1=25(个)小正方形,得f(4)=25;第五步所对应的图案中有9层,以第5层为对称轴,有1+3+5+7+9+7+5+3+1=41(个)小正方形,得f(5)=41.(2)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,f(5)=41,∴f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,∴f(n+1)-f(n)=4n.∴f(n+1)与f(n)的关系式为f(n+1)-f(n)=4n.(3)猜想f(n)的表达式为f(n)=2n2-2n+1.由(2)可知f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,……f(n)-f(n-1)=4×(n-1)=4n-4,将上述n-1个式子相加,得f(n)-f(1)=4[1+2+3+4+…+(n-1)],则f(n)=2n2-2n+1.。

北师大文科数学高考总复习教师用书:对数与对数函数 含答案

北师大文科数学高考总复习教师用书:对数与对数函数 含答案

第6讲 对数与对数函数最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像;3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.知 识 梳 理1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b .其中a 叫作对数的底数,N 叫作真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1) (2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ; ③log a M n =n log a M (n ∈R );④log a m M n =nm log a M (m ,n ∈R ,且m ≠0). (3)对数的重要公式①换底公式:log b N =log a Nlog ab (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的图像与性质a>10<a<1 图像性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图像关于直线y=x对称.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)log2x2=2log2x.()(2)函数y=log2(x+1)是对数函数()(3)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()(4)当x>1时,若log a x>log b x,则a<b.()解析(1)log2x2=2log2|x|,故(1)错.(2)形如y=log a x(a>0,且a≠1)为对数函数,故(2)错.(4)当x>1时,log a x>log b x,但a与b的大小不确定,故(4)错.答案(1)×(2)×(3)√(4)×2.已知函数y=log a(x+c)(a,c为常数,其中a>0,且a≠1)的图像如图,则下列结论成立的是()A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D3.(教材改编)已知a =2,b =log 213,c =,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 解析 ∵0<a <1,b <0,c ==log 23>1.∴c >a >b . 答案 D4.(2015·浙江卷)计算:log 222=________;2log23+log43=________. 解析 log 222=log 22-log 22=12-1=-12; 2log23+log43=2log23·2log43=3×2log 43=3×2log23=3 3.答案 -12 3 35.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________.解析 当0<a <1时,log a 34<log a a =1,解得0<a <34;当a >1时,log a 34<log a a =1,解得a >1. 答案 ⎝ ⎛⎭⎪⎫0,34∪(1,+∞)考点一 对数的运算 【例1】 (1)设2a =5b =m ,且1a +1b =2,则m 等于( )A.10 B .10 C .20 D .100 (2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100=________.解析 (1)由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.(2)原式=(lg 2-2-lg 52)×100=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.答案 (1)A (2)-20规律方法 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.(3)a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)(2017·北京东城区综合练习)已知函数f (x )=⎩⎨⎧2x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2)(2015·安徽卷)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.解析 (1)因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log23=8×2log23=24. (2)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1.答案 (1)A (2)-1考点二 对数函数的图像及应用【例2】 (1)(2017·郑州一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图像大致是( )(2)(2017·宝鸡调研)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 解析 (1)由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图像关于y 轴对称. 因此y =log a |x |的图像应大致为选项B. (2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点. 答案 (1)B (2)a >1规律方法 (1)在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 【训练2】 (1)函数y =2log 4(1-x )的图像大致是( )(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1C .(1,2)D .(2,2)解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D. (2)由题意得,当0<a <1时,要使得4x <log a x ⎝ ⎛⎭⎪⎫0<x ≤12,即当0<x ≤12时,函数y =4x 的图像在函数y =log a x 图像的下方.又当x =12时,412=2,即函数y =4x的图像过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x 的图像在函数y =log a x 图像的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案 (1)C (2)B考点三 对数函数的性质及应用(多维探究) 命题角度一 比较对数值的大小【例3-1】 (2016·全国Ⅰ卷)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b解析 由y =x c 与y =c x 的单调性知,C 、D 不正确. ∵y =log c x 是减函数,得log c a <log c b ,B 正确.log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定. 答案 B命题角度二 解对数不等式【例3-2】 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)∪(1,+∞) 解析 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.答案 C命题角度三 对数型函数的性质【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎨⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 规律方法 (1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. (2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析 (1)a =log 32<log 33=1,b =log 52<log 55=1, 又c =log 23>log 22=1, 所以,c 最大.由1<log 23<log 25,得1log 23>1log 25,即a >b ,所以c >a >b .(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立, 则f (x )min =log a (8-a )>1,且8-2a >0. ∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83. 答案 (1)D (2)⎝ ⎛⎭⎪⎫1,83[思想方法]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图像比较底数大小的问题,可通过比较图像与直线y =1交点的横坐标进行判定. [易错防范]1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.2.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·四川卷)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为y=log2x在(0,+∞)上单调递增,所以当a>b>1时,有log2a>log2b>log21=0;当log2a>log2b>0=log21时,有a>b>1.答案 A2.(2017·上饶模拟)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c解析因为a=log23+log23=log233=32log23>1,b=log29-log23=log233=a,c=log32<log33=1.答案 B3.若函数y=log a x(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()解析由题意y=log a x(a>0,且a≠1)的图像过(3,1)点,可解得a=3.选项A中,y=3-x=⎝ ⎛⎭⎪⎫13x ,显然图像错误;选项B 中,y =x 3,由幂函数图像可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图像不符;选项D 中,y =log 3(-x )的图像与y =log 3x 的图像关于y 轴对称,显然不符.故选B.答案 B4.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( ) A .5 B .3 C .-1 D.72解析 由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝ ⎛⎭⎪⎫log 312=+1=3log32+1=2+1=3, 所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5. 答案 A5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0解析 ∵a >0,b >0且a ≠1,b ≠1.由log a b >1得log a b a >0.∴a >1,且b a >1或0<a <1且0<b a <1,则b >a >1或0<b <a <1.故(b -a )(b -1)>0.答案 D二、填空题6.设f (x )=log ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________. 解析 由f (x )是奇函数可得a =-1,∴f (x )=lg1+x 1-x,定义域为(-1,1).由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 答案 (-1,0) 7.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 解析 由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.答案 328.(2015·福建卷)若函数f (x )=⎩⎨⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析 当x ≤2时,f (x )≥4;又函数f (x )的值域为[4,+∞),所以⎩⎨⎧ a >1,3+log a2≥4,解1<a ≤2,所以实数a 的取值范围为(1,2].答案 (1,2]三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.(2016·榆林月考)已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x )=(-x ), 所以函数f (x )的解析式为(2)因为f (4)=4=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2017·长沙质检)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p ,故p =r <q .答案 B12.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 解析 由题意可知ln a 1-a +ln b 1-b=0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14. 答案 ⎝ ⎛⎭⎪⎫0,14 13.(2016·浙江卷)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.解析 ∵log a b +log b a =log a b +1log a b =52, ∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2,∴2b =b 2,∴b =2,∴a =4.答案 4 214.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12⎝ ⎛⎭⎪⎫log a x +322-18. 当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12⎝ ⎛⎭⎪⎫log a 2+322-18=1,则a =2, 此时f (x )取得最小值时,x ==2∉[2,8],舍去.若12⎝ ⎛⎭⎪⎫log a 8+322-18=1,则a =12, 此时f (x )取得最小值时,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8], 符合题意,∴a =12.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.。

2022北师大版文科数学高考总复习教师用书:选修4-4 Word版含答案

2022北师大版文科数学高考总复习教师用书:选修4-4 Word版含答案

第1讲 坐标系最新考纲 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化状况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简洁图形表示的极坐标方程.知 识 梳 理1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点);自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角.3.极坐标与直角坐标的互化点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化 公式⎩⎨⎧x =ρcos θ,y =ρsin θρ2=x 2+y 2tan θ=yx (x ≠0)4.圆的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)5.(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). (2)直线l 过点M (a,0)且垂直于极轴,则直线l 的极坐标方程为ρcos θ=a . (3)直线过M ⎝ ⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin_θ=b .诊 断 自 测1.推断正误(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )答案 (1)× (2)√ (3)√ (4)×2.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4 解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1);∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.答案 A3.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0. 答案 x 2+y 2-2y =04.已知直线l 的极坐标方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝ ⎛⎭⎪⎫22,7π4,求点A 到直线l的距离.解 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得2ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ=2,∴y -x =1.由A ⎝ ⎛⎭⎪⎫22,7π4,得点A 的直角坐标为(2,-2).∴点A 到直线l 的距离d =|2+2+1|2=522. 5.(2021·江苏卷)已知圆C 的极坐标方程为ρ2+22ρ·sin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程化为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, ∴(x -1)2+(y +1)2=6,因此圆C 的半径为 6.考点一 平面直角坐标系中的伸缩变换 【例1】 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ), 依题意,得⎩⎨⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得⎩⎨⎧ x =1,y =0或⎩⎨⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.规律方法 (1)解答该类问题应明确两点:一是依据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解. (2)求交点坐标,得直线方程,最终化为极坐标方程,其实质是将x =ρcos θ,y =ρsin θ代入转化. 【训练1】 在平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得点A ′的坐标;(2)求直线l :y =6x 经过φ变换后所得直线l ′的方程. 解 (1)设点A ′(x ′,y ′),由伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x ′=3x ,y ′=y 2,∴x ′=13×3=1,y ′=-22=-1.∴点A ′的坐标为(1,-1).(2)设P ′(x ′,y ′)是直线l ′上任意一点.由伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入y =6x ,得2y ′=6·x ′3=2x ′, ∴y ′=x ′为所求直线l ′的方程. 考点二 极坐标与直角坐标的互化【例2】 (2022·北京卷改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并推断两曲线的外形; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.规律方法 (1)进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).(2)进行极坐标方程与直角坐标方程互化时,要留意ρ,θ的取值范围及其影响;要擅长对方程进行合理变形,并重视公式的逆向与变形使用;要机敏运用代入法和平方法等技巧.【训练2】 (2021·全国Ⅰ卷)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解 (1)由于x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,则易得△C 2MN 为直角三角形, 所以△C 2MN 的面积为S =12×12=12. 考点三 直线与圆的极坐标方程的应用【例3】 (2022·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去t ,得C 1的一般方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组 ⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.规律方法 (1)第(1)题将曲线C 1的参数方程先化成一般方程,再化为极坐标方程,考查同学的转化与化归力量.第(2)题中关键是理解极坐标方程的含义,消去ρ,建立与直线C 3:θ=α0的联系,进而求a .(2)由极坐标方程求曲线交点、距离等几何问题时,假如不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.【训练3】 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1. (1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解 (1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,|OA |=|OD |cos ⎝ ⎛⎭⎪⎫π4-θ或|OA |=|OD |cos ⎝ ⎛⎭⎪⎫θ-π4.所以圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4.(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0,又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫22,22满足直线l 的方程,∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.[思想方法]1.曲线的极坐标方程化成直角坐标方程:对于简洁的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等. 2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤: (1)运用ρ=x 2+y 2,tan θ=yx (x ≠0);(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征推断点所在的象限(即θ的终边位置). [易错防范]1.确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不行.2.平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一.当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍旧不包括极点. 3.进行极坐标方程与直角坐标方程互化时,应留意两点: (1)留意ρ,θ的取值范围及其影响.(2)重视方程的变形及公式的正用、逆用、变形使用.(建议用时:60分钟) 1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0. (2)由⎩⎨⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎨⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝ ⎛⎭⎪⎫1,π2.2.(2021·贵阳调研)以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 依据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π6(ρ∈R ).3.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1,且圆心为(1,0).直线θ=π4的直角坐标方程为y =x ,由于圆心(1,0)关于y =x 的对称点为(0,1),所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.所以曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程为ρ=2sin θ. 4.在极坐标系中,已知圆C 的圆心C ⎝ ⎛⎭⎪⎫3,π3,半径r =3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨迹方程.解 (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪θ-π3,由余弦定理得|CM |2=|OM |2+|OC |2-2|OM |·|OC |cos ⎝ ⎛⎭⎪⎫θ-π3,化简得ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3.(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ→=2QP →,得OQ →=23OP →,∴ρ1=23ρ,θ1=θ, 代入圆C 的方程,得23ρ=6cos⎝ ⎛⎭⎪⎫θ-π3,即ρ=9cos ⎝ ⎛⎭⎪⎫θ-π3. 5.(2021·全国Ⅱ卷)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0. 联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.6.(2021·唐山质检)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解 (1)曲线C 1化为ρcos θ+3ρsin θ= 3. ∴ρsin ⎝ ⎛⎭⎪⎫θ+π6=32.曲线C 2化为x 26+y 22=1(*) 将x =ρcos θ,y =ρsin θ代入(*)式得ρ26cos 2θ+ρ22sin 2θ=1,即ρ2(cos 2θ+3sin 2θ)=6.∴曲线C 2的极坐标方程为ρ2=61+2sin 2θ.(2)∵M (3,0),N (0,1),∴P ⎝ ⎛⎭⎪⎫32,12,∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6.把θ=π6代入ρ2=61+2sin 2θ,得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. 第2讲 参数方程最新考纲 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.知 识 梳 理 1.曲线的参数方程一般地,在平面直角坐标系中,假如曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫作这条曲线的参数方程,联系变数x ,y 的变数t 叫作参变数,简称参数. 2.参数方程与一般方程的互化通过消去参数从参数方程得到一般方程,假如知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入一般方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与一般方程的互化中,必需使用x ,y 的取值范围保持全都. 3.常见曲线的参数方程和一般方程点的轨迹 一般方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)圆 x 2+y 2=r 2⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数)椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)温馨提示 |t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离. 诊 断 自 测1.推断正误(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧y =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( ) (3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )答案 (1)√ (2)√ (3)√ (4)× 2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上 解析 由⎩⎨⎧ x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆, 所以对称中心为(-1,2),在直线y =-2x 上. 答案 B3.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的一般方程为________.解析 消去t ,得x -y =1,即x -y -1=0. 答案 x -y -1=04.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t (t 为参数),则C 1与C 2交点的直角坐标为________.解析 由ρ(cos θ+sin θ)=-2,得x +y =-2.① 又⎩⎨⎧x =t 2,y =22t消去t ,得y 2=8x ② 联立①,②得⎩⎨⎧x =2,y =-4,即交点坐标为(2,-4).答案 (2,-4)5.(2022·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎨⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB的长.解 椭圆C 的一般方程为x 2+y24=1. 将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以|AB |=|t 1-t 2|=167.所以线段AB 的长为167.考点一 参数方程与一般方程的互化【例1】 已知直线l 的参数方程为⎩⎨⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的一般方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的一般方程为2x -y -2a =0, 圆C 的一般方程为x 2+y 2=16. (2)由于直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.规律方法 (1)将参数方程化为一般方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为一般方程时,要留意哪一个量是参数,并且要留意参数的取值对一般方程中x 及y 的取值范围的影响,肯定要保持同解变形.【训练1】 在平面直角坐标系xOy 中,若直线l :⎩⎨⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 解 直线l 的一般方程为x -y -a =0, 椭圆C 的一般方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3. 考点二 参数方程及应用【例2】 (2022·全国Ⅰ卷)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解 (1)曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.规律方法 (1)解决直线与圆的参数方程的应用问题时,一般是先化为一般方程,再依据直线与圆的位置关系来解决问题.(2)对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 (2021·石家庄质检)平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|P A |·|PB |=1,求实数m 的值. 解 (1)由曲线C :(x -1)2+y 2=1.得参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数).直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2, 将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(3m -3)t +m 2-2m =0,所以t 1t 2=m 2-2m ,由题意得|m 2-2m |=1,得m =1,m =1+2或m =1- 2. 考点三 参数方程与极坐标方程的综合应用【例3】 (2022·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的一般方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)曲线C 1的一般方程为x 23+y 2=1.又曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.所以ρsin θ+ρcos θ=4.因此曲线C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值. d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.规律方法 (1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为一般方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【训练3】 在直角坐标系xOy 中,圆C 的参数方程⎩⎨⎧x =1+cos φ,y =sin φ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解 (1)圆C 的一般方程是(x -1)2+y 2=1,又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3.设(ρ2,θ2)为点Q 的极坐标, 则有⎩⎪⎨⎪⎧ρ2(sin θ2+3cos θ2)=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3.由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2. 所以线段PQ 的长度为2.[思想方法]1.参数方程化一般方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题格外简捷便利,是我们解决这类问题的好方法.3.将参数方程化为一般方程,极坐标方程化为直角坐标方程,化生为熟,体现了化归与转化思想. [易错防范]1.将参数方程化为一般方程,在消参数的过程中,要留意x ,y 的取值范围,保持等价转化. 2.确定曲线的参数方程时,肯定要依据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.(建议用时:60分钟)1.(2021·合肥调研)在直角坐标系xOy 中,曲线C :⎩⎨⎧x =2cos α+1,y =2sin α+1(α为参数),在以O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l :ρsin θ+ρcos θ=m . (1)若m =0时,推断直线l 与曲线C 的位置关系;(2)若曲线C 上存在点P 到直线l 的距离为22,求实数m 的取值范围. 解 (1)曲线C 的直角坐标方程为(x -1)2+(y -1)2=2,是一个圆;直线l 的直角坐标方程为x +y =0, 圆心C 到直线l 的距离为d =|1+1|12+12=2=r , 所以直线l 与圆C 相切.(2)由已知可得,圆心C 到直线l 的距离为d =|1+1-m |12+12≤322,解得-1≤m ≤5.所以实数m 的取值范围为[-1,5].2.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的一般方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值. 解 (1)由⎩⎨⎧x =4cos θ,y =4sin θ消去θ,得圆C 的一般方程为x 2+y 2=16. 又直线l 过点P (1,2),且倾斜角α=π6. 所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6.即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0,所以t 1t 2=-11.由参数方程的几何意义,|P A |·|PB |=|t 1t 2|=11.3.(2022·全国Ⅱ卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2 α-44. 由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.4.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解 (1)由ρsin 2θ=4cos θ得(ρsin θ)2=4ρcos θ, ∴曲线C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入y 2=4x 得到t 2sin 2α-4t cos α-4=0. 设A ,B 两点对应的参数分别是t 1,t 2, 则t 1+t 2=4cos αsin 2 α,t 1t 2=-4sin 2α.∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α≥4,当α=π2时取到等号. ∴|AB |min =4,即|AB |的最小值为4.5.(2022·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 的坐标.解 (1)C 的一般方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎨⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ),由(1)知C 是以C (1,0)为圆心, 1为半径的上半圆.由于C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.6.(2021·长沙模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)求C 的一般方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |的值. 解 (1)由⎩⎨⎧x =3cos α,y =sin α消去参数α,得x 29+y 2=1,即C 的一般方程为x 29+y 2=1.由ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得ρsin θ-ρcos θ=2,(*)将⎩⎨⎧x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2, 所以直线l 的倾斜角为π4.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧ x =t cos π4,y =2+t sin π4(t 为参数), 即⎩⎪⎨⎪⎧ x =22t ,y =2+22t (t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0,Δ=(182)2-4×5×27=108>0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|P A |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.。

北师大文科数学高考总复习教师用书:选修 含答案

北师大文科数学高考总复习教师用书:选修 含答案

第1讲绝对值不等式最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0 |x|<a (-a,a)∅∅|x|>a (-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.诊断自测1.判断正误(在括号内打“√”或“×”)(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x -1|+|x +2|<2的解集为∅.( )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )答案 (1)× (2)√ (3)× (4)× (5)√ 2.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 解析 分类讨论:当a ≤2时,f (x )=⎩⎪⎨⎪⎧-3x -1-a ,x <-1,-x +1-a ,-1≤x ≤-a2,3x +1+a ,x >-a2,显然,x =-a 2时,f (x )min =a2+1-a =3,∴a =-4,当a >2时,f (x )=⎩⎪⎨⎪⎧-3x -1-a ,x <-a 2,x -1+a ,-a 2≤x ≤-1,3x +1+a ,x >-1,显然x =-a 2时,f (x )min =-a2-1+a =3,∴a =8.答案 D3.(2015·山东卷)不等式|x -1|-|x -5|<2的解集为________. 解析 ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4,③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4). 答案 (-∞,4)4.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 解析 ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6. ∵不等式的解集为{x |1≤x ≤3},∴k =2. 答案 25.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围为________. 解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12,当x <-2时,y =-3x -1>5; 当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12.答案 ⎣⎢⎡⎦⎥⎤-1,12考点一 含绝对值不等式的解法 【例1】 解不等式|x -1|+|x +2|≥5.解 法一 如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A ,B 两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A 向左移动一个单位到点A 1,此时A 1A +A 1B =1+4=5.把点B 向右移动一个单位到点B 1,此时B 1A +B 1B =5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二 原不等式|x -1|+|x +2|≥5⇔⎩⎨⎧x ≤-2,-(x -1)-(x +2)≥5或⎩⎨⎧-2<x <1,-(x -1)+x +2≥5 或⎩⎨⎧x ≥1,x -1+x +2≥5,解得x ≥2或x ≤-3, ∴原不等式的解集为(-∞,-3]∪[2,+∞).法三 将原不等式转化为|x -1|+|x +2|-5≥0. 令f (x )=|x -1|+|x +2|-5,则f (x )=⎩⎨⎧-2x -6,x ≤-2,-2,-2<x <1,2x -4,x ≥1.作出函数的图像,如图所示.由图像可知,当x ∈(-∞,-3]∪[2,+∞)时,y ≥0, ∴原不等式的解集为(-∞,-3]∪[2,+∞).规律方法 形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图像法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图像,结合图像求解. 【训练1】 (2016·全国Ⅰ卷)已知函数f (x )=|x +1|-|2x -3|.(1)在图中画出y =f (x )的图像; (2)求不等式|f (x )|>1的解集.解(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图像如图所示.(2)由f (x )的表达式及图像,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫xx <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧xx <13或}1<x <3或x >5.考点二 含参数的绝对值不等式问题【例2】 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值; (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, ∴|y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.规律方法 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.【训练2】 (1)若关于x 的不等式|2 014-x |+|2 015-x |≤d 有解,求实数d 的取值范围;(2)不等式⎪⎪⎪⎪⎪⎪x +1x ≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.解 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x ∈(-∞,-2]∪[2,+∞), ∴⎪⎪⎪⎪⎪⎪x +1x ∈[2,+∞),其最小值为2. 又∵sin y 的最大值为1,故不等式⎪⎪⎪⎪⎪⎪x +1x ≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 考点三 含绝对值的不等式的应用【例3】 (2016·全国Ⅲ卷)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求实数a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以实数a 的取值范围是[2,+∞).规律方法 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.【训练3】 (2015·全国Ⅰ卷)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求实数a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎨⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a+1,0),C (a ,a +1), △ABC 的面积为23(a +1)2. 由题设得23(a +1)2>6,故a >2. 所以实数a 的取值范围为(2,+∞).[思想方法]1.绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法. 2.不等式恒成立问题、存在性问题都可以转化为最值问题解决. [易错防范]1.可以利用绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |求函数最值,要注意其中等号成立的条件.2.掌握分类讨论的标准,做到不重不漏.(建议用时:60分钟)1.设函数f(x)=|2x+1|-|x-4|.(1)解不等式f(x)>2;(2)求函数y=f(x)的最小值.解(1)法一令2x+1=0,x-4=0分别得x=-12,x=4. 原不等式可化为:⎩⎪⎨⎪⎧x<-12,-x-5>2或⎩⎪⎨⎪⎧-12≤x<4,3x-3>2或⎩⎨⎧x≥4,x+5>2.即⎩⎪⎨⎪⎧x<-12,x<-7或⎩⎪⎨⎪⎧-12≤x<4,x>53或⎩⎨⎧x≥4,x>-3,∴x<-7或x>53.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x<-7或x>53.法二f(x)=|2x+1|-|x-4|=⎩⎪⎨⎪⎧-x-5 ⎝ ⎛⎭⎪⎫x<-123x-3 ⎝⎛⎭⎪⎫-12≤x<4x+5 (x≥4)画出f(x)的图像,如图所示.求得y=2与f(x)图像的交点为(-7,2),⎝⎛⎭⎪⎫53,2.由图像知f(x)>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x<-7或x>53.(2)由(1)的法二图像知:当x=-12时,知:f (x )min =-92.2.(2017·长沙一模)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|; (2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1. 证明 (1)|cos(α+β)|=|cos αcos β-sin αsin β|≤ |cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+ |cos αsin β|≤|cos α|+|cos β|.(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|, 而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥1. 3.(2016·镇江模拟)已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a |的最小值;(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围. 解 (1)∵|2a +b |+(2a -b )|a |≥|2a +b +2a -b ||a |=|4a ||a |=4,∴|2a +b |+|2a -b ||a |的最小值为4.(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立,故|2+x |+|2-x |≤⎝⎛⎭⎪⎫|2a +b |+|2a -b ||a |min . 由(1)可知,|2a +b |+|2a -b ||a |的最小值为4.∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集. 解不等式得-2≤x ≤2.故实数x 的取值范围为[-2,2].4.(2017·广州二测)已知函数f (x )=log 2(|x +1|+|x -2|-a ). (1)当a =7时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥3的解集是R ,求实数a 的最大值. 解 (1)由题设知|x +1|+|x -2|>7,①当x >2时,得x +1+x -2>7,解得x >4. ②当-1≤x ≤2时,得x +1+2-x >7,无解. ③当x <-1时,得-x -1-x +2>7,解得x <-3. ∴函数f (x )的定义域为(-∞,-3)∪(4,+∞). (2)不等式f (x )≥3,即|x +1|+|x -2|≥a +8, ∵当x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 又不等式|x +1|+|x -2|≥a +8的解集是R , ∴a +8≤3,即a ≤-5, ∴a 的最大值为-5.5.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ;(2)当x ∈(M ∩N )时,证明:x 2f (x )+x [f (x )]2≤14.(1)解 f (x )=错误!当x ≥1时,由f (x )=3x -3≤1, 得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集为M ={x |0≤x ≤43}.(2)证明 由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4,解得-14≤x ≤34.因此N =⎩⎨⎧⎭⎬⎫x |-14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x |0≤x ≤34.当x ∈(M ∩N )时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=x ·f (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14.6.(2017·郑州模拟)已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2. (1)解不等式:|g (x )|<5;(2)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.解(1)由||x-1|+2|<5,得-5<|x-1|+2<5,所以-7<|x-1|<3,解不等式得-2<x<4,所以原不等式的解集是{x|-2<x<4}.(2)因为对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|2x-a-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围是{a|a≥-1或a≤-5}.第2讲不等式的证明最新考纲通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.(1)比较法①求差比较法知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明a-b>0即可,这种方法称为求差比较法.②求商比较法由a>b>0⇔ab>1且a>0,b>0,因此当a>0,b>0时要证明a>b,只要证明ab>1即可,这种方法称为求商比较法.(2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.2.几个常用基本不等式(1)柯西不等式:①柯西不等式的代数形式:设a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2(当且仅当ad=bc时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.③柯西不等式的三角不等式:设x1,y1,x2,y2,x3,y3∈R,则(x1-x2)2+(y1-y2)2+(x2-x3)2+(y2-y3)2≥(x1-x3)2+(y1-y3)2.④柯西不等式的一般形式:设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i =1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(2)算术—几何平均不等式若a1,a2,…,a n为正数,则a1+a2+…+a nn≥na1a2…a n,当且仅当a1=a2=…=a n时,等号成立.诊断自测1.判断正误(在括号内打“√”或“×”)(1)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(2)若实数x,y适合不等式xy>1,x+y>-2,则x>0,y>0.()答案(1)×(2)√2.(2017·泰安模拟)若a>b>1,x=a+1a,y=b+1b,则x与y的大小关系是()A .x >yB .x <yC .x ≥yD .x ≤y解析 x -y =a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a-b >0,所以(a -b )(ab -1)ab >0,即x -y >0,所以x >y .答案 A3.(2017·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( ) A .1 B .2 C .3 D .4解析 log x 10+lg x =1lg x +lg x ≥2(x >1),①正确. ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与ab 同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确. 答案 C4.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析 由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,∴m 2+n 2≥5,∴所求最小值为 5. 答案55.(2016·全国Ⅱ卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x)=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2成立;当x ≥12时,由f (x )<2得2x <2,解得x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0, 即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.考点一 用分析法证明不等式 【例1】 设a ,b ,c >0,且ab +bc +ca =1. 求证:(1)a +b +c ≥3; (2)a bc +b ac +cab ≥ 3(a +b +c ).证明 (1)要证a +b +c ≥ 3, 由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得. ∴原不等式成立.(2)a bc +b ac +c ab =a +b +c abc .由于(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c . 即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .规律方法 当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆. 【训练1】 (2016·宜昌一中月考)已知函数f (x )=|x -1|. (1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a .解 (1)由题意,知原不等式等价为|x -2|+|x +2|≥6, 令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3; 当-2<x <2时,4≥6不成立,此时无解; 当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞). (2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a ,只需证|ab -1|>|b -a |, 只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)·(b 2-1)>0,从而原不等式成立. 考点二 用综合法证明不等式【例2】 已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 证明 (1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab =2⎝ ⎛⎭⎪⎫1a +1b=2⎝ ⎛⎭⎪⎫a +b a +a +b b =2⎝⎛⎭⎪⎫b a +a b +4≥4 b a ×ab +4=8.∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)∵⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1a +1b +1ab +1,由(1)知1a +1b +1ab ≥8. ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 规律方法 (1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键. (2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】 (2017·重庆适应性测试)设a ,b ,c ∈R +且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明 (1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca ,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝ ⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝ ⎛⎭⎪⎫c b +b c +b ⎝ ⎛⎭⎪⎫a c +c a+c ⎝ ⎛⎭⎪⎫a b +b a ≥2a +2b +2c =2. 考点三 柯西不等式的应用 【例3】 已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.(1)证明 因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27.所以3x +1+3y +2+3z +3≤3 3. 当且仅当x =23,y =13,z =0时取等号.(2)解 因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9, 所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时, x 2+y 2+z 2有最小值187.规律方法 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边常数且应注意等号成立的条件.【训练3】 已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y≥32.证明 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x+y+z)=183,∴x2x+2y+3z +y2y+2z+3x+z2z+2x+3y≥27183=32,当且仅当x=y=z=3时,等号成立.[思想方法]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的在本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]1.在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.2.柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.(建议用时:60分钟)1.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.解(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a ,b ,c 均为正实数,且互不相等,且abc =1,求证:a +b +c <1a +1b +1c .证明 法一 ∵a ,b ,c 均为正实数,且互不相等,且abc =1,∴a +b +c =1bc +1ca +1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c .∴a +b +c <1a +1b +1c . 法二 ∵1a +1b ≥21ab =2c ;1b +1c ≥21bc =2a ;1c +1a ≥21ac =2b .∴以上三式相加,得1a +1b +1c ≥ a +b +c . 又∵a ,b ,c 互不相等,∴1a +1b +1c >a +b +c . 法三 ∵a ,b ,c 是不等正数,且abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .∴a +b +c <1a +1b +1c .3.(2017·衡阳二联)已知函数f (x )=|x -3|.(1)若不等式f (x -1)+f (x )<a 的解集为空集,求实数a 的取值范围; (2)若|a |<1,|b |<3,且a ≠0,判断f (ab )|a |与f ⎝ ⎛⎭⎪⎫b a 的大小,并说明理由.解 (1)因为f (x -1)+f (x )=|x -4|+|x -3|≥|x -4+3-x |=1, 不等式f (x -1)+f (x )<a 的解集为空集, 则1≥a 即可,所以实数a 的取值范围是(-∞,1]. (2)f (ab )|a |>f ⎝ ⎛⎭⎪⎫b a .证明:要证f (ab )|a |>f ⎝ ⎛⎭⎪⎫b a ,只需证|ab -3|>|b -3a |, 即证(ab -3)2>(b -3a )2,又(ab -3)2-(b -3a )2=a 2b 2-9a 2-b 2+9=(a 2-1)(b 2-9). 因为|a |<1,|b |<3,所以(ab -3)2>(b -3a )2成立, 所以原不等式成立.4.(2015·陕西卷)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a , 则⎩⎨⎧ -b -a =2,b -a =4,解得⎩⎨⎧a =-3,b =1. (2)-3t +12+t =34-t +t ≤[(3)2+12][((4-t ))2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.5.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d .证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2.因此a +b >c +d . (2)①若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.6.已知a ,b ,c 均为正实数.求证:(1)(a +b )(ab +c 2)≥4abc ;(2)若a +b +c =3,则a +1+b +1+c +1≤3 2.证明 (1)要证(a +b )(ab +c 2)≥4abc ,可证a 2b +ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a -c )2+a (c -b )2≥0,当且仅当a =b =c 时,取等号,由已知,上式显然成立,故不等式(a +b )(ab +c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知a +1·2≤a +1+22=a +32,当且仅当a +1=2时,取等号,b +1·2≤b +1+22=b +32,当且仅当b +1=2时,取等号,c +1·2≤c +1+22=c +32,当且仅当c +1=2时,取等号, 以上三式相加,得2(a +1+b +1+c +1)≤a +b +c +92=6, 所以a +1+b +1+c +1≤32,当且仅当a =b =c =1时,取等号.。

北师大文科数学高考总复习教师用书:综合法 含答案

北师大文科数学高考总复习教师用书:综合法 含答案

第2讲综合法、分析法、反证法最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.知识梳理1.直接证明内容综合法分析法定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.实质由因导果执果索因框图表示P⇒Q1→Q1⇒Q2→…→Q n⇒QQ⇐P1→P1⇐P2→…→得到一个明显成立的条件文字语言因为……所以……或由……得……要证……只需证……即证……间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:在假定命题结论反面成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法. (2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (2)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) (3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )解析 (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件. (2)应假设“a ≤b ”. (3)反证法只否定结论.答案 (1)× (2)× (3)× (4)√2.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 答案 D3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >a b解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.答案 B4.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实根”.答案 A5.(教材改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为________.解析由题意2B=A+C,又A+B+C=π,∴B=π3,又b2=ac,由余弦定理得b2=a2+c2-2ac cos B=a2+c2-ac,∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,∴A=C,∴A=B=C=π3,∴△ABC为等边三角形.答案等边三角形考点一综合法的应用【例1】(2017·东北三省三校模拟)已知a,b,c>0,a+b+c=1.求证:(1)a+b+c≤3;(2)13a+1+13b+1+13c+1≥32.证明(1)∵(a+b+c)2=(a+b+c)+2ab+2bc+2ca≤(a+b+c)+(a+b)+(b+c)+(c+a)=3,∴a+b+c≤ 3.(2)∵a>0,∴3a+1>0,∴43a+1+(3a+1)≥243a+1(3a+1)=4,∴43a +1≥3-3a ,同理得43b +1≥3-3b ,43c +1≥3-3c , 以上三式相加得4⎝ ⎛⎭⎪⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6, ∴13a +1+13b +1+13c +1≥32. 规律方法 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围: (1)定义明确的问题,如证明函数的单调性、奇偶性、求证无条件的等式或不等式;(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱. 【训练1】 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca .由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a >0,b >0,c >0,所以a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1. 考点二 分析法的应用 【例2】 已知a >0,证明:a 2+1a 2-2≥a +1a -2.证明 要证a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2).因为a >0,所以⎝ ⎛⎭⎪⎫a +1a -(2-2)>0,所以只需证⎝⎛⎭⎪⎫a 2+1a 22≥⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a -(2-2)2, 即2(2-2)⎝ ⎛⎭⎪⎫a +1a ≥8-42,只需证a +1a ≥2.因为a >0,a +1a ≥2显然成立⎝ ⎛⎭⎪⎫a =1a =1时等号成立,所以要证的不等式成立.规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练2】 △ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c .证明 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3也就是c a +b +a b +c =1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2a cos 60°,即b 2=c 2+a 2-ac , 故c 2+a 2=ac +b 2成立. 于是原等式成立. 考点三 反证法的应用【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0. ∵p ,q ,r ∈N +,∴⎩⎨⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成为等比数列.规律方法 (1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等. (2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.【训练3】 (2017·郑州一中月考)已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.证明 假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100, 这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.[思想方法]分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [易错防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论.2.在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等.基础巩固题组(建议用时:35分钟)一、选择题1.若a ,b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2D.a b <a +1b +1解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1)恒成立. 答案 B2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( ) A .三个内角都不大于60° B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60° 答案 B3.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定解析 ∵a =m +1-m =1m +1+m ,b =m -m -1=1m +m -1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.答案 B4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.答案 C5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.答案 D二、填空题6.6+7与22+5的大小关系为________.解析要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5. 答案6+7>22+ 57.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________. 答案 都不能被5整除8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需ba >0成立,即a ,b 不为0且同号即可,故①③④能使b a +ab ≥2成立. 答案 ①③④ 三、解答题9.若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c2≥ac >0. 又上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立. 上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列, 否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A解析 ∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 答案 A12.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ) A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2 解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D13.如果a a+b b>a b+b a,则a,b应满足的条件是________.解析∵a a+b b-(a b+b a)=a(a-b)+b(b-a)=(a-b)(a-b)=(a-b)2(a+b).∴当a≥0,b≥0且a≠b时,(a-b)2(a+b)>0.∴a a+b b>a b+b a成立的条件是a≥0,b≥0且a≠b.答案a≥0,b≥0且a≠b14.设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy.证明由于x≥1,y≥1,所以要证明x+y+1xy≤1x+1y+xy,只需证xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.。

2021高三数学北师大版(文)课后限时集训:归纳与类比含解析

2021高三数学北师大版(文)课后限时集训:归纳与类比含解析

所以A是不对的、乙、丙的成绩等级不一定是相同的、所以C是不正确的、丁没有看任何人的成绩等级、所以丁不可能知道四人的成绩等级、所以B是不对的、只有乙可能知道四人的成绩等级、所以D是正确的.]6.图1是美丽的“勾股树”、它是一个直角三角形分别以它的每一边向外作正方形而得到.图2是第1代“勾股树”、重复图2的作法、得到图3为第2代“勾股树”、以此类推、已知最大的正方形面积为1、则第n代“勾股树”所有正方形的面积的和为()图1图2图3A.n B.n2C.n-1 D.n+1D[最大的正方形面积为1、当n=1时、由勾股定理及图二知上面两小正方形面积和等于下面正方形面积1、∴正方形面积的和为2、依次类推、可得所有正方形面积的和为n+1、故选D.]7.为了提高信息在传输中的抗干扰能力、通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为a1a2a3、传输信息为h1a1a2a3h2、其中h1=a1 a2、h2=h1a3、运算规则为:00=0,01=1,10=1,11=0.例如:原信息为111、则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错、则下列接收信息出错的是()A.01100 B.11010C.10110 D.11000D [A 选项原信息为110、则h 1=a 1a 2=11=0、h 2=h 1a 3=00=0、所以传输信息为01100、A 选项正确;B 选项原信息为101、则h 1=a 1a 2=10=1、h 2=h 1a 3=11=0、所以传输信息为11010、B 选项正确;C 选项原信息为011、则h 1=a 1a 2=01=1、h 2=h 1a 3=11=0、所以传输信息为10110、C 选项正确;D 选项原信息为100、则h 1=a 1a 2=10=1、h 2=h 1a 3=10=1、所以传输信息为11001、D 选项错误.故选D.]二、填空题8.将正奇数按如图所示的规律排列: 1 3 5 79 11 13 15 1719 21 23 25 27 29 31 ……则2 019在第________行、从左向右第________个数.32 49 [根据排列规律可知、第一行有1个奇数、第2行有3个奇数、第3行有5个奇数……可得第n 行有2n -1个奇数、前n 行总共有错误!=n 2个奇数、当n =31时、共有n 2=961个奇数、当n =32时、共有n 2=1 024个奇数、所以2 019是第1 010个奇数、在第32行第49个数.]9.设等差数列{a n }的前n 项和为S n 、则S 4、S 8-S 4、S 12-S 8、S 16-S 12成等差数列.类比以上结论我们可以得到一个真命题为:设等比数列{b n }的前n 项积为T n 、则________成等比数列.T 4、T8T4、T12T8、T16T12 [利用类比推理把等差数列中的差换成商即可.]10.(20xx·延安模拟)甲、乙、丙三位教师分别在延安、咸阳、宝鸡的三所中学里教不同的学科A 、B 、C 、已知:①甲不在延安工作、乙不在咸阳工作; ②在延安工作的教师不教C 学科;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲归纳与类比最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.归纳推理:根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是由特殊到特殊的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性:a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )解析 (1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×2.数列2,5,11,20,x,47,…中的x 等于( )A .28B .32C .33D .27解析 5-2=3,11-5=6,20-11=9,推出x -20=12,所以x =32.答案 B3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.答案 C4.(2015·陕西卷)观察下列等式1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16……据此规律,第n个等式可为________.解析第n个等式左边共有2n项且等式左边分母分别为1,2,…,2n,分子为1,正负交替出现,即为1-12+13-14+…+12n-1-12n;等式右边共有n项且分母分别为n+1,n+2,…,2n,分子为1,即为1n+1+1n+2+…+12n.所以第n个等式可为1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n.答案1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n5.(教材改编)在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,n∈N+)成立,类比上述性质,在等比数列{b n}中,若b9=1,则b1b2b3…b n=________.答案b1b2b3…b17-n(n<17,n∈N+)考点一 归纳推理【例1】 (1)(2016·山东卷)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2 =43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2 =43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; ……照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.(2)(2017·西安模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,根据上述规律,第n 个不等式应该为________.解析 (1)观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=43×n ×(n +1)=4n (n +1)3. (2)根据规律,知不等式的左边是n +1个自然数的平方的倒数的和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,所以第n 个不等式应该为1+122+132+…+1(n +1)2<2n +1n +1. 答案 (1)4n (n +1)3(2)1+122+132+…+1(n +1)2<2n +1n +1规律方法 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【训练1】(1)用火柴棒摆“金鱼”,如图所示,按照下面的规律,第n个“金鱼”图需要火柴棒的根数为________.(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为n(n+1)2=12n2+12n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=12n2+12n,正方形数N(n,4)=n2,五边形数N(n,5)=32n2-12n,六边形数N(n,6)=2n2-n……可以推测N(n,k)的表达式,由此计算N(10,24)=____________.解析(1)由题意知:图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n条小鱼需要(2+6n)根.(2)三角形数N(n,3)=12n2+12n=n2+n2,正方形数N(n,4)=n2=2n2-0·n2,五边形数N(n,5)=32n2-12n=3n2-n2,六边形数 N (n,6)=2n 2-n =4n 2-2n 2,k 边形数 N (n ,k )=(k -2)n 2-(k -4)n 2, 所以N (10,24)=22×102-20×102=2 200-2002=1 000. 答案 (1)2+6n (2)1 000考点二 类比推理【例2】 (1)若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n =n c n 1+c n 2+…+c n n nD .d n =n c 1·c 2·…·c n (2)(2017·南昌二中月考)如图(1)所示,点O 是△ABC 内任意一点,连接AO ,BO ,CO ,并延长交对边于A 1,B 1,C 1,则OA 1AA 1+OB 1BB 1+OC 1CC 1=1,类比猜想:点O 是空间四面体V -BCD 内的任意一点,如图(2)所示,连接VO ,BO ,CO ,DO 并延长分别交面BCD ,VCD ,VBD ,VBC 于点V 1,B 1,C 1,D 1,则有________________.解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·,∴d n =n c 1·c 2·…·c n =c 1·,即{d n }为等比数列,故选D. (2)利用类比推理,猜想应有OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1.用“体积法”证明如下:OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=V O -BCD V V -BCD +V O -VCD V B -VCD +V O -VBD V C -VBD +V O -VBC V D -VBC =V V -BCDV V -BCD =1.答案 (1)D (2)OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1 规律方法 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键. (2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】 (2017·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( )A.-5-12B.5-12C.1+52D.1-52解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C. 答案 C考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N +).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 (2016·全国Ⅱ卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”. 答案 1和3[思想方法]1.合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:30分钟)一、选择题1.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案 C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案 C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x) B.-f(x) C.g(x) D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28 B.76 C.123 D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c=ab”.以上式子中,类比得到的结论正确的个数是()A.1 B.2 C.3 D.4解析①②正确;③④⑤⑥错误.答案 B6.(2017·宜春一中月考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是( ) A .甲,丙 B .乙,丁 C .丙,丁 D .乙,丙解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为D. 答案 D7.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +1解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C. 答案 C8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N +)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N +)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层.答案 C 二、填空题9.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14. 答案 1410.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24.答案 13+23+…+n 3=n 2(n +1)2411.(2017·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m+n,类比上述性质,写出在等比数列{a n }中类似的性质:___________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .” 答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n12.已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x (a >1)的图像上任意不同两点,依据图像可知,线段AB 总是位于A ,B 两点之间函数图像的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图像上任意不同两点,则类似地有________成立. 解析 对于函数y =a x (a >1)的图像上任意不同两点A ,B ,依据图像可知,线段AB 总是位于A ,B 两点之间函数图像的上方,因此有结论ax 1+ax 22>a x 1+x 22成立;对于函数y =sin x (x ∈(0,π))的图像上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图像的下方, 类比可知应有sin x 1+sin x 22<sinx 1+x 22成立. 答案 sin x 1+sin x 22<sin x 1+x 22能力提升题组 (建议用时:15分钟)13.(2017·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) A .甲 B .乙 C .丙 D .丁解析 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:1号 2号 3号 4号 5号 6号 甲 不可能 不可能 不可能 可能 可能 不可能 乙 可能 可能 不可能 可能 可能 可能 丙 可能 可能 不可能 不可能 不可能 可能 丁可能可能可能不可能不可能不可能答案 D14.古希腊人常用小石子在沙滩上摆成各种形状来研究数. 比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289 B .1 024 C .1 225 D .1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3, …a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225. 答案 C15.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1,这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1. 答案 x 0x a 2-y 0y b 2=116.(2016·济南模拟)有一个奇数组成的数阵排列如下: 1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … …19 27 …………29 ……………………………则第30行从左到右第3个数是________.解析先求第30行的第1个数,再求第30行的第3个数.观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+ (60)30×(2+60)2-1=929.又第n行从左到右的第2个数比第1个数大2n,第3个数比第2个数大2n+2,所以第30行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1 051.答案 1 051。

相关文档
最新文档