等可能事件的概率
等可能性事件的概率

(1)从中任意取1个,是二等品的概率是多少? (2)从中任意取1个,是二等品或三等品的概率 是多少?
这节课你学到了哪些知识?
1、等可能性事件的定义: 2、等可能性事件的概率计算公式: 3.计算等可能性事件A的概率的步骤: (1)审清题意,判断本试验是否为等可能性事件. (2)计算所有基本事件的总结果数n (3)计算事件A所包含的结果数m. (4)计算P(A)=
泽国中学
叶银川
复习回顾
1、通过上节课的学习,我们已经了解到从事件是否发生 的角度可将事件分为哪三种? 必然事件,不可能事件,随机事件
2、我们还知道,在大量重复进行同一试验时,事件A发生 的频率m∕n 总是接近于某个常数,这个常数我们把它 称为 概率,且记为 P (A)
3、必然事件的概率是 1 ,不可能事件的概率是 0 , 随机事件的概率是 0<P(A) < 1
17.8等可能性事件的概率
问题1 :掷一枚均匀的硬币,可能出现的结果有几种?
正面向上 1/2 反面向上 1/2
问题2:抛掷一个骰子,它落地时向上出现 的点数可能有几种?
1
1/6
2
1/6
3
1/6
4
1/6
5
1/6
6
1/6
想一想
什么是等可能性事件?
定义:一般地,如果事件在一次试验中各种结果出现的可 能性大小是相等的,那么我们就说它是等可能性事件。
求一个随机事件的概率的 基本方法是通过大量的重 复试验;那么能否不进行 大量重复试验,仅从理论 上分析出它们的概率?
一位病人去医生那里看病,医生告诉病人,他需要动 手术,病人问医生这项手术的死亡率怎样?医生说这 项手术,一百个病人有五十个人死亡的,但他又立刻 安慰病人说,他已有五十个病人死去了,所以请他不 必害怕。 你认为医生的说 法对吗?为什么?
北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x

北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x一. 教材分析《北师大版七年级下册数学》第六章主要介绍概率的初步知识。
6.3.1《等可能事件的概率》是本节课的主要内容,通过这个课题,让学生理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。
二. 学情分析学生在学习本节课之前,已经掌握了事件的分类,如必然事件、不可能事件和随机事件。
同时,学生已经能够理解概率的概念,并掌握了如何用分数表示概率。
但是,对于等可能事件的概率公式,学生可能较为陌生,需要通过具体的例子来理解和掌握。
三. 教学目标1.让学生理解等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。
2.能够运用等可能事件的概率公式计算简单事件的概率。
3.通过解决实际问题,培养学生的动手操作能力和解决问题的能力。
四. 教学重难点1.教学重点:理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。
2.教学难点:对于复杂的事件,如何正确地运用等可能事件的概率公式进行计算。
五. 教学方法采用问题驱动的教学方法,通过具体的例子引导学生理解和掌握等可能事件的概率公式。
同时,运用小组合作的学习方式,让学生在解决实际问题的过程中,巩固所学知识。
六. 教学准备1.准备一些实际问题,如抛硬币、抽签等,用于引导学生理解和运用等可能事件的概率公式。
2.准备PPT,用于展示和讲解等可能事件的概率公式。
七. 教学过程1.导入(5分钟)通过抛硬币的例子,引导学生思考:如果抛一枚硬币,正面朝上的概率是多少?让学生意识到,有些事件的概率是可以计算的。
2.呈现(10分钟)呈现等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。
并用PPT展示一些简单的例子,让学生直观地理解公式。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用等可能事件的概率公式进行计算。
等可能事件概率

解:(1)12个球中,红球6个,白球6个,可使得 摸到的红球和白球的概率相等。 (2)12个球中,红球4个,白球4个,黑球4个,可 使得摸到的红球,白球、黄球的概率相等。 (3)12个球中,红球2个,白球2个,黑球8个, 可使得摸到的红球和白球的概率相等,且小于摸 到的黑球的概率。
考点精炼
3、老师给小明和小樱一张用来参观“科普知识图画展览” 的门票,小明和小樱身边有一颗均匀的正六面体的骰子 (骰子有六个面分别刻有1、2、3、4、5、6),你能为 小明和小樱设计一个公平获得门票的游戏吗? 解:游戏一:任意地向上抛骰子,落地后,朝上 的面是奇数,则小明获得门票;若朝上的面是偶 数,则小樱获得门票。
(3)掷出的点数是7的概率是多少?
解:掷出的点数是 7的情况有0种: 0 P(掷出的点数是 7) 0 6
(4)掷出的点数小于7的概率是多少?
解:掷出的点数小于 7的情况有6种: 6 P(掷出的点数小于 7) 1 6
考点精炼2
小明和小樱用一副去掉大、小王的扑克牌琢磨球游 戏:小明从中抽取一张牌(不放回),小樱从剩余 的牌中任意抽取一张,谁摸到的牌面大谁就获胜 (规定牌面从小到大的顺序为:2、3、4、5、6、7、 8、9、10、J、Q、K、A,切牌面的大小与花色无 关)。然后两人把摸到的拍都放回,重新开始游戏。 (1)现小明已经摸到的牌面是4,然后小樱摸牌, 那么小明获胜的概率是多少?小樱获胜的概率是多 少?
解:( 1) 4个球中,有2个红球, 2个白球,可使 1 1 得摸到红球的概率为 ,摸到白球的概率为 ; 2 4
(2) 4个1球中, 2个红球, 1个白球, 1个黄球,可使得摸到的 1 1 红球的概率是 ,摸到的白球和黄球的 概率都是 2 4
考点精炼
教案及说课稿:等可能性事件的概率

课题:等可能性事件的概率(一)一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。
(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。
通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。
(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。
二、教学重点:等可能性事件的概率的意义及其求法。
三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。
四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。
(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。
是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。
(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。
问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。
问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。
等可能性事件的概率

练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,
新北师大版七年级数学下册第6章 概率初步《等可能事件的概率》优质课件

P(小明获胜)= 17 。
小明和小颖做摸牌游戏,他们先后从这
副去掉大、小王的扑克牌中任意抽取一
张牌(不放回),谁摸到的牌面大,谁
就获胜。
现小明已经摸到的牌面为A,然后小颖摸
牌,
P(小颖获胜)= 0
。
请举出一些事件,它们发生的概率都是 3
4
小明和小刚都想去看周末的足球赛,但 却只有一张球票,小明提议用如下的办 法决定到底谁去看比赛: 小明找来一个转盘,转盘被等分为8份,随 意的转动转盘,若转到颜色为红色,则小刚 去看足球赛;转到其它颜色,小明去。 你认为这个游戏公平吗?如果你是小明,你 能设计一个公平的游戏吗?
小明所在的班有40名同学,从中选出一名 同学为家长会准备工作。
请你设计一种方案,使每一名同学被选中 的概率相同。
随堂小结
我学到了…… 我收获了……
课后作业
1.设计两个概率为-13 的游戏。 2.预习下一课。
等可能事件的概率 (第2课时)
小组合作讨论:
小明和小凡一起做游戏。在一个装有2 个红球和3个白球(每个球除颜色外都 相同)的盒子中任意摸出一个球,摸到 红球小明获胜,摸到白球小凡获胜,这 个游戏对双方公平吗?
1
率是 4 。
一副扑克牌,任意抽取其中的一张,
(1)P(抽到大王)=
1 54
(2)P(抽到3)=
2 27
(3)P(抽到方块)=
13 54
请你解释一下,打牌的时候,你摸到大 王的机会比摸到3的机会小。
任意掷一枚均匀的骰子。
1
(1)P(掷出的点数小于4)= 2
1
(2)P(掷出的点数是奇数)= 2
(3)P(掷出的点数是7)=
0
(4)P(掷出的点数小于7)= 1
初中数学《等可能事件的概率》

等可能事件的概率
我们要学什么
等可能事件的概率
1.什么是等可能事件?
2.如何求等可能事件的概率?
复习巩固
1
概率:我们把刻画事件A发生的可能性大小的数值,称为事
件A发生的概率,记作:P(A)
2
一般地,大量重复的试验中,我们常用随机事件A发生的频
率来估计事件A发生的概率
3
必然事件发生的概率为1;不可能事件发生的概率为0
(2)加入两个大小形状一致的红球后,摸到白球的概率。
(答对即可无需说明理由,本题为5学分)
生活中的数学
?
小明继续逛商场,忽然看到前方有摸球游戏,一个袋中装有2个红球和3个白
球,每个球除颜色外都相同,任意摸出一个球。
奖品如下:摸到红球--果汁一瓶
摸到白球--参考书一本
你希望摸到什么?
摸到红球的概率是多少?
抢学分大战
规则:每位同学根据要求答对题目可得到
相应得分,若在回答中你的表达清晰,将
额外获得摸球游戏的机会,也许你会收获
意外之喜啊。
学分大放送
2
学分
2
学分
4
学分
6
学分
6
学分
8
学分
1.一道单项选择题有A,B,C,D四个备选答案,当你不会做的时候,从中
随机选一个答案,你答对的概率为多少?--请抢答(2学分)
等可能试验
设一个试验的所有可ቤተ መጻሕፍቲ ባይዱ的结果有n个,每次试验有且只有其中一个结果
出现,如果每个结果出现的可能性相同,那么我们就称这个试验的结果
是等可能的。
特点:1.结果有限性
比如:我们从1-100个数中随机抽取一个整数,那我们所有可能的结果n=100
1.等可能事件的概率公式如果事件发生的各种结果的都

如果事件发生的各种结果的 可能性都相等,结果总数 为n,事件A发生的可能的结果总数m(m≤n),那么事 件A发生的概率为P(A)=
m n
.
2.分析等可能事件发生的结果总数的方法: 列表 、 画树状图 。 3.运用实验估计概率 通过大量重复实验,用一个事件的 频率 这一事件发生的概率。 频率= 频数÷总实验次数。 来估计
数学之所以有生命力,就在于有趣。数学 之所以有趣,就在于它对思维的启迪。
数学之所以有生命力,就在于有趣。数学之所以有趣,就在于它对思维的启迪。
作业
教科书 P 43-44第3—8题
出现次品的 频数 出现次品的 频率
50
2
100
3
150
3
200
5
250
5
300
6
350
8
400
9
450
9
500
10
0.04 0.03 0.02 0.025 0.02 0.02 0.0229 0.0225 0.02 0.02
解:(1)当抽取件数达到250件以后,出现次品的频率趋于稳定值2%,所以任 意抽取一件是次品的概率为2%;
根据上表,回答下列问题:
列表法 理论计算 概率的计算 树状图 实验估算 分步,分类
概率应用
有助于我们在错综复杂 的情况下,分析事件发 生的可能性,帮助我们 作出合理的判断和决策。
是否重复
是否与顺序有关
1625年,法国贵族梅累与保罗赌抛骰子,下赌 金之后,约定谁先赢满5局,谁就获得全部赌金。赌 了半天,梅累赢了4局,保罗赢了3局,时间很晚了, 他们都不想再赌下去了。那么,这个钱应该怎么分?
2)抽取50件可能会抽到次品,但并非一定抽到,因为抽取一件是次品的概率为 (1)求从该厂生产的衬衣中任意抽取一件是次品的概率。 2%,有可能一次就抽到次品了,也有可能 50多次也没有抽到次品,当抽取次数 (2)抽取50件一定会抽到次品吗?为什么? 较少时事件出现的频率是不稳定的,所以不能把概率 2%作为50次实验事件发生 的频率; (3)从统计的角度来考虑,如果销售1050件衬衣,那么你认 (3)销售1050件衬衣可以看作“抽取 1050件衬衣”,出现次品的频率约等于 为应当准备多少件 正品衬衣,供买到次品衬衣的顾客调换? 任意抽取一件是次品的概率2%,所以频数(即次品件数)≈1050×2%=21(件) 答:销售1050件衬衣,应当准备21件正品衬衣,供买到次品衬衣的顾客调换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:有大小相同的2个红球和4个黄
球,从这6个球中任取3个,求 (1)取到3个黄球的概率。
(2)3个球中有两个红球的概率
(3)至少摸到两个黄球的概率
例2:先后抛掷两个均匀骰子, 骰 子向上的点 数分别为x,y 求 (1)x+y为5的倍数的概率 (2)满足㏒2x(1)甲恰好坐在中间位置的概率 (2)甲乙恰好坐在一起的概率 (3)甲乙分别坐在两端的概率 (4)甲乙之间恰有一个的概率
小结:
求等可能性事件概率的步骤:
(1)判断所构造的基本事件是否等可能; (2)计算一次试验中可能出现的总结果数n; (3)计算事件A所包含的结果数m;
m (4)代入公式 P ( A) 计算; n (5)小结作答.
课堂检测:
(1)某企业一个班组有男工7人,女工4人,现要从中选 出4个职工代表,求4个代表中至少有一个女工的概率 (2)十个人站成一排,求甲乙丙三人恰巧站在一起的概率
B
(3)求在电话号码中后四个数全不相同的概率
(4)把三枚硬币一起抛出求出现两枚正面向上一枚反面 向上的概率
(5)若以连续抛掷两次骰子分别得到的点数m,n作为 点p的坐标求点p落在以原点为圆心半径为4的圆 内的概率
思考题:
袋中有大小相同4个白球和5个黑球, 连续 从中取出3个 球,求: (1)“取后不放回,且取出2黑1 白” 的概率。 (2)“取后放回,且顺序为黑白 黑” 的 概率;
等可能事件概率的计算方法:
(1)如果一次试验由n个基本事件组成,而且所有的基本 事件 出现 的可能性都相等,那么每一个基本事件的概率都 是 1/n 。 (2)如果一次试验中共有n种基本事件,而且所有的基本事件 出现的可能性都相等,其中事件A包含的结果有m种,那 么事件A的概率P(A)是m/n(m≤n) 在一次试验中,等可能出现的n个结果组成一个集合I, 包含m个结果的事件A对应于I的含有m个元素的子集A, Card (A) m P(A)= ——————— = —— Card (I) n
灵宝市实验高中数学组
张好科
教学目标:
(1)理解等可能事件概率的定义 (2)掌握等可能事件概率的计算公式 (3)会求等可能事件的概率
等可能事件概率定义的前提:
(1)试验的结果数n是有限的。 (2)每种结果发生的可能性是相等的。 (3)事件所含的结果数m是可以确定的。
练习
判断:在下列试验中,哪些事件是等可能的? ( 1 )抛掷一均匀硬币 ,” 出现正面”与“ 出现反 面” (2)在1,2,…,9的九个整数内任取一个 (3)从装有大小不等的5个小球的口袋内摸出1 个小球 (4)从100张大小与型号完全相同的片中任取一 张 (5)从一堆产品中抽取一件