精选2019-2020学年人教版初三上《第24章圆》单元测试题(有答案)
人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。
2019届人教版数学九年级上《第24章圆》单元综合测试试题(有答案)加精

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm长为半径作圆.则图中阴影部分的面积为()A.(2﹣π)cm2B.(π﹣)cm2C.(4﹣2π)cm2D.(2π﹣2)cm26.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,在矩形AB CD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4 B.C.5 D.二.填空题11.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是.12.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是.13.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC 的长为.15.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.16.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三.解答题17.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.18.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD的面积.19.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC 于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是的中点,连接OF并延长交CD于点E,连接BD,BF.(1)求证:BD∥OE;(2)若OE=3,tan C=,求⊙O的半径.参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.解:∵=,∴∠ABC=∠AOC=×80°=40°,故选:C.3.解:∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选:A.4.解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.5.解:连接AD,∵△ABC是正三角形,BD=DC,∴∠B=60°,AD⊥BC,∴AD=AB=2,∴图中阴影部分的面积=×4×2﹣×3=(4﹣2π)cm2故选:C.6.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.7.解:∵点P的坐标是(3,4),∴OP==5,而⊙O的半径为5,∴OP等于圆的半径,∴点P在⊙O上.故选:C.8.解:∵若直线L与⊙O只有一个交点,即为点P,则直线L与⊙O的位置关系为:相切;若直线L与⊙O有两个交点,其中一个为点P,则直线L与⊙O的位置关系为:相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.9.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.10.解:如图,连结EO并延长交AD于F,连接AO,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,∵∠B=∠DAB=90°,OE⊥BC,∴四边形ABEF为矩形,∴EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,故选:D.二.填空题(共6小题)11.解:四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为:60°.12.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.解:连接AC.∵四边形ABCD是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC、△ADC都是等边三角形,∴AC=AD=1,∵AB=1,∴△ADC的高为,AC=1,∵扇形BEF的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF、DC相交于HG,设BC、AE相交于点G,在△ADH和△ACG中,,∴△ADH≌△ACG(ASA),∴四边形AGCH的面积等于△ADC的面积,∴图中阴影部分的面积是:S扇形AEF﹣S△ACD=﹣×1×=﹣.故答案为﹣.14.解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.15.解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x 2+10x ﹣24=0,解得x =2或﹣12(舍弃),经检验x =2是分式方程的解,∴BF =2.故答案为2.16.解:如图,∵AB 是直径,∴∠C =90°.又∵BC =6cm ,AC =8cm ,∴根据勾股定理得到AB ==10cm .则AP =(10﹣2t )cm ,AQ =t .∵当点P 到达点A 时,点Q 也随之停止运动,∴0<t ≤2.5.①如图1,当PQ ⊥AC 时,PQ ∥BC ,则△APQ ∽△ABC .故=,即=,解得t =.②如图2,当PQ ⊥AB 时,△APQ ∽△ACB ,则=,即=,解得t =.综上所述,当t =s 或t =时,△APQ 为直角三角形.故答案是: s 或s .三.解答题(共7小题)17.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∴BC•AC=40,∵BC2+AC2=100,∴BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴=,∴AD=BD,∵直角△ABD中,AD=BD,则AD=BD=AB=5,=AD•BD=×5×5=25(cm2),则S在直角△ABC中,AC===6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).19.(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长==π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.23.(1)证明:∵OB=OF,∴∠1=∠3,∵点F是的中点,∴∠1=∠2.∴∠2=∠3,∴BD∥OE;(2)解:连接OD,如图,∵直线CD是⊙O的切线,∴OD⊥CD,在Rt△OCD中,∵tan C==,∴设OD=3k,CD=4k.∴OC=5k,BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,在Rt△ODE中,∵OE2=OD2+DE2,∴(3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙O的半径的长.。
精品2019-2020人教版九年级数学上册第24章 圆单元培优试题含解析

人教版九年级数学上册《第24章圆》单元培优试题一.选择题(共10小题)1.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°2.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.123.如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是()A.4B.3C.2D.14.已知⊙O的半径为2,一点P到圆心O的距离为4,则点P在()A.圆内B.圆上C.圆外D.无法确定5.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.7.下列说法正确的是()A.相等的圆心角所对的弧相等B.在同圆中,等弧所对的圆心角相等C.在同圆中,相等的弦所对的弧相等D.相等的弦所对的弧相等8.如图,C是半圆⊙O内一点,直径AB的长为4cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过的区域(图中阴影部分)的面积为()A.πB.πC.4πD.+π9.已知⊙O的半径是一元二次方程x2﹣3x﹣4=0的一个根,圆心O到直线l的距离d=6.则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断10.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为()A.27﹣9B.18C.54﹣18D.54二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.在圆内接四边形ABCD中,∠D﹣∠B=40°,则∠B=度.13.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.14.如图的齿轮有30个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于度.15.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是.16.在如图所示的网格中,每个小正方形的边长均为1cm,则经过A、B、C三点的弧长是cm (结果保留π).17.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为.18.如图,⊙I是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,若∠DEF=50°,则∠A=.三.解答题(共8小题)19.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.20.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处是否会受到噪音影响?若受到影响,求出影响的时间,若不受到影响,请说明理由.21.如图,⊙O的直径AB为5,弦AC为3,∠ABC的平分线交⊙O于点D.(1)求BC的长;(2)求AD的长.22.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.23.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.24.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.25.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.26.在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.解:∠BAC=∠BOC=×72°=36°.故选:C.2.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.3.解:∵AC、AP为⊙O的切线,∴AC=AP=3,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:C.4.解:∵⊙O的半径分别是2,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:C.5.解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD ===3,∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4,故选:D . 7.解:A 、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意. B 、正确.C 、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D 、错误.相等的弦所对的弧不一定相等.故选:B .8.解:∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B ′OC ′=60°,△BCO =△B ′C ′O ,∴∠B ′OC =60°,∠C ′B ′O =30°,∴∠B ′OB =120°,∵AB =4cm ,∴OB 21cm ,OC ′=1,∴B ′C ′=,∴S 扇形B ′OB ==π,S 扇形C ′OC ==π,∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣π=π;故选:B .9.解:∵x 2﹣3x ﹣4=0,∴x 1=﹣1,x 2=4,∵⊙O 的半径为一元二次方程3x ﹣4=0的根,∴r =,4,∵d >r∴直线l 与⊙O 的位置关系是相离,故选:A .10.解:设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6﹣3)=12﹣6,∴FM=(6﹣12+6)=3﹣3,=4×(3﹣3)×3=54﹣18;∴阴影部分的面积=4S△AFM故选:C.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,又∠D﹣∠B=40°,∴∠B=70°;故答案为:70.13.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.14.解:相邻两齿间的圆心角α==12°,故答案为:12.15.解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故答案为:2.16.解:连接BC、AB,作BC与AB的垂直平分线交于点O,点O即为A、B、C所在圆的圆心,则OA2=22+42=20,OA=2可知∠AOC=90°,∴过A、B、C三点的弧:=.故答案为17.解:①当点O在三角形的内部时,如图所示:则∠BAC=∠BOC=35°;②当点O在三角形的外部时,如图所示;则∠BAC=(360°﹣70°)=145°故答案为:35°或145°.18.解:连结ID、IF,如图,∵∠DEF=50°,∵∠DIF=2∠DEF=100°,∵⊙I是△ABC的内切圆,与AB、CA分别相切于点D、F,∴ID⊥AB,IF⊥AC,∴∠ADI=∠AFI=90°,∴∠A+∠DIF=180°,∴∠A=180°﹣100°=80°.故答案为:80°.三.解答题(共8小题)19.解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.20.解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16(秒).21.解:(1)∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,由勾股定理,得(2)∵CD是∠ACB的平分线,∴∠DAB=∠DBA=45°,∵∠ADB=90°,∴△ADB是等腰直角三角形,∴.22.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)23.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180,答:此圆锥侧面展开图的圆心角是180°.24.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.25.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.26.解:(1)∵当运动时间为t秒时,PA=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ=(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB=90°,∴∠DPQ=90°.∴DP⊥PQ.∴DP为圆Q的切线.(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.解得:t1=﹣15+10,t2=﹣15﹣10(舍去).综上所述可知当t=0或t=﹣15+10时,⊙Q与四边形DPQC的一边相切.。
2019-2020人教版九年级数学上册第24章圆单元测试题解析版

人教版九年级数学上册第24章圆单元测试题一.选择题(共10小题)1.如图,图中的弦共有()A.1条B.2条C.3条D.4条2.如图,AB是⊙O的直径,CD是⊙O的弦,若∠C=34°,则∠ABD=()A.66°B.56°C.46°D.36°3.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm24.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则AE=()A.5cm B.6cm C.8cm D.9cm5.如图,⊙O的半径为3,BC是⊙O的弦,直径AD⊥BC,∠D=30°,则的长为()A.B.πC.2πD.3π6.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M、P、H三点的圆弧与AH交于R,则图中阴影部分面积()A.π﹣B.π﹣5 C.2π﹣5 D.3π﹣27.如图,已知MN是⊙O的直径,弦AB⊥MN,垂足为C,若∠AON=30°,AB=,则CN =()A.B.C.D.28.如图,△ABC内接于⊙O,∠BAC=30°,BC=8,则⊙O半径为()A.4B.6C.8D.129.如图,AB、AC分别为⊙O的内接正方形、内接正三边形的边,BC是圆内接n边形的一边,则n等于()A.8B.10C.12D.1610.如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的最小值是﹣8;②抛物线的对称轴是直线x=3;③⊙D 的半径为4;④抛物线上存在点E,使四边形ACED为平行四边形;⑤直线CM与⊙D相切.其中正确结论的个数是()A.5B.4C.3D.2二.填空题(共8小题)11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=75°,则∠DAO+∠DCO的大小是.12.如图,△ABC中,AB=3,AC=5,将△ABC绕点A顺时针旋转α度得到△AB'C′,图中阴影部分的面积为2π,则旋转角α为度.13.如图,从一块直径为12cm的图形纸片上剪出一个圆心角为90°的扇形ABC.使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是cm.14.如图,在△ABC中,∠BAC=52°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是.15.如图,AB是⊙O的直径,且经过弦CD的中点H,已知HD=4,BD=5,则OA的长度为.16.如图,△ABC内接于半径为5cm的⊙O,且∠BAC=30°,则BC的长为cm.17.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与坐标轴相切时,圆心P的坐标可以是.18.如图,左图是一组光圈闭合过程的示意图,其中每个叶片形状和大小相同,光圈内是一个正六边形.小明同学根据示意图绘制了右图,若AM的延长线恰好过点C,圆的半径为3cm,则叶片所占区域(阴影部分)的面积是.三.解答题(共8小题)19.如图,A、B、C、D为⊙O上四点,若AC⊥OD于E,且=2,请说明AB=2AE.20.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.21.如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.22.如图,BE是⊙O的直径,半径OA⊥弦BC,垂足为D,连接AE、EC.(1)若∠AEC=25°,求∠AOB的度数;(2)若∠A=∠B,EC=4,求⊙O的半径.23.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=6 (1)求∠C的大小;(2)求阴影部分的面积.24.如图所示,⊙O的直径AB为10cm,弦AC为6cm,且AD=BD.(1)求BC,AD,BD的长;(2)图中还有一条线段CD的长是否能确定,若能求出CD的长,25.如图1,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)如图2,直线BO与⊙O交于点D,E,若BD=4,AB=16,求AE的长.26.如图,⊙O外接△ABD,点C在直径AB的延长线上,∠CAD=∠BDC.(1)求证:CD是⊙O的切线;(2)若CD=3,BC=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题)1.解:图形中有弦AB和弦CD,共2条,故选:B.2.解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠DAB=∠BCD=34°,∴∠ABD=90°﹣34°=56°,故选:B.3.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.4.解:∵AB⊥CD,AB是直径,CD=6cm,∴CE=ED=3cm,在Rt△OEC中,OE===4(cm),∴AE=OA+OE=5+4=9(cm),故选:D.5.解:连接OC,如图所示:∵直径AD⊥BC,∴,∴∠AOB=∠AOC,∵∠AOC=2∠D=60°,∴∠BOC=2∠AOC=120°,∴的长==2π;故选:C.6.解:连接AM,MH,MR.∵AM=MH=2,AH=2,∴AM2+MH2=AH2,∴∠AMH=90°,∴△AMH是等腰直角三角形,∴RH=AH=,∵∠MPH=90°,∴MH是圆的直径,∴∠MRH=90°,∴MR⊥AH,∴∠RMH=∠RMA=45°,∴弧RH所对的圆心角为90°,半径=,∴图中阴影部分面积=﹣=π﹣,故选:A.7.解:∵MN是⊙O的直径,弦AB⊥MN,∠AON=30°,AB=,∴OA=2AC,AB=2AC,∴OA=AB=4=ON,∴OC=,∴CN=ON﹣OC=4﹣6,故选:A.8.解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.9.解:连接AO,BO,CO.∵AB、AC分别为⊙O的内接正方形、内接正三边形的一边,∴∠AOB==90°,∠AOC==120°,∴∠BOC=30°,∴n==12,故选:C.10.解:∵在y=(x+2)(x﹣8),当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故②正确;=(3+2)(3﹣8)=﹣,当x=3时,y最小故①错误;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,故③错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时,y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故④错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故⑤正确;故选:D.二.填空题(共8小题)11.解:由AO=BO=CO可知:O是三角形ABC的外心,∴∠ABC是圆周角,∠AOC是圆心角,∴∠AOC=2∠ABC=150°,又∠D=75°,所以∠DAO+∠DCO=360°﹣150°﹣75°=135°.故答案为:135°.12.解:∵将△ABC绕点A顺时针旋转α度得到△AB'C′,AB=3,AC=5,∴﹣=2π,解得:α=45°,故答案为:45.13.解:∵∠BAC=90°,∴BC为⊙O的直径,即BC=12,∴AB=6,设这个圆锥的底面圆的半径是rcm,根据题意得2πr=,解得r=,即这个圆锥的底面圆的半径为cm.故答案.14.解:∵△ABC中∠BAC=52°,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣52°)=64°,∴∠BOC=180°﹣(∠1+∠3)=180°﹣64°=116°.故答案是:116°.15.解:∵AB是⊙O的直径,且经过弦CD的中点H,∴CH=HD,AB⊥CD,∴∠BHD=90°,∵HD=4,BD=5,∴BH=3,设OA=x,连接OD,可得:x2=42+(x﹣3)2,解得:x=,即OA=,故答案为:.16.解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,∴△OBC是等边三角形,∴BC=OB=5cm.故答案为:5.17.解:分两种情况:(1)当⊙P与x轴相切时,依题意,可设P(x,2)或P(x,﹣2).①当P的坐标是(x,2)时,将其代入y=x2﹣1,得2=x2﹣1,解得x=±,此时P(,2)或(﹣,2);②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得﹣2=x2﹣1,无解.(2)当⊙P与y轴相切时,∵⊙P的半径为2,∴当⊙P与y轴相切时,点P到y轴的距离为2,∴P点的横坐标为2或﹣2,当x=2时,代入y=x2﹣1可得y=1,当x=﹣2时,代入y=x2﹣1可得y=1,∴点P的坐标为(2,1)或(﹣2,1),综上所述,符合条件的点P的坐标是(,2)或(﹣,2)或(2,1)或(﹣2,1);故答案为:(,2)或(﹣,2)或(2,1)或(﹣2,1).18.解:如图,连接OA,OD,作OH⊥AM于H.由题意∠CMN=∠CNM=60°,∴△CMN是等边三角形,∴MN=DM=MC=AD,设AD=x,则DH=x,OH=x,AH=x,在Rt△AOH中,则有32=(x)2+(x)2,解得x=,∴OD=2DH=,∴S阴=S圆﹣S正六边形=9π﹣6××()2=9π﹣,故答案为9π﹣三.解答题(共8小题)19.解:∵AC⊥OD,∴,AC=2AE,∵=2,∴,∴AB=AC,∴AB=2AE.20.解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.21.解:根据圆柱表面积的计算公式可得π×2×3×4+π×32×2=42π(cm2).体积π×32×4=36π(cm3)22.解:(1)连接OC.∵半径OA⊥弦BC,∴,∴∠AOC=∠AOB,∵∠AOC=2∠AEC=50°,∴∠AOB=50°.(2)∵BE是⊙O的直径,∴∠ECB=90°,∴EC⊥BC,∵OA⊥BC,∴EC∥OA,∴∠A =∠AEC ,∵OA =OE ,∴∠A =∠OEA ,∵∠A =∠B ,∴∠B =∠AEB =∠AEC =30°,∵EC =4,∴EB =2EC =8,∴⊙O 的半径为4.23.解:(1)∵CD 是圆O 的直径,CD ⊥AB ,∴=,∴∠C =∠AOD ,∵∠AOD =∠COE ,∴∠C =∠COE ,∵AO ⊥BC ,∴∠C =30°;(2)连接OB ,由(1)知,∠C =30°,∴∠AOD =60°,∴∠AOB =120°,在Rt △AOF 中,AO =6,∠AOF =60°,∴AF =AO =3,OF =OA =3,∴AB =6,∴S 阴影=S 扇形OADB ﹣S △OAB =﹣×3×6=12π﹣9.24.解:(1)∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵AB=10cm、AC=6cm,∴BC=8cm,∵AD=BD,∴AD=BD=AB=5cm;(2)图形线段CD的长是确定的,作AE⊥CD于E,∵AE⊥CD,∠ACE=∠ABD=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.25.(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC为⊙O的半径,∴直线AB是⊙O的切线;(2)解:连接OC,过E作EF⊥AB于F,如图2所示:设⊙O的半径的半径为r,则OC=OD=r,∴BD=4+r,∵BC=8,∠BCO=90°,∴r2+82=(r+4)2,解得:r=6,∴OC=6,BO=10,BE=16,∵OC⊥AB,EF⊥AB,∴OC∥EF,∴△OCB∽△EFB,∴==,即==,解得:EF=,BF=,∴AF=AB﹣AF=,∴AE==.26.(1)证明:连接OD,∵OD=OB,∴∠DBA=∠BDO,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDB=∠CAD,∴∠CDB+∠BDO=90°,即OD⊥CD,∵D为⊙O的一点,∴直线CD是⊙O的切线;(2)解:∵∠C=∠C,∠CAD=∠BDC,∴△BDC∽△DAC,∴,∴=,∴AB=,∴⊙O的半径为.。
2019-2020学年人教版初三上《第24章圆》单元测试题(有答案)

单元测试(四) 圆(满分:120分 考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.已知⊙O 的半径是5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于(C)A. 2B. 3 C .2 2 D .2 33.如图,⊙O 是△ABC 的外接圆,连接OB ,OC.若OB =BC ,则∠BAC 等于(C)A .60°B .45°C .30°D .20°4.如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D)A .32°B .60°C .68°D .64°5.如图,C ,D 是以线段AB 为直径的⊙O 上两点.若CA =CD ,且∠ACD =40°,则∠CAB =(B)A .10°B .20°C .30°D .40°6.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则AC ︵的长(B)A .2πB .Π C.π2D.π37.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm ,则这块扇形铁皮的半径是(A)A .40 cmB .50 cmC .60 cmD .80 cm8.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,连接OD ,CB ,AC ,∠DOB =60°,EB =2,那么CD 的长为(D)A. 3 B .2 3 C .3 3 D .4 39.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知AD =6 cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△AMN),则剪下的△AMN 的周长是(B)A .9 cmB .12 cmC .15 cmD .18 cm10.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是(D)A .Π B.5π4C .3+π D .8-π二、填空题(每大题共5个小题,每小题3分,共15分)11.如图,在矩形ABCD中,AB=3,AD=4.若以点A为圆心,4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是点C.12.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为14.如图,AP为⊙O的切线,P为切点.若∠A=20°,C,D为圆周上的两点,且∠PDC=60°,则∠OBC等于65°.15.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF的面积为3π,则菱形OABC的边长为3.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本大题共2小题,每小题5分,共10分)(1)如图,在△AOC中,∠AOC=90°,以点O为圆心,OA为半径的圆交AC于点B,且OB =BC,求∠A的度数.解:∵OA =OB ,OB =BC ,∴∠A =∠OBA ,∠BOC =∠C , 又∵∠OBA =∠BOC +∠C ,∴∠A =2∠C.∵△AOC 中,∠AOC =90°,∴∠A +∠C =90°,即3∠C =90°. ∴∠C =30°,∠A =60°.(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.解:∵AB 为⊙O 的直径, ∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°, ∴∠B =25°.∴∠BAD =90°-∠B =65°.17.(本题6分)如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于D ,CE ⊥OB 于E ,求证:AD =BE. 证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO =∠CEO =90°. 在△COD 和△COE 中,⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS). ∴OD =OE.∵AO =BO , ∴AD =BE.18.(本题7分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,那么直径CD 的长为多少寸?”请你求出CD 的长.解:设直径CD 的长为2x ,则半径OC =x ,OE =x -1. ∵CD 为⊙O 的直径,弦AB ⊥CD 于E ,AB =10, ∴AE =BE =12AB =12×10=5.连接OB ,则OB =x ,根据勾股定理,得x 2=52+(x -1)2, 解得x =13,CD =2x =2×13=26(寸).19.(本题9分)如图,在平面直角坐标系中,已知点A(1,3),B(3,3),C(4,2). (1)请在图中作出经过A ,B ,C 三点的⊙M ,并写出圆心M 的坐标; (2)若D(1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).20.(本题9分)如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图,⊙C 为所求.(2)∵⊙C 切AB 于D ,∴CD ⊥AB.∴∠ADC =90°.∴∠DCE =90°-∠A =90°-30°=60°.∴∠BCD =90°-∠ACD =30°. 在Rt △BCD 中,BC =3,∴BD =12BC =32,CD =BC 2-BD 2=332. ∴DE ︵的长为60·π·332180=32π.21.(本题9分)如图,⊙O 的直径AB =12 cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD. (1)求证:点P 为BD ︵的中点;(2)若∠C =∠D ,求四边形BCPD 的面积.解:(1)证明:连接OP ,交BD 于E.∵CP 与⊙O 相切于点P ,∴PC ⊥OP.∴∠OPC =90°. ∵BD ∥CP ,∴∠OEB =∠OPC =90°. ∴BD ⊥OP.∴点P 为BD ︵的中点.(2)∵∠C =∠D ,∠POB =2∠D ,∴∠POB =2∠C. ∵∠CPO =90°,∴∠C =30°.∵BD ∥CP ,∴∠C =∠DBA.∴∠D =∠DBA. ∴BC ∥PD.∴四边形BCPD 是平行四边形. ∵PO =12AB =6,∴PC =6 3.∵∠ABD =∠C =30°,∴OE =12OB =3.∴PE =3.∴四边形BCPD 的面积为PC·PE =63×3=183(cm 2).22.(本题12分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.解:(1)证明:连接OB ,∵E 是弦BD 的中点,∴BE =DE ,OE ⊥BD, BF ︵=DF ︵=12BD ︵. ∴∠BOE =∠A ,∠OBE +∠BOE =90°.∵∠DBC =∠A ,∴∠BOE =∠DBC.∴∠OBE +∠DBC =90°.∴∠OBC =90°,即BC ⊥OB. ∵OB 为⊙O 的半径, ∴BC 是⊙O 的切线.(2)∵OB =6,BC =8,BC ⊥OB ,∴OC =OB 2+BC 2=10. ∵△OBC 的面积为12OC·BE =12OB·BC ,∴BE =OB·BC OC =6×810=4.8. ∴BD =2BE =9.6,即弦BD 的长为9.6.23.(本题13分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A ,B ,C ,D 均为⊙O 上的点,则有∠C =∠D.小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧,则有∠D>∠E. 请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为(7,0);(2)如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0,点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.解:(1)①如图.(2)当以AB为弦的圆与x轴正半轴相切时,作CD⊥y轴,连接CP,CB.∵点A的坐标为(0,m),点B的坐标为(0,n),∴点D的坐标是(0,m+n2),即BC=PC=m+n2.在Rt△BCD中,BC=m+n2,BD=m-n2,∴则CD=BC2-BD2=mn. ∴OP=CD=mn.∴点P的坐标是(mn,0).。
2019年秋人教版九年级数学上册第24章《圆》单元测试题(含答案)

2019年秋人教版九年级数学上册第24章《圆》单元测试题(含答案)一、选择题:1.已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为( )A.在圆上B.在圆外C.在圆内D.不确定2、如图所示,AB是⊙O的直径.C,D为圆上两点,若∠D=30°,则∠AOC等于()A.60°B.90° C.120° D.150°3、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )A.12.5° B.15° C.20° D.22.5°4、如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心O.若∠B=25°,则∠C=( )A.20°B.25°C.40°D.50°5、如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CDB.△COB是等边三角形C.CG=DGD.的长为π6、如图,正五边形ABCDE内接于⊙O,点M为BC中点,点N为DE中点,则∠MON的大小为()A.108° B.144° C.150° D.166°7、如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于()A.50°B.60°C.70°D.70°8、如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C. D.29、⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm10、如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm11、如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cmB.6cmC.3cmD.2cm12、如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1,E是⊙C上的一动点,则△ABE面积的最大值为()A.2+ B.3+ C.3+ D.4+二、填空题:13、图中△ABC外接圆的圆心坐标是.14、如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.15、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为__________.16、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF= .17、如图,AB是半圆O的直径,D是弧AB上一点,C是弧AD的中点,过点C作AB的垂线,交AB于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是(填序号).18、如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.三、解答题:19、如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,2AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.20、已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.21、如图,已知⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.22、如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA 的延长线于R.求证:RP=RQ.23、已知:如图,点E是正方形ABCD中AD边上的一动点,连结BE,作∠BEG=∠BEA交CD于G,再以B为圆心作,连结BG.(1)求证:EG与相切.(2)求∠EBG的度数.24、如图,将圆心角都是90°的扇形OAB和扇形OCD叠放在一起,连接AC、BD.(1)将△AOC经过怎样的图形变换可以得到△BOD?(2)若的长为πcm,OD=3cm,求图中阴影部分的面积是多少?参考答案1、C2、C3、A4、C5、D6、B7、C8、C9、C10、A11、C12、A13、圆心坐标为:(5,2).14、4 15、5.16、15°.17、②③.18、答案为:6﹣2.19、答案:.20、解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.21.解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.22、证明:连接OQ,∵RQ是⊙O的切线,∴OQ⊥QR,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ.23、(1)证明:过点B作BF⊥EG,垂足为F,∴∠BFE=90°∵四边形ABCD是正方形∴∠A=90°,∴∠BFE=∠A,在△ABE和△FBE中∴△ABE≌△FBE(AAS),∴BF=BA,∵BA为的半径,∴BF为的半径,∴EG与相切;(2)解:由(1)可得△ABE≌△FBE,∴∠FBE=∠ABE=∠ABF,∵四边形ABCD是正方形,∴∠C=∠ABC=90°,∴CD是⊙O切线,由(1)可得EG与相切,∴GF=GC,∵BF⊥EG,BC⊥CD,∴∠FBG=∠CBG=∠FBC,∴∠EBG=∠FBE+∠FBG=(∠ABF+∠FBC)=∠ABC=45°.24、解:(1)∵扇形OAB和扇形OCD的圆心角都是90°,∴OA=OB,OC=OD,∠AOB=∠COD=90°,∴将△AOC绕点O顺时针旋转90°可以得到△BOD;(2)∵=π,∴OA=2,∵△AOC绕点O顺时针旋转90°可以得到△BOD,∴△AOC≌△BOD,∴S△AOC=S△BOD,∵S△AOC+S扇形COD=S△BOD+S扇形AOB+S阴影部分,∴S阴影部分=S扇形COD﹣S扇形AOB=﹣=π(cm2).。
2019-2020人教版九年级数学上册第24章《圆》单元测试题解析版

人教版九年级数学上册第24章《圆》单元测试题一.选择题(共10小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大扇形OCD,用剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10 cm B.15 cm C.10cm D.20cm4.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.5.如图,点A,B,C在⊙O上,若OB=3,∠ABC=60°,则劣弧AC的长为()A.πB.2πC.3πD.4π6.如图,由四段相等的园弧组成的双叶花,每段圆弧都是四分之圆周,OA=OB=2,则这朵双叶花的面积为()A.2π﹣2 B.2π﹣4 C.4π﹣2 D.4π﹣47.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1B.5C.1或5D.2或48.下列说法:①三角形的外心到三角形三边的距离相等②若两个扇形的圆心角相等,则它们所对的弧长也相等③三点确定一个圆④平分弧的直径垂直于弦⑤等弧所对的圆周角相等⑥在同圆或等圆中,相等的弦所对的弧相等,其中正确的个数有()A.0个B.1个C.2个D.3个9.已知⊙O的半径为r,则⊙O的内接正三角形与内接正方形的边长之比为()A.B.C.D.10.如图,正方形ABCD的边长为8.M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为()A.3B.4C.3或4D.不确定二.填空题(共8小题)11.如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC=9,∠BAC+∠EAD=180°,则⊙A的直径等于.12.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转60°得到△ADE,则BC边扫过图形的面积为.13.已知圆锥的底面直径为6cm,母线长为4cm,那么圆锥的侧面积为.14.如图,C为弧AB的中点,CN⊥OB于N,CD⊥OA于M,CD=4cm,则CN=cm.15.如图,⊙O与直角△AOB的斜边交于C,D两点,C,D恰好是AB的三等分点,若⊙O的半径为1,则AB=.16.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O于D,则∠ACD的度数是.17.已知:Rt△ABC中,AC⊥BC,CD为AB边上的中线,AC=6cm,BC=8cm;点O是线段CD 边上的动点(不与点C、D重合);以点O为圆心、OC为半径的⊙O交AC于点E,EF⊥AB于F.(1)求证:EF是⊙O的切线.(如图1)(2)请分析⊙O与直线AB可能出现的不同位置关系,分别指出线段EF的取值范围.(图2供思考用)18.如图,八边形ABCDEFGH是⊙O的内接八边形,AB=CD=EF=GH=2,BC=DE=FG=HA =3,这个八边形的面积是.三.解答题(共8小题)19.如图,在平面直角坐标系中,点M在x轴的正半轴上,⊙M交x轴于A,B两点,交y轴于C,D两点,且C为弧AE的中点,连接CE、AE、CB、EB、AE与y轴交于点F,已知A(﹣2,0)、C(0,4).(1)求证:AF=CF;(2)求⊙M的半径及EB的长.20.如果边长相等的正五边形和正六边形的一边重合,求∠1的度数.21.求圆柱的表面积.22.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O点D.点E在⊙O上.(1)若∠AOC=40°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.23.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.24.如图,BD是⊙O的直径,点A.C在圆周上,∠CBD=20°,求∠A的度数.25.如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP 分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.(1)求证:直线PC是⊙O的切线;(2)若CD=4,BD=2,求线段BP的长.26.如图,以△ABC的边AC为直径的O恰为△ABC的外接圆,∠ABC的平分线交O于点D,过点D作DE∥AC交BC的延长线于点E(1)求证:DE是⊙O的切线;(2)若AB=4,BC=2,求DE的长.参考答案与试题解析一.选择题(共10小题)1.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选:D.4.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.5.解:连接OA、OC,如图所示:则OA=OA=OB=3,∵∠ABC=60°,∴∠AOC=2∠ABC=120°,∴劣弧AC的长为=2π;故选:B.6.解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.=×π×MA2=π.∵S扇形AMOS=AM•MO=1,△AMO=π﹣1,∴S弓形AO=4×(﹣1)∴S三叶花=2π﹣4.故选:B.7.解:∵点C是劣弧的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD==4,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5,故选:C.8.解:①三角形的外心到三角形三个顶点的距离相等;故不符合题意;②在同圆或等圆中,若两个扇形的圆心角相等,则它们所对的弧长也相等,故不符合题意;③不在同一条直线上的三点确定一个圆,故不符合题意;④平分弧的直径垂直于这条弧所对的弦;故不符合题意;⑤等弧所对的圆周角相等,故符合题意;⑥在同圆或等圆中,相等的弦所对的优弧或劣弧相等,故不符合题意;故选:B.9.解:如图,连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=r,∴BC=2BD=r;连接OE,过O作OM⊥EF于M,则EM=HM,△OEM是等腰直角三角形,∴EM=OE=r,∴EF=2EM=r,∴圆内接正三角形、正方形的边长之比为r:r=:.故选:A.10.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM =4,PM =8,在Rt △PBM 中,PB ==4.综上所述,BP 的长为3或4. 故选:C .二.填空题(共8小题)11.解:作直径CF ,连结BF ,如图,∵∠BAC +∠EAD =180°,而∠BAC +∠BAF =180°,∴∠DAE =∠BAF ,∴,∴DE =BF =6,∵CF 是直径,∴∠CBF =90°,∴CF ===3,故答案为:3. 12.解:∵∠C =90°,∠BAC =60°,AC =2,∴AB =4,扇形BAD 的面积是:=,在直角△ABC 中,BC =AB •sin60°=4×=2,AC =2,∴S △ABC =S △ADE =AC •BC =×2×2=2.扇形CAE 的面积是:=, 则阴影部分的面积是:S 扇形DAB +S △ABC ﹣S △ADE ﹣S 扇形ACE=﹣=2π.故答案为:2π.13.解:圆锥的侧面积=×6π×4=12π(cm2),故答案为:12πc m2.14.解:∵CM⊥OA,即OM⊥CD,由垂径定理得:CD=2CM=4cm,连接OC,∵C为弧AB的中点,∴弧AC=弧BC,∴∠AOC=∠BOC,∵CN⊥OB,CD⊥OA∴∠CMO=∠CNO∴∴△CMO≌△CNO∴CN=CM=2cm,故答案为:2.15.解:过O作OH⊥AB,∴CH=DH,∵AC=BD=AB,∴AH=BH,∴△AOB是等腰直角三角形,∴OH=AH,设AC=CD=BD=x,∴AH=OH=1.5x,∴CH2+OH2=OC2,∴(x)2+(x)2=12,∴x=,∴AB=,故答案为:16.解:∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠CAD=45°,由圆周角定理得,∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°.17.(1)证明:在Rt△ABC中,∵CD是斜边中线,∴CD=AD,∴∠A=∠OCE.又∵OE=OC,∴∠OCE=∠OEC,∴∠A=∠OEC,∴OE∥AB,又∵EF⊥AB于F,∴∠OEF=∠EFA=90°,∴OE⊥EF,∴EF是⊙O的切线;(2)解:∵△AEF∽△ABC,∴=,即=,设EF=x,则AE=x.∵OE⊥FE,FE⊥AB,∴OE∥AD,∴==,即=∴OE=5﹣x.过点O作OG⊥AB,则四边形OEFG为矩形.①当EF=OE时,圆O与AB相切,x=5﹣x,x=,②当EF<OE时,AB与圆O相交,x<5﹣x,x<,③当EF>OE时,AB与圆O相离,x>5﹣x,>x>.18.解:分别延长线段AH,BC,DE,GF,交点为M、N、P、Q,由题意易知,八边形ABCDEFGH 每个内角均为135°,故所得△ABM ,△HGN ,△CDP 、△EPQ 为等腰直角三角形, ∴AM 2+BM 2=AB 2,∴AM =,四边形MNQP 是正方形,MN =AH +AM +NH =3+2,∴S 正八边形=S 正方形﹣4•S △ABM =(3+2)2﹣××=13+12.故答案为(13+12).三.解答题(共8小题)19.(1)证明:∵AB ⊥CD ,∴=,OC =OD =4,C 为弧AE 的中点,∴==,∴∠CAD =∠CAE ,∴AF =CF ;(2)解:连接DM ,如图,设⊙M 的半径为r ,则OM =r ﹣2,DM =r ,在Rt △ODM 中,(r ﹣2)2+42=r 2,解得r =5,设OF =x ,则CF =AF =4﹣x ,在Rt △AOF 中,22+x 2=(4﹣x )2,解得x =,∴AF =4﹣=,∵∠OAF =∠EAB ,而∠AOF =∠AEB ,∴Rt △AOF ∽Rt △AEB ,∴OF :BE =AF :AB ,即:BE =:10,解得BE =6, ∴⊙M 的半径为5,EB 的长为6.20.解:正五边形的内角=108°,正六边形的内角=120°,故∠1=120°﹣108°=12°. 21.解:圆柱的表面积=2πr 2+πdh =2π×32+π×6×10=78π; 圆柱的表面积=2πr 2+πdh =2π×72+π×14×5=168π. 22.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB , ∴弧AD =弧BD ,∴∠DEB =∠AOC =×40°=20°;(2)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AC =BC ,即AB =2AC ,在Rt △AOC 中,AC ===4,则AB =2AC =8.23.(1)证明:连结AD ,∵AB 为⊙O 直径,∴AD ⊥BC ,又∵AB =AC ,∴BD =CD ;(2)解:连结OE ,∵AB =4,∠BAC =45°,∴∠BOE =90°,BO =EO =2,∠AOE =90°,∴S 阴=S △BOE +S 扇形OAE =×2×2+=π+2.24.解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等).25.解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠A=∠ACO,∵∠A=∠1=∠2,∴∠2=∠ACO,∴∠2+∠BCO=90°,∴∠PCO=90°,∴OC⊥PC,∴直线PC是⊙O的切线;(2)∵∠ACB=90°,∴∠A+∠ABC=90°∴∠1=∠A,∴∠1+∠ABC=90°,∴∠CDB=90°,∴CD2=AD•BD,∵CD=4,BD=2,∴AD=8,∴AB=10,∴OC=OB=5,∵∠OCP=90°,CD⊥OP,∴OC2=OD•OP,∴52=(5﹣2)×OP,∴OP=,∴PB=OP﹣OB=.26.(1)证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠ABD=45°,∴∠AOD=90°,∵DE∥AC,∴∠ODE=∠AOD=90°,∴DE是⊙O的切线;(2)解:在Rt△ABC中,AB=4,BC=2,∴AC==10,∴OD=5,过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,∴DG=CG=OD=5,∵DE∥AC,∴∠CEG=∠ACB,∴tan∠CEG=tan∠ACB,∴=,即=,解得:GE=2.5,∴DE=DG+GE=.。
人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(四) 圆(满分:120分 考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.已知⊙O 的半径是5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于(C)A. 2B. 3 C .2 2 D .2 33.如图,⊙O 是△ABC 的外接圆,连接OB ,OC.若OB =BC ,则∠BAC 等于(C)A .60°B .45°C .30°D .20°4.如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D)A .32°B .60°C .68°D .64°5.如图,C ,D 是以线段AB 为直径的⊙O 上两点.若CA =CD ,且∠ACD =40°,则∠CAB =(B)A .10°B .20°C .30°D .40°6.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则AC ︵的长(B)A.2π B.Π C.π2 D.π37.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm,则这块扇形铁皮的半径是(A)A.40 cm B.50 cm C.60 cm D.80 cm8.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,连接OD,CB,AC,∠DOB=60°,EB=2,那么CD的长为(D)A. 3 B.2 3 C.3 3 D.4 39.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知AD =6 cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN 的周长是(B)A.9 cm B.12 cm C.15 cm D.18 cm10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA,ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是(D)A.Π B.5π4C.3+π D.8-π二、填空题(每大题共5个小题,每小题3分,共15分)11.如图,在矩形ABCD中,AB=3,AD=4.若以点A为圆心,4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是点C.12.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为14.如图,AP为⊙O的切线,P为切点.若∠A=20°,C,D为圆周上的两点,且∠PDC=60°,则∠OBC等于65°.15.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF 的面积为3π,则菱形OABC的边长为3.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本大题共2小题,每小题5分,共10分)(1)如图,在△AOC中,∠AOC=90°,以点O为圆心,OA为半径的圆交AC于点B,且OB=BC,求∠A的度数.解:∵OA =OB ,OB =BC ,∴∠A =∠OBA ,∠BOC =∠C , 又∵∠OBA =∠BOC +∠C ,∴∠A =2∠C.∵△AOC 中,∠AOC =90°,∴∠A +∠C =90°,即3∠C =90°. ∴∠C =30°,∠A =60°.(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.解:∵AB 为⊙O 的直径, ∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°, ∴∠B =25°.∴∠BAD =90°-∠B =65°.17.(本题6分)如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于D ,CE ⊥OB 于E ,求证:AD =BE. 证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO =∠CEO =90°. 在△COD 和△COE 中,⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS). ∴OD =OE. ∵AO =BO , ∴AD =BE.18.(本题7分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,那么直径CD 的长为多少寸?”请你求出CD 的长.解:设直径CD 的长为2x ,则半径OC =x ,OE =x -1. ∵CD 为⊙O 的直径,弦AB ⊥CD 于E ,AB =10, ∴AE =BE =12AB =12×10=5.连接OB ,则OB =x ,根据勾股定理,得x 2=52+(x -1)2, 解得x =13,CD =2x =2×13=26(寸).19.(本题9分)如图,在平面直角坐标系中,已知点A(1,3),B(3,3),C(4,2). (1)请在图中作出经过A ,B ,C 三点的⊙M ,并写出圆心M 的坐标; (2)若D(1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).20.(本题9分)如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图,⊙C 为所求.(2)∵⊙C 切AB 于D ,∴CD ⊥AB.∴∠ADC =90°.∴∠DCE =90°-∠A =90°-30°=60°.∴∠BCD =90°-∠ACD =30°. 在Rt △BCD 中,BC =3,∴BD =12BC =32,CD =BC 2-BD 2=332.∴DE ︵的长为60·π·332180=32π.21.(本题9分)如图,⊙O 的直径AB =12 cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD. (1)求证:点P 为BD ︵的中点;(2)若∠C =∠D ,求四边形BCPD 的面积.解:(1)证明:连接OP ,交BD 于E.∵CP 与⊙O 相切于点P ,∴PC ⊥OP.∴∠OPC =90°. ∵BD ∥CP ,∴∠OEB =∠OPC =90°. ∴BD ⊥OP.∴点P 为BD ︵的中点.(2)∵∠C =∠D ,∠POB =2∠D ,∴∠POB =2∠C.∵∠CPO =90°,∴∠C =30°.∵BD ∥CP ,∴∠C =∠DBA.∴∠D =∠DBA. ∴BC ∥PD.∴四边形BCPD 是平行四边形. ∵PO =12AB =6,∴PC =6 3.∵∠ABD =∠C =30°,∴OE =12OB =3.∴PE =3.∴四边形BCPD 的面积为PC ·PE =63×3=183(cm 2).22.(本题12分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.解:(1)证明:连接OB ,∵E 是弦BD 的中点,∴BE =DE ,OE ⊥BD, BF ︵=DF ︵=12BD ︵.∴∠BOE =∠A ,∠OBE +∠BOE =90°.∵∠DBC =∠A ,∴∠BOE =∠DBC.∴∠OBE +∠DBC =90°.∴∠OBC =90°,即BC ⊥OB. ∵OB 为⊙O 的半径, ∴BC 是⊙O 的切线.(2)∵OB =6,BC =8,BC ⊥OB ,∴OC =OB 2+BC 2=10. ∵△OBC 的面积为12OC ·BE =12OB ·BC ,∴BE =OB ·BC OC =6×810=4.8.∴BD =2BE =9.6,即弦BD 的长为9.6.23.(本题13分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A,B,C,D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D 在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为(7,0);(2)如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0,点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.解:(1)①如图.(2)当以AB为弦的圆与x轴正半轴相切时,作CD⊥y轴,连接CP,CB.∵点A的坐标为(0,m),点B的坐标为(0,n),∴点D的坐标是(0,m+n2),即BC=PC=m+n2.在Rt△BCD中,BC=m+n2,BD=m-n2,∴则CD=BC2-BD2=mn. ∴OP=CD=mn.∴点P的坐标是(mn,0).。