导数在经济上的简单应用

合集下载

高数课件3-6导数在经济上的应用举例

高数课件3-6导数在经济上的应用举例

边际收益:增 加一单位产量 所增加的收益
边际利润:边 际收益减去边
际成本
边际分析在经 济决策中的应 用:通过比较 边际成本和边 际收益,确定 最优产量和价

弹性分析
需求弹性:衡量消费者对价格变化的敏感程度 供给弹性:衡量生产者对价格变化的敏感程度 交叉弹性:衡量两种商品之间的替代关系 收入弹性:衡量消费者收入变化对消费需求的影响
公司
导数在经济上的应 用举例
单击此处添加副标题汇报人:源自目录单击添加目录项标题
01
导数在经济分析中的应用
02
导数在金融领域的应用
03
导数在市场分析中的应用
04
导数在生产决策中的应用
05
导数在资源分配中的应用
06
01
添加章节标题
01
导数在经济分析中的应用
边际分析
边际成本:增 加一单位产量 所增加的成本
导数在风险评估中的局限性:导数只能预测短期趋势,不能预测长期趋势,因此需要结合其他方 法进行风险评估。
风险评估的实际应用:在金融领域,风险评估被广泛应用于股票、债券、期货等投资产品的风险 评估。
投资组合优化
导数在投资组合优化中的应 用:通过计算导数,找到最 优的投资组合
投资组合:将资金分散到不 同的资产中,以降低风险
资源利用和环境保护的平衡
导数在经济学中的应用:通过导数分析资源分配的优化问题
资源利用和环境保护的关系:资源利用过度会导致环境破坏,而保护环境 需要限制资源利用 导数在资源分配中的应用:通过导数分析,找到资源利用和环境保护的平 衡点
案例分析:某地区如何通过导数分析,实现资源利用和环境保护的平衡
资源分配的效率和公平性

导数在生活中的应用例子

导数在生活中的应用例子

导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。


就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。

2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。

二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。

2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。

三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。

2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。

浅谈导数在经济分析中的应用

浅谈导数在经济分析中的应用

浅谈导数在经济分析中的应用导数是微积分中的重要概念,它在经济分析中有着十分重要的应用。

在经济学领域中,导数在描述市场变化、成本分析和边际效益等方面发挥着重要作用。

本文将从以上几个方面来探讨导数在经济分析中的应用。

导数在描述市场变化方面具有重要作用。

在市场经济中,市场需求和供给的变化对市场价格有着重要影响。

导数可以帮助分析市场需求曲线和供给曲线的斜率,从而帮助理解市场变化。

当市场需求曲线的导数为负数时,表示当价格上涨时市场需求下降的速度;当市场需求曲线的导数为正数时,表示当价格上涨时市场需求上涨的速度。

这样,利用导数来描述市场变化可以帮助经济学家更加准确地理解市场的运行规律,为经济政策的制定提供更加可靠的依据。

导数在成本分析方面也有着重要的应用。

在企业生产中,成本是一个非常重要的方面,对于企业的经营状况和利润水平有着重要影响。

在经济学中,导数可以帮助分析企业成本函数的变化。

企业的边际成本就是通过对成本函数进行求导得到的。

通过分析边际成本的变化,可以帮助企业决定最优的生产规模和生产方式,从而提高生产效率,降低生产成本,实现良好的经济效益。

导数在经济分析中具有十分重要的应用价值。

通过对市场变化、成本分析和边际效益等方面的导数分析,可以帮助理解经济运行的规律,为经济政策的制定和企业经营的决策提供重要的依据。

对于经济学家、企业家和政策制定者来说,掌握导数分析方法是十分重要的,可以帮助他们更好地理解和解决相关的经济问题。

希望本文的介绍可以帮助读者更好地理解导数在经济分析中的重要作用。

浅谈导数在经济分析中的应用

浅谈导数在经济分析中的应用

浅谈导数在经济分析中的应用导数在经济分析中有广泛的应用,主要体现在以下几个方面:1. 边际效应分析:导数可以衡量一个经济变量对另一个经济变量的边际影响。

对于一个生产函数来说,生产量对于投入变量的边际影响可以通过对生产函数求导得到。

这种边际效应分析可以帮助经济学家和决策者理解不同变量之间的相互关系,并制定相应的政策。

2. 最优化问题:很多经济问题可以通过最优化理论求解,而求解最优化问题往往需要使用导数。

生产者在确定生产量时通常会面临成本最小化问题,这个问题可以通过对成本函数求导得到最小化成本对应的生产量。

消费者在确定消费组合时也会面临效用最大化问题,同样可以通过对效用函数求导得到最大化效用对应的消费组合。

3. 弹性分析:弹性是衡量变量之间相互影响的一种度量,而导数可以用来计算弹性。

常见的有价格弹性、收入弹性等。

价格弹性可以告诉我们当价格发生变化时,需求量或供应量的相应变化幅度。

收入弹性可以告诉我们消费者的购买力提高或降低时,对于不同商品需求的变化情况。

通过弹性分析,我们可以更好地理解市场的运行规律,为政策调控提供有力的依据。

4. 经济模型的建立和分析:经济模型是经济学中用来描述经济系统的一种工具,而模型的建立和分析往往需要使用导数。

在宏观经济学中,凯恩斯经济学模型通过对消费函数的导数进行分析,揭示了收入对消费的影响;在微观经济学中,供求模型通过对供给曲线和需求曲线的导数进行分析,揭示了价格和数量之间的关系。

导数在经济分析中具有重要的应用价值。

通过对经济变量之间的边际效应、最优化问题、弹性分析以及经济模型的建立和分析等进行导数的运用,我们可以更好地理解经济现象,分析经济问题,制定经济政策。

导数也为经济学提供了强大的工具和方法,使得经济学成为一门严谨而科学的学科。

经济数学微积分导数在经济学中的简单应用

经济数学微积分导数在经济学中的简单应用
2.边际收益
总成本函数TR=TR(Q)对产量Q的导数称 为边际收益(函数).
3.边际利润
总利润函数π=π(Q)对产量Q的导数称为 边际收益(函数).
由于π(Q)=TR(Q)-TC(Q),所以
即边际利润为边际收益与边际成本之差.
边际利润的情形分析 >0,表示再销售1个单位 产品,总利润的增加量.
=0,表示再销售1个单位 产品,总利润不再增加.
很小时)的关
即 当需求价格弹性大于1时,应降价增加收益.
当需求价格弹性小于1时,应提价增加收益.
当需求价格弹性等于1时,当价格变化时, 总收益不变.
例9 某商品的需求量Q关于价格P的函数为 Q=50-5P
求P=2,5,6时的需求的价格弹性,并说明其 经济意义以及相应增加销售收益的策略.

经济意义: P=2时,价格上涨1%,需求量将下降0.25% P=5时,价格上涨1%,需求量将下降1% P=6时,价格上涨1%,需求量将下降1.5%
销售策略: 当0<P<5时,宜采取提高价格,增加收益
当5<P<10时,宜采取降低价格,增加收益
3. 供给弹性
例10 设某产品的供给函数
,求供给
弹性函数及
的供给弹性.

4. 收益弹性
三、小结
边际的基本概念
1、边际成本 3、边际利润
边际函数的计算
2、边际收益 4、边际需求
弹性的基本概念
1、需求弹性 3、收益弹性
弹性函数的计算
2、供给弹性
<0,表示再销售1个单位 产品,总利润的减少量.
例3 设某产品生产单位的总成本为,
求:(1)生产900个单位的总成本和平均成本; (2)生产900个单位到1000个单位时的总成

导数在经济中的应用

导数在经济中的应用

二、 弹性分析
(3)当η=1时,即当需求的变化幅 度等于价格变化的幅度时,R′(P)=0, 即R(P)取得最大值.经济学中,这种商 品称为单位弹性商品.
二、 弹性分析
【例57】
设某商品的需求函数为Q(P)=150-2P2. (1)求需求弹性函数ηP. (2)求当P=3时的需求弹性,并说明其经济意义. (3)当P=3时,若价格上涨1%,总收益变化百分之几?是增加还是减少? (4)当P=6时,若价格上涨1%,总收益变化百分之几?是增加还是减少?
一、 边际分析
所以,边际函数值f′(x0)的经济意义为:在 点x=x0处,当自变量x改变1个单位时,因变量 y将近似地改变f′(x0)个单位.解释边际函数值的 具体意义时,通常略去“近似”二字.
将边际函数的概念具体到不同的经济函数, 则常用的有边际成本、边际收益、边际利润.
1. 边际成本
一、 边际分析
为平均收益. 边际收益函数值R′Q0的经济意义是:在销售量为Q0的基 础上,再多销售一个单位产品所增加的收益.
一、 边际分析
【例54】
设某产品的需求函数为Q=1 000-2P(元/件),求销售量为 300件时的总收益、平均收益与边际收益,并说明边际收益的 经济意义.
P=500-0.5Q,
R(Q)=QP=Q(500-0.5Q)=500Q-0.5Q2, 当Q=300时,
二、 弹性分析
定义分析
2. 需求弹性
二、 弹性分析
定义7
设商品的需求函数为Q=Q(P),则该商品在价格为P时的需
一般来说,由于需求函数是单调递减的函数,则Q′(P)一般为 负值,所以需求弹性η也为负值.需求弹性反映了产品的需求量 对价格变动反映的强烈程度,其经济意义是:当某商品价格为P 时,价格上涨(下降)1%时,需求量近似减少(增加)η%.在具体 的经济问题解释时,通常略去“近似”二字.

导数在经济学中的应用

导数在经济学中的应用

导数在经济学中的应用一、边际和弹性(一)边际与边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。

而利用导数研究经济变量的边际变化的方法,确实是边际分析方法。

1、总成本、平均成本、边际成本总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。

用c(x)表示,其中x 表示产品的产量,c(x)表示当产量为x 时的总成本。

不生产时,x=0,这时c(x)=c(o),c(o)确实是固定成本。

平均成本是平均每个单位产品的成本,若产量由x 0变化到x x ∆+0,则:xx c x x c ∆-∆+)()(00称为c(x)在)(00x x x ∆+,内的平均成本,它表示总成本函数c(x)在)(00x x x ∆+,内的平均变化率。

而x x c /)(称为平均成本函数,表示在产量为x 时平均每单位产品的成本。

例1,设有某种商品的成本函数为:x x x c 30135000)(++=其中x 表示产量(单位:吨),c(x)表示产量为x 吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为:(元)1080040030400135000)(400=⨯+⨯+==x x c 吨)(元/2740010800)(400===x xx c 假如产量由400吨增加到450吨,即产量增加x ∆=50吨时,相应地总成本增加量为:4.686108004.11468)400()450()(=-=-=∆c c x c 728.13504.686)()(500400==∆∆+=∆∆=∆=x x xx x c x x c 这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。

类似地运算可得:当产量为400吨时再增加1吨,即x ∆=1时,总成本的变化为:7495.13)400()401()(=-=∆c c x c 7495.1317495.13)(1400=∆∆=∆=x x xx c表示在产量为400吨时,再增加1吨产量所增加的成本。

导数在经济学中应用

导数在经济学中应用

导数在经济学中的应用引言导数是微积分的重要概念之一,在经济学中有着广泛的应用。

导数在经济学中的应用不仅可以帮助我们理解市场经济中的各种现象,还可以用于分析经济模型和制定经济政策。

本文将重点介绍导数在经济学中的三个主要应用:边际效应分析、优化问题求解和经济增长模型。

边际效应分析在经济学中,边际效应是指某一经济变量的变化对另一经济变量的影响。

导数可以帮助我们计算出边际效应的大小和方向。

例如,在市场经济中,对某种商品的需求函数往往是一个曲线,而导数可以告诉我们需求曲线上某一点的斜率,也即是该点的价格弹性。

价格弹性越大,说明该商品对价格的敏感度越高。

这对企业制定定价策略和政府制定税收政策都有重要的指导作用。

此外,导数还可以帮助我们分析产量变化对生产成本和利润的影响。

在经济学中,企业的生产函数通常是某一种投入要素与产量之间的关系。

通过对生产函数求导,我们可以得到边际产量、边际成本和边际利润的函数。

这些边际效应的分析对企业的生产决策和资源配置非常重要。

优化问题求解优化问题求解是经济学中常见的问题之一,即在给定一组约束条件下,如何找到使某一目标函数最大或最小的决策变量取值。

导数在解决这类问题时起到了关键作用。

在微积分中,导数为函数提供了局部的信息。

在优化问题求解中,我们通常需要找到目标函数的极值点。

通过计算目标函数的导数,并将导数等于零的点作为候选极值点进行分析,我们可以找到目标函数的局部最大值和最小值。

这对于制定经济政策和优化资源配置具有重要意义。

经济增长模型经济增长模型是经济学中研究产出和收入长期增长的理论框架。

导数在经济增长模型中的应用主要体现在生产函数和资本积累方程中。

生产函数是描述产出与生产要素之间的关系的函数。

通过对生产函数求导,我们可以得到投入要素的边际产出,从而帮助我们分析生产要素的配置和经济增长的驱动力。

资本积累方程是经济增长模型中描述资本存量变化的方程。

通过对资本积累方程求导,我们可以得到资本积累率的边际变化,从而帮助我们分析资本积累的速度和经济增长的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5 求 y x (为常数)的弹性函数. 解 y x 1
Ey Ex
y
x y
x 1
x x
.
例6 求 y 4x 5在 x 3处的弹性.
解 y 4
Ey y x 4 x 4x Ey 12 .
ExLeabharlann y 4x 5 4 x 5 Ex x3 17
2.需求弹性 设需求函数Q f ( p) 可导, 则称
R(50) 2500 R(50) 50 R(50) 0.
3.边际利润 边际利润的经济含义:L(Q0 )表示当销售量 达到Q0 时, 再增加一个单位的销售量所引 起的总利润的变化量. 例4 设某厂每月生产产品的固定成本为1000 元,生产 x 单位产品的可变成本为 0.01x2 10x (元).如果每单位产品的售价为30元,试求:
Ep
表示在 P P0 处
P P0
当 P 增加1%时 Q 将增加 ( EQ )%.
Ep P P0
p
例 8 已知某商品的供给函数为Q e 5 ,
求 (1)供给弹性函数
(2)p=5时的供给弹性,并给予经济解释.

Q
1
e
p 5
5
EQ
Q
p
1
e
p 5
Ep
Q5
p
p
p 5
e5
EQ 1
Ep P5
含义: 在 P 5 时,价格上涨1%,供应量 增加1%将.
的总成本的变化量. 例2 已知某商品的成本函数是C 100 Q Q2
2
求 Q=10时的总成本、平均成本、边际成本.
解 C(Q) 100 1 Q
Q
2
C(Q) 1 Q
C(10) 160 C(10) 16 C(10) 11.
2.边际收益 边际收益的经济含义:R(Q0 )表示当销售量 达到Q0 时, 再增加一个单位的销售量所引 起的总收益的变化量. 例3 已知某商品的收益函数是R(Q) 100Q Q2 求 Q=50时的总收益、平均收益、边际收益. 解 R(Q) 100 Q R(Q) 100 2Q
EQ Q p 为需求弹性.
Ep
Q
注 (1)因需求函数是减函数,故 EQ 0,
Ep
为确保 EQ 0,定义中人为加一负号.
Ep
(2) 经济含义: EQ
Ep
表示在 P P0 处
P P0

P
增加1%时
Q
将减少(
EQ Ep
) %.
P P0
例7 已知某商品的需求函数为Q 900 6
p
求 p=20,30时的弹性,并给予经济解释.
一个单位产品不会增加利润.
二.函数的弹性
若 y f (x)
x: 2 4 x 2
x x
2 2
100 0 0
y: 3 5 y 2
y 2
y
3
67
0 0
问:自变量改变百分之一时,函数值改变
百分之几? y
y 67 00 0.67 x 100 00 x
定义3.5 设函数y f ( x) 在点 x0 处可导,

Q
900 p2
EQ Ep
Q
p Q
(
900 p2 )
p 900
6
900 900 6 p
p
EQ 1.15 Ep
P 20
EQ 1.25 Ep
P 30
含义:
3.供给弹性 设供给函数Q f ( p) 可导, 则称
EQ Q p 为供给弹性.
Ep
Q
注 (1)供给函数是增函数.
(2)经济含义: EQ
函数的相对改变量 y f (x0 x) f (x0 )
y0
f ( x0 )
x
与自变量的相对改变量 x0 之比
y y0
x x0
的极限
y lim ( y x0
0
/
x )
x0
lim
x0
y x
x0 y0
f (x0 )
f
x0 (x0 )
称为
f ( x) 在点
x0
处的弹性.
记作:
Ey Ex
x x0

边际成本,利润函数,边际利润为零时的产量.
解 C( x) 0.01x2 10x 1000
C( x) 0.02x2 10
R( x) px 30x
L( x) R( x) C( x) 0.01x2 20x 1000
L( x) 0.02x 20
令 L( x) 0 得 x 1000 含义:当月产量为1000时,再多生产
第七节 导数在经济学上的简单应用
一.边际函数
定义3.4 设函数 f ( x) 可导,则导函数 f ( x)
称为 f ( x)的边际函数.
f ( x0 )称为 f ( x) 在 x x0处的边
函数值.

y dy f ( x)x x x0 x 1 f ( x0 )
y dy f ( x)x x x0 x 1 f ( x0 )
边际函数值的意义: f ( x0 ) 表示在x x0处
当 x 增加一个单位时 y 的改变量.
注 正数表示增加,负数表示减少.
例1
设函数 y x3 , 求 y ? x10
解 y 3 x2 y 3102 300 x10
当 x 增加一个单位时 y 增加300个单位.
1.边际成本
边际成本的经济含义: C(Q0 )表示当产量 达到Q0 时,再增加一个单位的产量所引起
y y0
x x0
称为
f ( x) 在点
x0

x0 x
两点之间的弧弹性.
若函数 y f ( x)在 (a,b) 内可导,
则称 Ey f (x) x ( f (x) 0)
Ex
f (x)
为 f ( x) 的弹性函数.
弹性函数值的意义:
Ey
Ex
表示在
x x0
x
x0
处, 自变量改变
百分之一时, 函数值改变的百分数.
相关文档
最新文档