等差数列及前n项和
等差数列的前n项和 课件

典例导悟
类型一 等差数列前n项和公式的基本运算 [例1] 分别按等差数列{an}的下列要求计算: (1)已知a1 005=411,求S2 009; (2)已知d=2,S100=10 000,求an.
[分析] 由题目可获取以下主要信息: ①a1+a2 009=2a1 005;②an=a1+(n-1)d. 解答本题要紧扣等差数列的求和公式的两种形式,利 用等差数列的性质解题.
[解] (1)∵a1+a2 009=2a1 005,
∴S2
009=2
009a1+a2 2
009=2
009a1
005=2
009×411=49.
(2)由S100=100a1+
100×100-1 2
×2=10
000,解得a1
=1.
∴an=a1+(n-1)d=2n-1.
[点评] a1,n,d称为等差数列的三个基本量,an和Sn 都可以用这三个基本量来表示,五个量a1,n,d,an,Sn中 可知三求二.即等差数列的通项公式及前n项和公式中“知 三求二”的问题,一般是通过通项公式和前n项和公式联立 得方程(组)求解,这种方法是解决数列问题的基本方法, 在具体求解过程中应注意已知与未知的联系及整体思想的 运用.
(2)当已知首项a1,末项an,项数n时用公式Sn=
na1+an 2
求和,用此公式时,有时要结合等差数列的性
质.
(3)当已知首项a1,公差d及项数n时,用公式Sn=na1+ nn-2 1d求和.
4.数列前n项和Sn与通项an的关系是怎样的?
提示:∵Sn=a1+a2+a3+…+an, ∴Sn-1=a1+a2+a3+…+an-1(n≥2). 在n≥2的条件下,把上面两式相减可得an=Sn-Sn- 1(n≥2),当n=1时,a1=S1,所以an与Sn有如下关系: an=SS1n, -nS= n-11,,n≥2.
等差数列前n项和的性质及应用

密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。
等差数列及其前n项和-高考数学复习

目录索引
1
2
强基础
固本增分
知识梳理
1.等差数列的有关概念
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于
__________,那么这个数列就叫做等差数列.这个常数叫做等差数列
同一个常数
an+1-an=d(n∈N*,d为常数)
的_______,通常用字母d表示.定义表达式为____________________
13.5尺,芒种日晷长为2.5尺,则一年中立春到夏至的日晷长的和为( C )
A.58.5尺
B.59.5尺
C.60尺
D.60.5尺
解析 设冬至日晷长为a1尺,小寒日晷长为a2尺,以此类推芒种日晷长为a12
尺,
因此a1=13.5,a12=2.5.设相邻两个节气晷长的变化量为d,所以有
2.5=13.5+(12-1)d⇒d=-1.立春日晷长为a4=13.5+3×(-1)=10.5(尺),
微思考在等差数列{an}中,通项an是关于n的一次函数吗?前n项和Sn是关于
n的二次函数吗?
提示 an不一定是关于n的一次函数,事实上,在等差数列{an}中,an=kn+b
(k,b∈R),当k=0,即数列为常数列时,an不是关于n的一次函数.
Sn不一定是关于n的二次函数,当公差不为0时,Sn=An2+Bn(A,B为常数,且
解得
101 + 45 = 40,
= -2,
所以 an=a1+(n-1)d=15-2n.
②由已知得
(1 + )
Sn=
2
=
(13+15-2)
等差数列及其前n项和-高考数学复习

返回导航
第六章 数列
高考一轮总复习 • 数学
返回导航
4.(2023·全国乙理,10,5 分)已知等差数列{an}的公差为23π,集合 S
={cos an|n∈N*}.若 S={a,b},则 ab=( B )
A.-1
B.-12
C.0
D.12
第六章 数列
高考一轮总复习 • 数学
返回导航
[解析] 由题意,得 an=a1+(n-1)·23π,又 S={cos an|n∈N*}={a, b},∴cos a1≠cos a2,但 cos a1=cos a3,即 cos a1=cosa1+43π,∴a1+ a1+43π=2kπ(k∈Z),∴a1=-23π+kπ(k∈Z).不妨取 k=1,则 a1=π3,a2= π3+23π,则 S=12,-1={a,b},∴ab=-1×12=-12.故选 B.
即 aa11++d2=d=--3,2,
第六章 数列
高考一轮总复习 • 数学
返回导航
解得ad1==1-,4, ∴a5=a1+4d=0,Sn=na1+nn-2 1d=-4n+n2-2 n=12(n2-9n)=12 n-922-881, ∵n∈N*,∴n=4或5时,Sn取得最小值,最小值为-10.
第六章 数列
第六章 数列
高考一轮总复习 • 数学
返回导航
5.在遇到三个数成等差数列时,可设其为a-d,a,a+d;四个数 成等差数列时,可设为a-3d,a-d,a+d,a+3d或a-d,a,a+d,a +2d.
第六章 数列
高考一轮总复习 • 数学
返回导航
双基自测 题组一 走出误区 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这 个数列是等差数列.( × ) (2)等差数列{an}的单调性是由公差d决定的.( √ ) (3)等差数列的前n项和公式是常数项为0的二次函数.( × ) (4)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an +an+2.( √ )
等差数列及其前n项和(讲义及答案)

n n mn k k +m k +2m等差数列及其前 n 项和(讲义)知识点睛一、数列的概念与简单表示方法 1. 数列的概念按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列的一般形式可以写成a 1 ,a 2 ,a 3 ,…,a n ,…,简记为{a n }. 2. 数列的表示方法(1) 列表法 (2) 图象法 (3) 公式法①通项公式 ②递推公式 3. 数列的性质(1) 递增数列 (2) 递减数列 (3) 常数列 (4) 摆动数列二、 等差数列 1. 等差数列的概念如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示.(1) 等差中项(2) 等差数列的通项公式: a n = a 1 + (n -1)d .2. 等差数列的性质(1) 通项公式的推广: a = a + (n - m )d (m ,n ∈ N *) . (2) 若{a }是等差数列,且k +l = m + n (k ,l ,m ,n ∈ N *) , 则a k +a l = a m + a n .(3) 若{a }是等差数列,则a , a , a ,… (k ,m ∈ N *) 组成公差为 md 的等差数列.(4) 若{a n }是等差数列,则{λa n + c }也是等差数列.1n n n(5) 若{a },{b }是等差数列,则{p a + qb } (n ∈ N * ) 也是等 nnnn差数列. 三、 等差数列的前 n 项和1. 我们称a 1 + a 2 + a 3 +… + a n 为数列{a n }的前 n 项和,用 S n 表示,即S n = a 1 + a 2 + a 3 +… + a n .等差数列{a n }的前 n 项和公式(1) 已知a , a ,n 时, S = n (a 1 + a n ) .1 n n2(2) 已知a 1 , n ,d 时, S n 推导过程:倒序相加法 2. 等差数列各项和的性质= na 1 + n (n -1) d .2(1) S m , S 2m , S 3m 分别是{a n } 的前 m 项,前 2m 项,前 3m 项的和,则S m , S 2m - S m , S 3m - S 2m 成等差数列.(2) 两个等差数列{a n },{b n }的前 n 项和 S n , T n 之间的关系 为 a n b n = S2n -1 . T 2n -1(3) 数列{a }的前 n 项和S = An 2 + Bn ( A ,B ∈ R ) 是{a }为等差数列的等价条件.(4) 等差数列{a n }前 n 项和的最值:当d > 0 时,{a n }为递增数列,且当a 1 < 0 时,前 n 项和S n 有最小值;当d < 0 时,{a n }为递减数列,且当a 1 > 0 时,前 n 项和S n 有最 大值.2n +1 n n n -1n +1 n n n -1精讲精练1. 下面六个结论中:①数列若用图象表示,从图象看是一系列孤立的点; ②数列的项数是无限的; ③数列的通项公式是唯一的; ④数列不一定有通项公式;⑤数列 1,2,3,…不一定是递增的;⑥数列看作函数,其定义域为正整数集或它的有限子集{1,2,…,n } .其中正确的是( )A .①②④⑥ C .①③④⑤B .①④⑤⑥ D .①②⑥2. 数列-1,7,-13,19,…的通项公式a n = ()A . 2n -1 C . (-1)n 6n - 5B . -6n + 5 D . (-1)n (6n - 5)3. 数列 1,3,6,10,15,…的递推公式是()A. a = a + n ,n ∈ N *B. a = a + n ,n ∈ N *,n ≥ 2C. a = a + n -1,n ∈ N * D. a = a + n -1,n ∈ N *4. 在等差数列{a n } 中, a 1 + a 5 = 10 , a 4 = 7 ,则数列{a n } 的公差是( )A .1B .2C .3D .435. 已知等差数列{a n } 满足a 1 + a 2 + a 3 +…+ a 101 = 0 ,则有()A . a 1 + a 101 > 0 C . a 3 + a 99 = 0B . a 2 + a 100 < 0 D . a 51 = 516.在等差数列{a n } 中,S n 是其前 n 项和,且a 4 = 9 ,a 9 = -6 ,则 S n 取最大值时 n 的值为( ) A .6 或 7B .7 或 8C .5 或 6D .8 或 97.已知等差数列{a n } 的前 n 项和为 S n ,若 2a 6 = a 8 + 6 ,则 S 7 = ( )A .49B .42C .35D .2448.已知一个等差数列共有 10 项,其偶数项之和是 15,奇数项之和是 12.5,则它的首项与公差分别是( ) A .0.5,0.5B .0.5,1C .0.5,2D .1,0.59.设等差数列{a n } 的前 n 项和为 S n ,若 S 3 = 12 , S 6 = 42 ,则 a 10 + a 11 + a 12 =( )A .156B .102C .66D .4810. 设数列{a n } ,{b n } 都是等差数列,若a 1 + b 1 = 7 , a 3 + b 3 = 21,则a 5 + b 5 = .5n n +1 11. 已知正项数列{a n }满足:a 1=1,a 2=2, 2a 2 = a 2 2n -1 (n ∈ N * ,n ≥ 2) ,则通项公式a n = .12. 两个等差数列{a n } 和{b n } 的前 n 项和分别是S n 和T n ,若 S n = 2n + 3 ,则 a 9 = .T n 3n -1 b 9回顾与思考6+ a【参考答案】1.B 2.D 3.B 4.B 5.C 6.A 7.B 8.A9.C 10.35 1112.37507。
等差数列及其前n项和的知识点

第二节等差数列及其前n项和[备考方向要明了]考什么怎么考1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数的关系.1.以选择题的形式考查等差数列的基本量及等差数列性质的简单应用,如2012年辽宁T6,北京T10,江西T12等.2.以解答题的形式考查等差数列的概念、等差数列的判定、通项公式、前n项和公式以及等差数列的性质等,如2012年陕西T17等.[归纳·知识整合]1.等差数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为a n-a n-1=d(常数)(n∈N*,n≥2)或a n+1-a n=d(常数)(n∈N*).2.等差数列的通项公式若等差数列{a n}的首项为a1,公差为d,则其通项公式为a n=a1+(n-1)d.亦可以用数列中的第m项a m与公差d表示为a n=a m+(n-m)d.[探究] 1.已知等差数列{a n}的第m项为a m,公差为d,则其第n项a n能否用a m与d 表示?提示:能,a n=a m+(n-m)d.3.等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=a+b2.4.等差数列的前n项和公式S n=na1+n(n-1)2d=n(a1+a n)2.[探究] 2.等差数列前n 项和公式的推导运用了什么方法? 提示:倒序相加法.3.等差数列前n 项和公式能否看作关于n 的函数,该函数是否有最值?提示:当d ≠0时,S n 是关于n 的且常数项为0的二次函数,则(n ,S n )是二次函数图象上的一群孤立的点,由此可得:当d >0时,S n 有最小值;当d <0时,S n 有最大值.5.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m +n =p +q ,则a m +a n =a p +a q , 特别:若m +n =2p ,则a m +a n =2a p .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.[自测·牛刀小试]1.(2012·重庆高考)在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 数列{a n }的公差d =5-12=2,则a 1=-1,a 5=7,可得S 5=15.2.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B 因为{a n }是等差数列,所以a 4+a 8=2a 6=16⇒a 6=8,则该数列的前11项和为S 11=11(a 1+a 11)2=11a 6=88.3.(教材习题改编)在等差数列{a n }中,若a 4+a 5=15,a 7=15,则a 2的值为( ) A .-3 B .0 C .1D .2解析:选B 由题意知,a 2+a 7=a 4+a 5,所以a 2=a 4+a 5-a 7=0.4.(教材习题改编)已知两个数列x ,a 1,a 2,a 3,y 与x ,b 1,b 2,y 都是等差数列,且x ≠y ,则a 2-a 1b 2-b 1的值为________. 解析:∵a 2-a 1=14(y -x ),b 2-b 1=13(y -x ),∴a 2-a 1b 2-b 1=34. 答案:345.(教材习题改编)有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列{a n }的通项公式a n =________.解析:两个等差数列的公共项为2,14,26,…即新数列的首项为2,公差为12. 故a n =2+(n -1)×12=12n -10. 答案:12n -10等差数列的判定与证明[例1] 已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .[自主解答] (1)证明: ∵当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∴S n (1+2S n -1)=S n -1.由上式,若S n -1≠0,则S n ≠0. ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2.(2)∵1S n =1S 1+2(n -1)=1a 1+2(n -1),∴S n =12n.当n≥2时,a n=S n-S n-1=-12n(n-1),当n=1时,a1=S1=12不适合上式,∴a n=⎩⎪⎨⎪⎧12,n=1,-12n(n-1),n≥2.若将条件改为“a1=2,S n=S n-12S n-1+1(n≥2)”,如何求解.解:(1)证明:∵S n=S n-12S n-1+1,∴1S n=2S n-1+1S n-1=1S n-1+2.∴1S n-1S n-1=2.∴⎩⎨⎧⎭⎬⎫1S n是以12为首项,以2为公差的等差数列.(2)由(1)知1S n=12+(n-1)×2=2n-32,即S n=12n-32.当n≥2时,a n=S n-S n-1=12n-32-12n-72=-2⎝⎛⎭⎫2n-32⎝⎛⎭⎫2n-72;当n=1时,a1=2不适合a n,故a n=⎩⎪⎨⎪⎧2(n=1),-2⎝⎛⎭⎫2n-32⎝⎛⎭⎫2n-72(n≥2).———————————————————等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a n -1=-52,∴数列{b n }是以-52为首项,以1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7,设f (x )=1+22x -7,则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数. 故当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.等差数列基本量的计算[例2] (1)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ) A .-1B .1C .3D .7(2)(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. (3)(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.[自主解答] (1)两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+(-34)=1.(2)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1=1,a 3=(a 1+d )2-4,即⎩⎪⎨⎪⎧a 1=1,1+2d =(1+d )2-4,解得⎩⎪⎨⎪⎧a 1=1,d =±2.由于等差数列{a n }是递增的等差数列,因此⎩⎪⎨⎪⎧a 1=1,d =2.所以a n =a 1+(n -1)d =2n -1.(3)设等差数列的公差为d ,则2a 1+d =a 1+2d ,把a 1=12代入得d =12,所以a 2=a 1+d=1,S n =na 1+n (n -1)2d =14n (n +1).[答案] (1)B (2)2n -1 (3)1 n (n +1)4———————————————————等差数列运算问题的通法等差数列的通项公式及前n 项和公式中,共涉及五个量,知三可求二,如果已知两个条件,就可以列出方程组求解,体现了用方程思想解决问题的方法.如果利用等差数列的性质、几何意义去考虑也可以.2.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d (n ≥1,n ∈N *).由a 1=1,a 3=-3,可得1+2d =-3, 解得d =-2.从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7为所求结果.等差数列前n 项和的最值[例3] 已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22, (1)求S n ;(2)这个数列的前多少项和最大,并求出这个最大值. [自主解答] (1)∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0.又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.(2)法一:由(1)知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由(1)知,⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *), 解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.若将“a 1=31,S 10=S 22”改为“a 1=20,S 10=S 15”,则n 为何值时,S n 取得最大值? 解:法一:∵a 1=20,S 10=S 15, ∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为 S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.法二:同法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130. 法三:同法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130.——————————————————— 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解;(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.3.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中,哪一个最大,并说明理由. 解:(1)设数列首项为a 1,公差为d ,由题意可得,⎩⎨⎧S 12=12a 1+12×12×(12-1)d >0,S13=13a 1+12×13×(13-1)d <0.将a 1=a 3-2d =12-2d 代入,得⎩⎪⎨⎪⎧24+7d >0,3+d <0,即-247<d <-3.(2)法一:S n =na 1+n (n -1)2d =(12-2d )n +n (n -1)2d =d 2n 2-⎝⎛⎭⎫52d -12n ,其中-247<d <-3.由二次函数知识可得S 6最大.法二:∵a n =a 1+(n -1)d =12+(n -3)d ,由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧12+(n -3)d ≥0,12+(n -2)d ≤0.∴-12d +2≤n ≤-12d +3.而-247<d <-3, ∴112<n <7.∴n =6. ∴前6项和S 6最大.法三:由S 13=13a 7<0,S 12=6(a 6+a 7)>0,∴a 7<0,a 6>0.∴前6项和S 6最大.等差数列性质的应用[例4] (1)(2013·江门模拟)等差数列{a n }前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于( )A .3B .6C .17D .51(2)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于( ) A .66 B .99 C .144D .297[自主解答] (1)由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.(2)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.[答案] (1)A (2)B ———————————————————在等差数列有关计算问题中,结合整体思想,灵活应用性质,可以减少运算量,达到事半功倍的效果.4.(1)(2013·山西四校联考)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600(2)(2012·江西高考)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析:(1)选B 依题意得3(a 1+a 20)=90,即a 1+a 20=30,数列{a n }的前20项的和等于20(a 1+a 20)2=300. (2)法一:设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3+b 3=(a 1+2d 1)+(b 1+2d 2)=(a 1+b 1)+2(d 1+d 2)=7+2(d 1+d 2)=21,所以d 1+d 2=7.所以a 5+b 5=(a 3+b 3)+2(d 1+d 2)=21+2×7=35.法二:∵2a 3=a 1+a 5,2b 3=b 1+b 5, ∴a 5+b 5=2(a 3+b 3)-(a 1+b 1) =2×21-7=35. 答案:351个技巧——利用等差数列的性质妙设项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.2种选择——等差数列前n 项和公式的选择等差数列前n 项和公式有两个,如果已知项数n 、首项a 1和第n 项a n ,则利用S n =n (a 1+a n )2,该公式经常和等差数列的性质结合应用.如果已知项数n 、首项a 1和公差d ,则利用S n =na 1+n (n -1)d2,在求解等差数列的基本运算问题时,有时会和通项公式结合使用.3个结论——等差数列前n 项和S n 的几个结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .4种方法——等差数列的判断方法①定义法;②等差中项法;③通项公式法;④前n 项和公式法.数学思想——整体思想在数列中的应用利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少数列题,其首项、公差无法确定或计算繁琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[典例] (2013·盐城模拟)设等差数列{a n }的前n 项和S n =m ,前m 项和S m =n (m ≠n )则它的前m +n 项的和S m +n =________.[解析] 法一:设{a n }的公差为d , 则由S n =m ,S m =n ,得⎩⎪⎨⎪⎧S n=na 1+n (n -1)2d =m , ①S m=ma 1+m (m -1)2d =n . ②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1.∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d=(m +n )⎝ ⎛⎭⎪⎫a 1+m +n -12d =-(m +n ).法二:设S n =An 2+Bn (n ∈N *),则⎩⎪⎨⎪⎧Am 2+Bm =n , ③An 2+Bn =m , ④③-④得A (m 2-n 2)+B (m -n )=n -m . ∵m ≠n ,∴A (m +n )+B =-1. ∴A (m +n )2+B (m +n )=-(m +n ), 即S m +n =-(m +n ).[答案] -(m +n ) [题后悟道]1.本题的两种解法都突出了整体思想,其中法一把a 1+m +n -12d 看成了一个整体,法二把A (m +n )+B 看成了一个整体,解起来都很方便.2.整体思想是一种重要的解题方法和技巧,这就要求学生要掌握公式,理解其结构特征.3.本题的易错点是,不能正确运用整体思想的运算方法,不能建立数量间的关系,导致错误.[变式训练]1.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4解析:选B a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.2.设等差数列{a n }的前n 项和为S n ,已知其前6项和为36,S n =324,最后6项的和为180(n >6),求该数列的项数n 及a 9+a 10.解:由题意知a 1+a 2+a 3+a 4+a 5+a 6=36, a n +a n -1+a n -2+a n -3+a n -4+a n -5=180, ∴6(a 1+a n )=36+180=216. ∴a 1+a n =36.又S n =324,∴n (a 1+a n )2=324,即n =2×32436=18.∴a 9+a 10=a 1+a 18=36.一、选择题(本大题共6小题,每小题5分,共30分)1.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是( )A .4B .14C .-4D .-14解析:选A 因为a 3+a 9=4a 5,所以根据等差数列的性质可得a 6=2a 5.所以a 1+5d =2a 1+8d ,即a 1+3d =0.又a 2=-8,即a 1+d =-8,所以公差d =4.2.已知等差数列{a n }的前n 项和为S n ,若S 17=a ,则a 2+a 9+a 16等于( ) A.a 17 B.4a17 C.3a 17D .-3a 17解析:选C ∵S 17=(a 1+a 17)×172=a ,∴17a 9=a ,a 9=a 17.∴a 2+a 9+a 16=3a 9=3a17.3.(2013·秦皇岛模拟)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k=24,则k =( )A .8B .7C .6D .5 解析:选D 依题意得S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =2(2k +1)+2=24,解得k =5.4.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18解析:选B ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n . 令a n >0且a n +1<0,n ∈N *,则有n =20.5.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4解析:选A 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.6.(2013·玉溪模拟)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.二、填空题(本大题共3小题,每小题5分,共15分)7.等差数列{a n }中a 1=1,前n 项和S n 满足S 4S 2=4,则数列{a n }的前n 项和S n =________.解析:设公差为d ,则由S 4S 2=4得4a 1+6d 2a 1+d =4.又∵a 1=1,∴d =2.∴S n =na 1+n (n -1)d2=n +n (n -1)=n 2.答案:n 28.已知等差数列{a n }中,a n ≠0,若n >1且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵2a n =a n -1+a n +1, 又a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n)=0. ∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38,解得n =10. 答案:109.(2013·南京模拟)已知等差数列{a n }的前n 项和为S n ,若(a 2-1)3+2 012(a 2-1)=1,(a 2 011-1)3+2 012·(a 2 011-1)=-1,则下列四个命题中真命题的序号为________.①S 2 011=2 011;②S 2 012=2 012;③a 2 011<a 2;④S 2 011<S 2.解析:由f (x )=x 3+2 012 x 为奇函数,f ′(x )=3x 2+2 012>0,f (1)=2 013>1知f (1)>f (a 2-1),故a 2-1<1即a 2<2又f (a 2-1)=-f (a 2 011-1)=1,故a 2 011<a 2,a 2-1=(a 2 011-1)即a 2+a 2 011=2,S 2 012=a 1+a 2 0122×2 012=2 012,S 2 011=S 2 012-a 2 012=2 012-(2-a 2+d )=2 010+a 1>a 1+a 2=S 2,又假设S 2 011=2 011,则a 1=1,a 2 011=1矛盾.综上,正确的为②③. 答案:②③三、解答题(本大题共3小题,每小题12分,共36分)10.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得a 1=7.所以S 6=-3,a 1=7. (2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.11.已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧ (a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4. 故a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝⎛⎭⎫n -12n +c .∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.12.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-⎝⎛⎭⎫12n -1+2(n ≥2,n 为正整数),a 1=12.(1)令b n =2n a n ,求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.解:(1)由2S n =S n -1-⎝⎛⎭⎫12n -1+2,得2S n +1=S n -⎝⎛⎭⎫12n +2,两式相减得2a n +1=a n +⎝⎛⎭⎫12n , 上式两边同乘以2n 得2n +1a n +1=2n a n +1,即b n +1=b n +1,所以b n +1-b n =1,故数列{b n }是等差数列,且公差为1.又因为b 1=2a 1=1,所以b n =1+(n -1)×1=n .因此2n a n =n ,从而a n =n ·⎝⎛⎭⎫12n.(2)由于2S n =S n -1-⎝⎛⎭⎫12n -1+2,所以2S n -S n -1=2-⎝⎛⎭⎫12n -1,即S n +a n =2-⎝⎛⎭⎫12n -1. S n =2-⎝⎛⎭⎫12n -1-a n ,而a n =n ·⎝⎛⎭⎫12n ,所以S n =2-⎝⎛⎭⎫12n -1-n ·⎝⎛⎭⎫12n =2-(n +2)·⎝⎛⎭⎫12n . 所以S n +1=2-(n +3)·⎝⎛⎭⎫12n +1,且S n +1-S n =n +12n +1>0.所以S n ≥S 1=12,又因为在S n =2-(n +2)·⎝⎛⎭⎫12n 中,(n +2)·⎝⎛⎭⎫12n >0,故S n <2, 即S n 的取值范围是⎣⎡⎭⎫12,2.1.已知数列{a n }的通项公式a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数). (1)当p 和q 满足什么条件时,数列{a n }是等差数列? (2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q ,要使{a n }是等差数列,则2pn +p +q 应是一个与n 无关的常数,所以2p =0,即p =0.故当p =0时,数列{a n }是等差数列. (2)证明:∵a n +1-a n =2pn +p +q , ∴a n +2-a n +1=2p (n +1)+p +q .而(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数, ∴{a n +1-a n }是等差数列.2.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 1,a 2,a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式. 解:(1)证明:因a 1,a 2,a 4成等比数列, 故a 22=a 1a 4.而{a n }是等差数列,有a 2=a 1+d ,a 4=a 1+3d .于是(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d ,化简得a 1=d .(2)由条件S 10=110和S 10=10a 1+10×92d ,得到10a 1+45d =110.由(1),a 1=d ,代入上式得55d =110, 故d =2,a n =a 1+(n -1)d =2n .因此,数列{a n }的通项公式为a n =2n (n =1,2,3,…).3.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于多少?解:由已知得,{a n }是首项为正,公差为负的递减等差数列. 由a 11a 10<-1得a 10+a 11<0且a 10>0,a 11<0, ∴S 20=20(a 1+a 20)2=20(a 10+a 11)2=10(a 10+a 11)<0.而S 19=19a 10>0, ∴S n 取最小正值时n =19.4.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:当n ≥2时,a n =S n -S n -1=2n 2+2n -2(n -1)2-2(n -1)=4n , 又a 1=S 1=4,故a n =4n .当n ≥2时,由b n =T n -T n -1=2-b n -2+b n -1, 得b n =12b n -1,又T 1=2-b 1,即b 1=1, 故b n =⎝⎛⎭⎫12n -1=21-n.。
各有千秋,难分伯仲——等差数列前n项和公式的五种形式及应用

各有千秋,难分伯仲——等差数列前n项和公式的五种
形式及应用
一、定义:
等差数列(Arithmetic Sequence)是指一组数满足相邻两项之差均为常数的数列。
它是有序数列中最为常见的类型,而且它在数学中有着重要的应用。
二、公式:
等差数列的前n项和公式有五种形式,即:
1. 极差法:Sn = n*a + [(n-1)*d]/2;
2. 等比数列的和公式:Sn = a*(1-rn) / (1-r);
3. 通项法:Sn = n/2(a+l);
4. 等差前n项和公式:Sn = n/2(2a+(n-1)d);
5. 首项和末项乘积法:Sn = n/2(a×l)。
三、应用:
1. 等差数列可以用于说明几何形体的对称性,如三角形、正方形和正多边形。
2. 等差数列可以用于推断和解决实际问题,如求解时间与距离的关系等。
3. 等差数列可以用于衡量某一事物的递增规律或趋势,如检测股价的波动趋势、记账的收入支出趋势等。
4. 等差数列可以用于估算一组数据的平均值,如计算某一时间段内股票的平均价格、计算某一地区的平均气温等。
5. 等差数列可以用于表达函数的性质,如线性函数y=ax+b、抛物线函数y=ax2+bx+c等。
等差数列的前N项和公式

等差数列的前N项和公式等差数列是指数列中任意两个相邻项之差保持不变的数列。
前N项和指的是数列前N项之和。
首先,我们来推导等差数列的通项公式。
设等差数列的第一项为a1,公差为d,第n项为an。
根据等差数列的定义可知,第2项为a2 = a1 + d,第3项为a3 = a1 + 2d,以此类推,第n项为an = a1 + (n-1)d。
我们可以把等差数列展开,得到:a1,a1+d,a1+2d,a1+3d,...,a1+(n-2)d,a1+(n-1)d将这些项相加,得到:S=(a1+a1+d+a1+2d+a1+3d+...+a1+(n-2)d+a1+(n-1)d)我们可以将等差数列中的每一项按照公差d进行分组,得到:S=(a1+a1+(n-1)d)+(a1+d+a1+(n-2)d)+(a1+2d+a1+(n-3)d)+...+(a1+(n-2)d+a1+d)+(a1+(n-1)d+a1)根据等差数列的恒等差性质,每一组中的两项之和都等于2a1+(n-1)d。
因此,上式可以进一步化简为:S=n(2a1+(n-1)d)这就是等差数列的前N项和公式,也被称为等差数列求和公式。
为了更好地理解该公式,我们可以举一个具体的例子。
假设有一个等差数列:2,5,8,11,14,求前四项的和。
首先,确定已知量:a1=2(第一项)d=5-2=3(公差)n=4(前四项)代入前N项和公式,可得:S=4(2+(4-1)3)=4(2+3*3)=4(2+9)=4*11=44因此,2,5,8,11的和为44除了使用前N项和公式,我们还可以利用等差数列的性质进行计算。
等差数列可以通过两种方法计算前N项的和:方法一:逐项相加。
通过将每一项相加,可以得到等差数列的前N项和。
在大多数情况下,这种方法适用于较小的N。
方法二:首项加末项乘N除以2、由于等差数列的第一项和最后一项之和等于N,将这两项相加,并乘以N除以2,即可得到前N项和。
这个方法适用于所有的等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及前n 项和
题型一 等差数列的判定或证明
例1 已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1
a n -1 (n ∈
N *).
(1)求证:数列{b n }是等差数列;
(2)求数列{a n }中的最大项和最小项,并说明理由.
变式训练1已知数列{a n }的前n 项和为S n ,且满足S n =S n -1
2S n -1+1
(n ≥2),a 1=2.
(1) 求证:⎩⎨⎧⎭⎬⎫
1S n 是等差数列;(2)求a n 的表达式.
题型二 等差数列的基本量的计算
例2 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.
(1) 若S 5=5,求S 6及a 1;(2)求d 的取值范围.
变式训练2 (2011·福建)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;
(2)若数列{a n }的前k 项和S k =-35,求k 的值.
题型三 等差数列的前n 项和及综合应用
例3 (1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;
(2) 已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.
变式训练3 设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 009=0. (1)求S n 的最小值及此时n 的值; (2)求n 的取值集合,使a n ≥S n .
课后练习
一、选择题
1.设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于() A.31 B.32 C.33 D.34
2.数列{a n}为等差数列,a10=33,a2=1,S n为数列{a n}的前n项和,则S20-2S10等于() A.40 B.200 C.400 D.20
3.(2011·大纲全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k等于() A.8 B.7 C.6 D.5
二、填空题
4.(2011·辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=________.
5.设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=________.
6.等差数列{a n}的前n项和为S n,且6S5-5S3=5,则a4=________.
三、解答题
7.在等差数列{a n}中,已知a2+a7+a12=12,a2·a7·a12=28,求数列{a n}的通项公式.
8.已知数列{a n}的通项公式a n=pn2+qn (p、q∈R,且p、q为常数).
(1)当p和q满足什么条件时,数列{a n}是等差数列;
(2)求证:对任意实数p和q,数列{a n+1-a n}是等差数列.。