完整版等差数列前n项和教案

合集下载

(完整版)等差数列前n项和教案.doc

(完整版)等差数列前n项和教案.doc

等差数列的前 n 项和(第一课时)教学设计【教学目标】一、知识与技能1.掌握等差数列前n 项和公式;2.体会等差数列前n 项和公式的推导过程 ;3.会简单运用等差数列前n 项和公式。

二、过程与方法1.通过对等差数列前n 项和公式的推导 ,体会倒序相加求和的思想方法;2.通过公式的运用体会方程的思想。

三、情感态度与价值观结合具体模型 ,将教材知识和实际生活联系起来 ,使学生感受数学的实用性 ,有效激发学习兴趣 ,并通过对等差数列求和历史的了解 ,渗透数学史和数学文化。

【教学重点】等差数列前 n 项和公式的推导和应用。

【教学难点】在等差数列前 n 项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n 项和的定义,确定本节课中心任务:本我来学《等差数列的前n 和》,那么什么叫数列的前 n 和呢,于数列 {a n} :a1,a2,a3,⋯, a n,⋯我称 a1+a2+a3+⋯ +a n数列 {a n} 的前 n 和,用 s n表示, s n=a1+a2+a3+⋯ +a n,如,⋯⋯S1 =a1S 7 =a1+a2+a3+ +a7,下面我们来共同探究如何求等差数列的前n 项和。

二、问题牵引,探究发现问题 1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱?即: S100=1+2+3+·+100=?著名数学家高斯小时候就会算,闻名于世 ;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。

学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。

但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。

教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

教学重点、难点:1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。

高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。

高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。

高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的公式。

3. 能够运用前n项和公式解决实际问题。

二、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的公式。

3. 等差数列前n项和的性质。

三、教学重点与难点1. 教学重点:等差数列的概念及其性质,等差数列的前n项和的公式。

2. 教学难点:等差数列前n项和的性质的应用。

四、教学方法1. 采用讲授法,讲解等差数列的概念、性质和前n项和的公式。

2. 运用案例分析法,分析等差数列前n项和的性质在实际问题中的应用。

3. 引导学生通过小组讨论,探讨等差数列前n项和的性质。

五、教学过程1. 导入:通过生活中的实例,引导学生思考等差数列的概念,激发学生兴趣。

2. 新课导入:讲解等差数列的定义及其性质,引导学生理解等差数列的特点。

3. 公式讲解:讲解等差数列的前n项和的公式,让学生掌握计算等差数列前n项和的方法。

4. 案例分析:分析等差数列前n项和的性质在实际问题中的应用,让学生学会运用知识解决实际问题。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结:对本节课的内容进行总结,强调等差数列前n项和的性质及其应用。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对等差数列概念和性质的理解程度。

2. 课堂练习:观察学生在练习中的表现,评估其对等差数列前n项和公式的掌握情况。

3. 课后作业:批改课后作业,评估学生对课堂所学知识的巩固程度。

七、教学反思1. 反思教学内容:检查教学内容是否全面,重点是否突出,难点是否讲清楚。

2. 反思教学方法:评估所采用的教学方法是否适合学生,是否有效激发学生的兴趣和参与度。

3. 反思教学效果:根据学生反馈和作业情况,评估教学目标的达成程度。

八、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列前n项和公式在生活中的运用,如计算工资、奖金等。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案第一章:等差数列的概念1.1 等差数列的定义引导学生了解等差数列的定义,即从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

通过示例让学生理解并掌握等差数列的定义。

1.2 等差数列的性质引导学生学习等差数列的性质,如等差数列的通项公式、相邻项的关系等。

通过示例让学生应用等差数列的性质解决问题。

第二章:等差数列的前n项和2.1 等差数列前n项和的定义引导学生了解等差数列前n项和的定义,即前n项的和。

通过示例让学生理解并掌握等差数列前n项和的定义。

2.2 等差数列前n项和的公式引导学生学习等差数列前n项和的公式,即S_n = n/2 (a_1 + a_n),其中S_n 表示前n项的和,a_1表示首项,a_n表示第n项。

通过示例让学生应用等差数列前n项和的公式解决问题。

第三章:等差数列前n项和的性质3.1 等差数列前n项和的性质引导学生学习等差数列前n项和的性质,如前n项和与项数的关系、前n项和与首项和末项的关系等。

通过示例让学生应用等差数列前n项和的性质解决问题。

3.2 等差数列前n项和的计算方法引导学生学习等差数列前n项和的计算方法,如高斯求和法、分组求和法等。

通过示例让学生应用等差数列前n项和的计算方法解决问题。

第四章:等差数列前n项和的应用4.1 等差数列前n项和在实际问题中的应用引导学生了解等差数列前n项和在实际问题中的应用,如计算工资、统计数据等。

通过示例让学生应用等差数列前n项和解决实际问题。

4.2 等差数列前n项和在数学竞赛中的应用引导学生了解等差数列前n项和在数学竞赛中的应用,如解决数列问题、证明数学定理等。

通过示例让学生应用等差数列前n项和解决数学竞赛问题。

第五章:等差数列前n项和的拓展5.1 等差数列前n项和的拓展知识引导学生学习等差数列前n项和的拓展知识,如等差数列的求和公式、等差数列的极限等。

通过示例让学生了解等差数列前n项和的拓展知识。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案一、教学目标知识与技能:1. 理解等差数列的定义及其性质;2. 掌握等差数列前n项和的公式;3. 会运用等差数列前n项和公式解决实际问题。

过程与方法:1. 通过探究等差数列的性质,引导学生发现等差数列前n项和的规律;2. 利用公式法、图象法、列举法等多种方法求解等差数列前n项和;3. 培养学生的数学思维能力和解决问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和自信心;2. 培养学生勇于探索、积极思考的精神;3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 等差数列前n项和的公式;2. 运用等差数列前n项和公式解决实际问题。

难点:1. 等差数列前n项和的公式的推导;2. 灵活运用等差数列前n项和公式解决复杂问题。

三、教学准备教师准备:1. 等差数列的相关知识;2. 等差数列前n项和的公式;3. 教学案例和练习题。

学生准备:1. 掌握等差数列的基本知识;2. 具备一定的数学思维能力;3. 准备笔记本,做好笔记。

四、教学过程1. 导入:通过复习等差数列的基本知识,引导学生回忆等差数列的性质,为新课的学习做好铺垫。

2. 探究等差数列前n项和的公式:引导学生发现等差数列前n项和的规律,引导学生利用已知的等差数列性质推导出前n项和的公式。

3. 讲解等差数列前n项和的公式:讲解公式的含义、推导过程及其应用,让学生理解并掌握公式的运用。

4. 运用公式法、图象法、列举法等多种方法求解等差数列前n项和:通过具体案例,让学生学会运用不同的方法求解等差数列前n项和,培养学生的数学思维能力和解决问题的能力。

5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。

五、课后反思教师在课后要对教案进行反思,分析教学过程中的优点与不足,针对性地调整教学方法,以提高教学效果。

关注学生的学习情况,了解学生在学习等差数列前n项和过程中遇到的问题,及时给予解答和指导。

等差数列前n项和教案(共5篇)

等差数列前n项和教案(共5篇)

等差数列前n项和教案(共5篇)第一篇:等差数列前n项和教案等差数列前n项和(第一课时)教案【课题】等差数列前n项和第一课时【教学内容】等差数列前n项和的公式推导和练习【教学目的】(1)探索等差数列的前项和公式的推导方法;(2)掌握等差数列的前项和公式;(3)能运用公式解决一些简单问题【教学方法】启发引导法,结合所学知识,引导学生在解决实际问题的过程中发现新知识,从而理解并掌握.【重点】等差数列前项和公式及其应用。

【难点】等差数列前项和公式的推导思路的获得【教具】实物投影仪,多媒体软件,电脑【教学过程】1.复习回顾 a1 + a2 + a3 +......+ an=sna1 + an=a2 + an-1 =a3 + an-2 2.情景自学问题一:一个堆放铅笔的V形架的最下面一层放1 支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 100支,这个V 形架上共放着多少支铅笔?思考:(1)问题转化求什么能用最短时间算出来吗?(2)阅读课本后回答,高斯是如何快速求和的?他抓住了问题的什么特征?(3)如果换成1+2+3+…+200=?我们能否快速求和?,(4)根据高斯的启示,如何计算18+21+24+27+…+624=?3..合作互学(小组讨论,总结方法)问题二:Sn = 1 + 2 + 3 + … + n = ?倒序相加法探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?问题三:已知等差数列{an }中,首项a1,公差为d,第n项为an , 如何求前n项和Sn ?等差数列前项和公式: n(a1 + an)=2Sn问题四:比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?n(a1 + a n)=2Sn公式记忆——类比梯形面积公式记忆n(a1 + a n)=2S 问题五:两个求和公式有何异同点?能够解决什么问题?展示激学应用公式例1.等差数列-10,-6,-2,2的前多少项的和为-16 例2.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?【思考问题】如果一个数列{an }的前n项和Sn = pn2 + qn + r,(其中p,q,r为常数,且p ≠ 0),那么这个数列一定是等差数列吗?若是,说明理由,若不是,说明Sn必须满足的条件。

等差数列前n项和公式教案

等差数列前n项和公式教案

等差数列前n项和公式教案教学目标:1. 知识目标:让学生掌握等差数列前n项和公式的推导方法,并能够准确运用公式。

2. 能力目标:* 通过公式的探索、发现,培养学生的观察、联想、归纳、分析、综合和逻辑推理能力。

* 让学生学会利用以退求进的思维策略,遵循从特殊到一般的认知规律,通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生的类比思维能力。

* 通过对公式从不同角度、不同侧面的剖析,培养学生的思维灵活性,提高学生分析问题和解决问题的能力。

3. 情感目标:* 通过公式的发现,让学生感受到普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

* 通过公式的运用,帮助学生树立“大众教学”的思想意识。

* 通过生动具体的现实问题、令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

教学内容:1. 等差数列的前n项和定义:一般地,我们称a1 + a2 + a3 + ... + an为数列an的前n项和,用Sn表示。

记法:Sn = a1 + a2 + a3 + ... + an。

2. 等差数列的前n项和公式:Sn = n/2 * (a1 + an)。

3. 公式的推导方法:倒序相加法。

4. 公式的运用。

教学步骤:1. 导入:介绍等差数列的概念和前n项和的定义。

2. 探索与发现:通过倒序相加法,引导学生探索等差数列前n项和公式的推导过程。

3. 讲解公式:详细解释公式的意义、来源和应用方法。

4. 练习与巩固:给出一些例题,让学生运用公式进行求解,以加深对公式的理解和掌握。

5. 总结与反思:对本节课内容进行总结,并引导学生反思学习过程中的收获和不足之处。

《等差数列的前 n 项和》 教学设计

《等差数列的前 n 项和》 教学设计

《等差数列的前 n 项和》教学设计一、教学目标1、知识与技能目标学生能够理解等差数列前 n 项和公式的推导过程,熟练掌握等差数列前 n 项和公式,并能运用公式解决相关问题。

2、过程与方法目标通过对等差数列前 n 项和公式的推导,培养学生的逻辑推理能力和数学思维能力;通过公式的应用,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标让学生在探索和解决问题的过程中,体验数学的乐趣,增强学习数学的信心,培养学生勇于探索、敢于创新的精神。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导及应用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想方法的渗透。

三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课(1)回顾等差数列的定义、通项公式等相关知识。

(2)提出问题:如何求等差数列的前 n 项和?2、公式推导(1)高斯算法讲述高斯计算 1+2+3++100 的故事,引导学生发现求和的规律。

(2)倒序相加法以等差数列{aₙ}为例,其通项公式为 aₙ = a₁+(n 1)d。

设 Sₙ = a₁+ a₂+ a₃++ aₙ ①Sₙ = aₙ + aₙ₋₁+ aₙ₋₂++ a₁②①+②得:2Sₙ =(a₁+ aₙ) +(a₂+ aₙ₋₁) ++(aₙ + a₁)因为等差数列的性质:若 m + n = p + q,则 aₙ + aₙ = aₙ +aₙ,所以有:2Sₙ = n(a₁+ aₙ)则 Sₙ = n(a₁+ aₙ) / 2又因为 aₙ = a₁+(n 1)d,所以 Sₙ = na₁+ a₁+(n 1)d /2 = n(a₁+ aₙ) / 2 = na₁+ n(n 1)d / 23、公式理解(1)分析公式的结构特点,强调 a₁、d、n 在公式中的作用。

(2)通过具体例子,让学生理解公式中各项的含义。

4、公式应用(1)例 1:已知等差数列{aₙ}中,a₁= 2,d = 3,n = 10,求S₁₀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的前n项和(第一课时)教学设计
【教学目标】
一、知识与技能
1 •掌握等差数列前n项和公式;
2•体会等差数列前n项和公式的推导过程;
3•会简单运用等差数列前n项和公式。

二、过程与方法
1・通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;
2.通过公式的运用体会方程的思想。

三、情感态度与价值观
结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】
等差数列前n项和公式的推导和应用。

【教学难点】
在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】
多媒体软件,电脑
【教学过程】
一、明确数列前n项和的定义,确定本节课中心任务:
前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a
如 ,
Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前
n 项
和。

二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱?
即:Sioo=l+2+3+ • +100=?
著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。

同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为
相同数的乘法运算大大提高效率。

高斯的方法很妙,如果等差数列的项数为奇数时怎么办
呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+・+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。

特点:
首项与末项的和:
第2项与倒数第2项的和: 第3项与倒数第3项的和:
1+ 100 = 101, 2 + 99 =101, 3+98
=101,
50+ 51 = 101, 101 X 50 = 5050。

5050
第50项与倒数第50项的和:
于是所求的和是:
1 + 2+3+ • +100 二 101X50
把“全等三角形”倒置,与原构成平行四形。

平行四形中的每行宝石的个数均
21个,共21行。

有什么启?
1 +
2 +
3 + ……+20 +21
21 + 20 + 19 + ……+ 2 +1
S21= 1 + 2 + 3+,,,+ 21=(21 + 1) X 21 4-2=231
个方法也很好,那么数偶数个方法行?
探索与2:第5人到12人一共有多少数?
学生探究的同通画演示帮助学生思考才的方法是否同可行?同学自主探究一下(老演示画帮助学生)
8 (5 12)
Ss二5 + 6+7+8 + 9+10+11 +12 二 --------- 68
2
[意】一步引学生探究数偶数的等差数列求和倒序相加是否可行。

从而得出倒序相加法适合任意数的等差数列求和,最确立倒序相加的思想和方法!
好,我就找到了一个好方法一'到序相加法!在来一如何求下面个等差数列的前n 和?
解:(根据前面的学,学生自主思考独立完成)
Q Sn123L(n 1) n
Sn n a1)a2)L 2 1
2 Sn
(
1
n)a n)L(1n) 14 4 4 4 24 4 4
n
4 3
n a 1)
Sn2
【意】化倒序相加法的理解和运用,更一般的等差数列求和打下基。

至此同学已掌握了倒序相加法,相信大家可以推更一般的等差数列前n和公式了。

3 :于一般的等差数列{a J首a】,公差d,如何推它的前n和s n公式呢? 2:等差数列1,2,3, ,n, 的前n和怎么求呢?
n 二;
a +a +a. +
S n ai
a 2
a n
(1)
S n
8 n
& n
1 ai
a
a
ai
a n
d 2 n 1
a3
n 2
a n ai

• •
(1)+
(2)可
得:
2
Sn
n(ai a n )
S r
n (a la n )
2
公式形:将Qn ai (n l )d 代入可得:S n na 1
n (n 1 )
d
2
【意】学生在前面的探究基上水到渠成理成章很快就可以推出一般等差数列的 前n 和公式,从而完成本 的中心任。

在个程中放手学生自主推,同也复等差数列的通 公式和基本性。

三、公式的与理解:
1、根据前面的推可知等差数列求和的两个公式:
n (a a )
―一(公式_) 2
⑶明确若a.i,d,n,an 中已知三个量就可求Sn 。

2、两个公式共涉及 ai, d, n, an, Sn 五个量,“知三”可“求二”。

用梯形面公式等差数列前n 和公式,里形行了割、两种理,着等差数列n 和的两个公 式・,学生想思考 来有助于。

Sn
n (ai a n )
nai
n (n 1) ------- d 2
(公式二) 探究:
1、(1)相同点: 都需知道ai 与n;
(2)不同点: 第一个需知道an ,第二个需知道d;
2、探索与 3 :等差数列前 n 和公式与梯形面公式有什么系?
【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆
四、公式应用、讲练结合
下面我们来看两个例题:
1 •例题1:
2000年11月14日教育部下发了〈〈关于在中小学实施“校校通”工程的通知〉〉•某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网・据测算,2001年该市用于“校校通”工程的经费为500万元•为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元•那么从2001年起的未来10年内,该市在“校校通” 工程中的总投入是多少?
解:设从2001年起第n年投入的资金为an,根据题意,数列{ an}是一个等差数列,其中
81二500,d= 50
10 9
那么,到2010年(n=10),投入的资金总额为siolO 500 ------------- 507250
2
答:从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。

【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。

2•例题2:
已知一个等差数列Qn}的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n项和的公式吗?
解:
法1:由题意知
sio31O , S201220
d 错误!未找到引用源。

得:
代入公式Sn n —错误味找到引用源。

得:
2
②①得,a2o aio
10d
60 ,故 d 6
【设计意图】掌握并能灵活应用公式并体会方程的思想方法。

3 •练一练:
10ai 45d 20ai 190d
解得ai 4 , d 6
n(n 1)
s n 4n --------------------
2
法2:由题意知
S10
2 310
错误!禾找到弓I 用源。

1220
6 3n n
310 , S20 1220
10 (ai aio)
S10 2
310 ,
S2
1 20
20 (ai &20 )
9 1220

1 1062①
a a
,a a 122②
由 ai aio 62 得 2ai 9d 62 故 ai 4
ai (n l)d 6n 2
n(ai an)
2
2
3n n
代入公式Snnai
有了两个公式,请同学们来练一练,看谁做的快做的对!
【意】熟悉并化公式的理解和用,一步巩固“知三求二”。

五、
分享收:Q 舌堂气氛,鼓励学生大胆言,培养和表达能力
1、 倒序相加法求和的思想及用;
2、 等差数列前n 和公式的推 程;
n(ai a n )
,Snnai
2
4、前n 和公式的灵活用及方程的思想。

六、作布置: (一) 面作:
A 3, 4, 5
(二) 后思考:
思考:等差数列的前 n 和公式的推方法除了倒序相加法有没有其它方法呢?
【意】通布置面作巩固所学知及方法,同通布置后思考来延伸知拓展思。

附:板
3、掌握等差数列的两个求和公式
s n
n(n 1)
-------------- d ;
2。

相关文档
最新文档