第6章 细胞骨架1
细胞生物习题第六章细胞骨架与细胞的运动

第七章细胞骨架与细胞的运动一、名词解释1、细胞骨架2、应力纤维3、微管4、微丝5、中间纤维6、踏车现象7、微管组织中心(MTOC)8、胞质分裂环二、填空题1、_____是一种复杂的蛋白质纤维网络状结构,能使真核细胞适应多种形状和协调的运动。
2、肌动蛋白丝具有两个结构上明显不同的末端,即_____极和_____极。
3、在动物细胞分裂过程中,两个子细胞的最终分离依赖于质膜下带状肌动纤维束和肌球蛋白分子的活动,这种特殊的结构是_____。
4、小肠上皮细胞表面的指状突起是_____,其中含有_____细胞质骨架成分。
5、肌动蛋白单体连续地从细纤维一端转移到另一端的过程称为_____。
6、微管由_____分子组成的,微管的单体形式是_____和_____组成的异二聚体。
7、外侧的微管蛋白双联体相对于另一双联体滑动而引起纤毛摆动,在此过程中起重要作用的蛋白质复合物是_____。
8、基体类似于_____,是由9个三联微管组成的小型圆柱形细胞器。
9、_____位于细胞中心,在间期组织细胞质中微管的组装和排列。
10、_____药物与微管蛋白紧密结合能抑制其聚合组装。
11、_____具有稳定微管,防止解聚,协调微管与其他细胞成分的相互关系的作用。
12、驱动囊泡沿着轴突微管从细胞体向轴突末端单向移动的蛋白质复合物是_____。
13、在细胞内永久性微丝有,临时性微丝有;永久性微管有,临时性微管有。
14、细胞骨架普遍存在于细胞中,是细胞的结构,由细胞内的成分组成。
包括、和三种结构。
15、中心体由个相互排列的圆筒状结构组成。
结构式为。
主要功能是与细胞的和有关。
16、鞭毛和纤毛基部的结构式为,杆状部的结构式为,尖端部的结构式为三、选择题1、细胞骨架是由哪几种物质构成的()。
A、糖类B、脂类C、核酸D、蛋白质 E.以上物质都包括2.下列哪种结构不是由细胞中的微管组成()。
A、鞭毛B、纤毛C、中心粒D、内质网E、以上都不是3.关于微管的组装,哪种说法是错误的()。
《医学细胞生物学》前六章知识点总结

第一章绪论一、细胞学说1、ean-Baptiste de Lamark (1744~1829),获得性遗传理论的创始人,法国退伍陆军中尉,50岁成为巴黎动物学教授,1809年他认为只有具有细胞的机体,才有生命。
2、Charles Brisseau Milbel(1776~1854),法国植物学家,1802年认为植物的每一部分都有细胞存在。
3、Henri Dutrochet (1776~1847),法国生理学家,1824年进一步描述了细胞的原理。
4. Matthias Jacob Schleiden(1804~1881),德国植物学教授,1838年发表“植物发生论”,认为无论怎样复杂的植物都有形形色色的细胞构成。
5. Theodor Schwann(1810~1882),德国解剖学教授,1838年提出了“细胞学说”(Cell Theory)这个术语;1939年发表了“关于动植物结构和生长一致性的显微研究”。
6. 德国人R. V irchow 1855年提出“一切细胞来源于细胞”(omnis cellula e cellula)的著名论断,进一步完善了细胞学说。
把细胞作为生命的一般单位,以及作为动植物界生命现象的共同基础的这种概念立即受到了普遍的接受。
恩格斯将细胞学说誉为19世纪的三大发现之一。
与其它生命科学一样,细胞的发现与细胞学说的形成依赖于技术的发展;同时,科学的发现促进技术的发明。
细胞生物学的历史大致可以划分为四个主要的阶段:第一阶段:细胞的发现,16世纪末-19世纪30年代,显微镜的发明。
第二阶段:细胞学说提出,19世纪30年代-20世纪中期。
第三阶段:超微结构研究,20世纪30年代-70年代,电子显微镜的发明。
第四阶段:分子细胞生物学,20世纪70年代至今,分子克隆等技术的发展。
二、模式生物个体生命诞生自精卵结合形成合子,经过细胞的不断分裂、迁移、分化并发生巨大形态变化,构建出未来身体的雏形。
《细胞生物学》教学课件:第六章 细胞骨架-微管

This electron micrograph shows microtubules in cross section with the MAP bridge. The arrows point to bridges between microtubules. The star points to a MAP bridge to the vesicle. In summary, MAPs accelerate polymerization, serve as "motors" for vesicles and granules, and essentially control cell compartmentation.
Cytoskelton
肖卫纯 13501227688, weichunx@
细胞骨架
细胞骨架(cytoskeleton): 指存在于真核细胞中的 蛋白纤维网架体系。
微丝
microfilament
中间丝
Intermediate filaments
微管
Microtubules
cytoskeleton
(三)微管的装配和极性
α-微管蛋白和β-微管蛋白形成αβ二聚 体,αβ二聚体先形成环状核心(ring),经过侧面 增加二聚体而扩展为螺旋带,αβ二聚体平行于 长轴重复排列形成原纤维(protofilament)。 当螺旋带加宽至13根原纤维时,即合拢形成一 段微管。
cytoskeleton
组装过程分三个时期:成核期、聚合期和稳定期
7
面
98
15nm 25nm
极 性
cytoskeleton
Arrangement of protofilaments in singlet, double, and triplet MTs
细胞骨架(细胞生物学)

细胞骨架立体结构模式图
广意的概念
细胞质骨架 细胞核骨架 细胞外基质
二、细胞骨架的功能
1.构成细胞内支撑和区域化的网架 2.参与细胞的运动和细胞内物质的运输 3.参与细胞的分裂活动 4.参与细胞内信息传递
细胞骨架功能示意图
第二节 微 管
一、微管的化学组成
α微管蛋白、 β微管蛋白 、γ-微管蛋白
(五)微丝参与肌肉收缩
肌肉组织
骨骼肌 • 肌原纤维 • 肌节 • 粗肌丝、细肌丝
肌肉收缩是粗肌丝和细肌丝相互滑动的结果
5.3 肌肉收缩
(六)微丝参与受精作用 精子头端启动微丝组装,形成顶体刺突完成受精。
(七)微丝参与细胞内信息传递 细胞外的某些信号分子与细胞膜上的受体结合,可触 发膜下肌动蛋白的结构变化,从而启动细胞内激酶变 化的信号转导过程。 主要参与Rho蛋白家族有关的信号转导
3.微管的三种存在形式
单管微管由13根原丝组成,是胞质微管的主要存在形式 二联管主要分布在纤毛和鞭毛的杆状部分 三联管主要分布在中心粒及纤毛和鞭毛的基体中
二、微管相关蛋白
(microtubule- associated protein,MAP)
这是一类以恒定比例与微管结合的蛋白,决定不 同类型微管的独特属性,参与微管的装配,是维持微 管结构和功能的必需成份。
胞质动力蛋白与膜泡的附着
细胞中微管介导的物质运输
(三)维持细胞内细胞器的空间定位和分布
参与内质网、高尔基复合体 、纺锤体的定位及分 裂期染色体位移
、 (四)微管参与细胞运动
细胞的变形运动、纤毛、鞭毛运动
纤毛和鞭毛#43;0
中心粒 横切面上,其圆柱状小体的壁有9组三联管斜向排列呈风车状。
(一)微丝的体外组装过程分三个阶段: ①成核期 ②延长期 ③稳定期
细胞生物学各章节重点内容整理

第一章细胞质膜1、被动运输是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运.转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。
2、主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式。
转运的溶质分子其自由能变化为正值,因此需要与某种释放能量的过程相耦连。
主动运输普遍存在于动植物细胞和微生物细胞中。
3、紧密连接是封闭连接的主要形式,一般存在于上皮细胞之间.紧密连接有两个主要功能:一是紧密连接阻止可溶性物质从上皮细胞层一侧通过胞外间隙扩散到另一侧,形成渗透屏障,起重要封闭作用,二是形成上皮细胞质膜蛋白与质膜分子侧向扩散的屏障,从而维持上皮细胞的极性。
4、通讯连接一种特殊的细胞连接方式,位于特化的具有细胞间通讯作用的细胞.介导相邻细胞间的物质转运、化学或电信号的传递,主要包括间隙连接、神经元间的化学突触和植物细胞间的胞间连丝。
动物与植物的通讯连接方式是不同的,动物细胞的通讯连接为间隙连接,而植物细胞的通讯连接则是胞间连丝5、桥粒是一种常见的细胞连接结构,位于中间连接的深部.一个细胞质内的中间丝和另一个细胞内的中间丝通过桥粒相互作用,从而将相邻细胞形成一个整体,在桥粒处内侧的细胞质呈板样结构,汇集很多微丝,这种结构和加强桥粒的坚韧性有关。
物质跨膜运输的方式和特点Ⅰ、被动运输是指物质由高浓度向低浓度方向的跨膜转运。
转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量.主要分为两种类型:(1)简单扩散②不需要提供能量;③没有.属于这种运输方式的物质有水分子、气体分子、脂溶性的小分子物质等。
(2)协助扩散②存在最大转运速率;在一定限度内运输速率同物质浓度成正比。
如超过一定限度,. ④不需要提供能量。
属于这种运输方式的物质有某些离子和一些较大的分子如葡萄糖等物质Ⅱ、主动运输物质从浓度梯度从低浓度的一侧向高浓度的一侧方向跨膜运输的过程。
此过程中需要消耗细胞生产的能量,也需要膜上载体协助。
《医学生物学》-第六章线粒体、细胞骨架-2010

琥珀酸脱氢酶和细胞色素氧化酶是内膜的标志酶。
3. 基质腔:有三羧酸循环酶系(琥珀酸脱氢酶除外)、脂 肪酸氧化酶系以及蛋白质和核酸合成酶系等。 苹果酸脱氢酶为其标志酶。 4. 膜间隙:含少数几种酶,如腺苷酸激酶、二磷酸核苷激 酶等。 腺苷酸激酶为其标志酶。
三、Mi的功能
葡萄糖
细胞氧化的概念
光镜下显示细胞骨架:
红色显示微丝,绿色显示微管
15nm 24-26nm
一.微管(microtuble)的形态结构与化学组成 中空的圆柱状结构。 微管的形态结构: 横断面上看: 它是由13根原纤维纵向围绕而成。 微管的化学组成: 微 管 蛋 白 微管蛋白
(55KD 450aa)
5-9nm
Mi
在相差显微镜下观察的 活的成纤维细胞中的Mi
精子细胞中的Mi
(二) Mi 的超微结构
外膜 内膜
膜间隙
基质腔
核糖体
DNA
嵴
ATP合成 酶颗粒
1. 外膜 (Outer membrane)
外膜
膜厚约6nm,平整,光 滑。磷钨酸负染时,外膜 有排列整齐贯穿磷脂双分 子层的桶状体,中央有小 孔,孔 径2~3nm,称为孔 蛋白(Porin)。
Twisting model
[Equivalent steps]
Alternate-sides model [Non-equivalent steps]
This electron micrograph shows microtubules in cross section with the MAP bridge. The arrows point to bridges between microtubules. The star points to a MAP bridge to the vesicle. In summary, MAPs accelerate polymerization, serve as "motors" for vesicles and granules, and essentially control cell compartmentation.
思考题 中山大学考研细胞学

第一章:1. 根据细胞生物学研究的内容与你所掌握的生命科学知识,客观地、恰当地估价细胞生物学在生命科学中所处的地位以及它与其它生物科学的关系。
2. 从细胞学发展简史,你如何认识细胞学说的重要意义?3. 试简明扼要地分析细胞生物学学科形成的客观条件以及它今后发展的主要趋势。
4. 当前细胞生物学研究的热点课题中你最感兴趣的是哪些?为什么?第二章:1. 简述各种实验方法的基本原理。
2. 简述各种实验方法在研究工作中的应用。
第三章:生物膜的基本组成和结构特征是什么? 这些特征与膜的功能有哪些相?从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程?细胞表面有哪几种常见的特化结构?跨膜运输的主要方式有哪些?比较主动运输与被动运输的特点及其生物学意义。
动物细胞间有哪些连接方式?胞间连丝的基本结构与作用是什么?胞外基质的组成、分子结构及主要生物学功能是什么?第四章:1.比较粗面内质网和光面内质网的形态结构与功能。
2. 细胞内蛋白质合成部位及其去向如何?3. 粗面内质网上合成哪几类蛋白质,它们在内质网上合成的生物学意义是什么?4. 指导分泌性蛋白在粗面内质网上合成需要哪些主要结构或因子?它们如何协同作用完成肽链在内质网上的合成。
5. 结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的。
6.溶酶体是怎样发生的? 它有哪些基本功能?7.过氧化物酶体与溶酶体有哪些区别? 怎样理解过氧化物酶体是异质性的细胞器?8.图解说明细胞内膜系统的各种细胞器在结构与功能上的联系。
9.何谓蛋白质的分选?已知膜泡运输有哪几种类型?第五章:1.准确描述线粒体的结构2.线粒体中电子传递链的主要成员有哪些?3.解释ATP合成的化学渗透学说4.何谓线粒体的半自主性5.准确描述叶绿体的结构6.光系统Ⅰ和光系统Ⅱ在光合作用中的作用7.叶绿体的半自主性第六章:1. 通过细胞骨架一章的学习,你对生命体的自组装原则有何认识?2. 除支持和运动外,细胞骨架还有什么功能? 怎样理解“骨架”的概念?3. 试述微管在体外组装的条件以及微管的主要功能。
细胞生物学第四版(细胞骨架1) (2)

二、微丝网络结构的调节与细胞运动
(一)非肌肉细胞内微丝的结合蛋白 (二)细胞皮层 (三)应力纤维 (四)细胞伪足的形成与细胞迁移 (五)微绒毛 (六)胞质分裂环
(一)非肌肉细胞内微丝的结合蛋白
• 大多数非肌细胞的微丝是一种动态结构,它们持续 地进行组装和去组装,这与细胞形态的持续变化和 细胞运动有密切的关系。 • 肌动蛋白结合蛋白(actin binding protein):与肌 动蛋白单体或肌动蛋白丝结合的蛋白,对微丝的组 装、物理性质及其功能具有调控作用。
体内肌动蛋白的组装在2个水平上受到 微丝结合蛋白的调节:①可溶性肌动蛋白 的存在状态;②微丝结合蛋白的种类及其 存在状态。 细胞内微丝网络的组织形式和功能通 常取决于与其结合的微丝结合蛋白,而不 是微丝本身。 根据微丝结合蛋白作用方式的不同,可将 其分成如下几种类型:
1. 肌动蛋白单体结合蛋白:储存在细胞 内的肌动蛋白单体常与单体结合蛋白结合在 一起,只在存在需求信号时才加以利用。
肌动蛋白结合蛋白与微丝的组装 (图10-4)
微丝的成核与加帽(图10-5)
3. 加帽蛋白:与微丝的末端结合从而阻止微丝解 聚或过度组装的蛋白。在微丝的负极端常有Arp2/3复 合物或原肌球调节蛋白(tropomodulin)结合而稳定; 在微丝的正极端常有CapZ或凝溶胶蛋白(gelsolin) 结合而加帽。 4. 交联蛋白:决定微丝排列成束状还是网状。 成束蛋白将相邻的微丝交联成束状结构。成束蛋 白的2个肌动蛋白结合域之间的区域都是僵直的。丝束 蛋白(fimbrin)和绒毛蛋白(villin)等交联而成的 微丝束为紧密包装型,肌球蛋白不能进入,因而没有 收缩能力。α-辅肌动蛋白交联形成的微丝束相邻的纤 维之间比较宽松,肌球蛋白可以进入与微丝相互作用, 这种类型的微丝束是可收缩的。 成网的蛋白将微丝交联成网状或凝胶样结构。细 丝蛋白(filamin)和血影蛋白(spectrin)的2个肌 动蛋白结合域之间的区域都是柔软的,或者本身就是 弯曲的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cofilin的分子结构及与肌动蛋白的结合
⑥ 交联蛋白
细丝蛋白(Filamin): 可连接相邻微丝,形成三维网络结构。
丧失filamin引起的非正常运动
含有低水平filamin的黑素瘤细胞
表达filamin的相同类型细胞
⑦ 成束蛋白
丝束蛋白(Fimbrin), a-actinin: 它们可以促使微丝成为紧密的、平行的束状 结构。
多基因家族编码:
脊椎动物有6个基因: a-actin(4):横纹肌、心肌、血管平滑肌、肠道平滑肌 -actin:应力纤维结构 -actin:细胞周质、运动细胞的前缘
含量丰富:
肌细胞: ~10%(总蛋白)
非肌细胞: ~ 5%(总蛋白) 植物细胞: ~ 1%(总蛋白)
6.1.2 微丝的组装
条件:一定浓度的G-actin在高K+、Mg2+、ATP 条件下趋向于聚合。 过程:成核、延长、动态稳定。
Arp2/3的成核作用
Arp2/3促进微丝网络形成的过程
1、成核,起始新的微丝。 2、结合在已形成的微丝侧端、成核,形成70°微丝分枝。 3、进一步形成微丝网络。
细胞变形运动过程中膜的突起
Listerium在细胞内的运动
10-90 um/min
VirG and Cdc42 bind to N-WASP, N-WASP becomes activated and, in turn, recruits the Arp2/3 complex
当单体肌动蛋白浓度高于正端临界浓度,而低于负端临界浓 度时,微丝可以表现出在正端因加入肌动蛋白而延长,而在负端 因肌动蛋白脱落而缩短。
微丝在细胞中的结构
互相平行排列的束状结构
二维网状结构
三维网络结构
微丝在多数细胞中是高度动态的结构
微丝骨架的迅速变化
400-500单体肌动蛋白/秒
6.1.3 肌动蛋白结合蛋白
微丝束的两种形式
主要作用是使微丝成束,增加强度,使微丝成为支持细胞 突起的内部骨架。
⑧ 微丝剪切蛋白
凝溶胶蛋白(Gelsolin): 可以结合到微丝的侧端,使微丝断裂成两段。
多种肌动蛋白结合蛋白协同调节微丝动态
第6章 细胞骨架 (Cytoskeleton)
真核细胞中由纤维状蛋白质组成的网络系统
微丝
中间纤维
微管
微丝与微管
6.1 微丝(microfilament)
微丝(actin filament,F-acin) 是由肌动蛋白(actin,G-actin)聚 合而成的纤维状结构。
6.1.1 微丝的结构与组成
③封端蛋白
CapZ: 正端封端蛋白,主要存在于肌小节的Z带中,与 微丝结合紧密。 Tmod (Tropomodulin):负端封端蛋白,在骨骼肌与心 肌中含量高。
④ 单体聚合蛋白
前纤维蛋白(Profilin): 结合单体肌动蛋白,促进肌动蛋白上ATP置 换ADP的反应。
⑤ 微丝解聚蛋白
Cofilin/ADF家族: 结合微丝侧面并促进 微丝解聚成单体。
肌动蛋白结合蛋白的种类
① 成核蛋白
Arp2/3 complex
Formin
Arp2/3复合体
Arp2/3复合体由7个亚基组成。
Arp是指肌动蛋白相关蛋白(actin r相似性。
Arp2和Arp3的结构
Arp2: 与actin结构相似,裂痕较大,不结合ATP,但具有proflin结合结构域。 Arp3: 比actin多42个氨基酸残基,裂痕较小,与ATP结合弱。
微丝的正端和负端的聚合速度比较
正端
负端
肌球蛋白头部标记的微丝
肌动蛋白聚合的动力学曲线
临界浓度
肌动蛋白能够聚合成丝的最低浓度称为临界浓度(Cc)
核的作用
ATP在肌动蛋白聚合中的作用
ATP帽的形成
微丝正端聚合速度通常大于ATP水解的速度, 因此会在正端形成一个ATP帽。
微丝聚合的动态平衡-踏车模型
(Actin Binding Proteins)
目前已发现有100多种,根据功能分为以下类型:
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
成核蛋白:使游离G-actin成核,启动组装。 单体封存蛋白:结合游离G-actin并阻止其聚合。 封端蛋白:结合F-actin端部,使微丝稳定。 单体聚合蛋白:结合游离G-actin,促进其聚合。 微丝解聚蛋白:结合F-actin,使微丝去组装。 交联蛋白:同时结合2根F-actin,使微丝成网络。 成束蛋白:同时结合2根F-actin,使微丝成束。 微丝剪切蛋白:切断F-actin 。 膜结合蛋白:同时连接微丝与膜结构。
F-actin是7-9 nm宽的可弯曲的单链丝状结构, 像两股绳拧在一起,呈右手螺旋状。每个螺旋包含28 个单体,长度是74 nm。
G-actin和F-actin的分子结构
负端
正端
肌动蛋白是由一条多肽链构成的球形蛋白质,43 kD, 约375aa。 裂痕处结合1个ATP/ADP分子和1个二价阳离子。 肌动蛋白头尾相连组成微丝,具有极性。
VirA的作用-解聚运动前端的微管
VirA has cysteine protease–like activity and α-tubulin binding domain.
Arp2/3在植物中的作用
②单体封存蛋白
胸腺素(Thymosin): 结合单体肌动蛋白,阻 止其聚合,从而保持非 肌细胞中高的单体肌动 蛋白浓度。