2013-2017高考数学全国卷立体几何汇编

合集下载

2013年全国各地高考数学试题分类汇编(文科):立体几何

2013年全国各地高考数学试题分类汇编(文科):立体几何

2013年全国各地高考数学试题分类汇编(文科):立体几何各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013年全国各地高考数学试题分类汇编(文科):立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.B.C.D.【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为()A.B.C.D.【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥的正弦值等于()A.B.C.D.【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100 cm3 C.92cm3 D.84cm3【答案】B7 .(2013年高考北京卷(文))如图,在正方体中, 为对角线的三等分点,则到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是()A.B.C.D.【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【答案】D10.(2013年高考浙江卷(文))设是两条不同的直线,α.β是两个不同的平面, ()A.若m‖α,n‖α,则m‖n B.若m‖α,m‖β,则α‖βC.若m‖n,m⊥α,则n⊥α D.若m‖α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱的6个顶点都在球的球面上,若, , ,则球的半径为()A.B.C.D.【答案】C12.(2013年高考广东卷(文))设为直线, 是两个不同的平面,下列命题中正确的是()A.若, ,则B.若, ,则C.若, ,则D.若, ,则【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是()A.B.C.D.8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为()A.200+9π B.200+18π C.140+9π D.140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.【答案】16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】317.(2013年高考课标Ⅰ卷(文))已知是球的直径上一点, , 平面, 为垂足, 截球所得截面的面积为,则球的表面积为_______.【答案】;18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】20.(2013年高考大纲卷(文))已知圆和圆是球的大圆和小圆,其公共弦长等于球的半径, 则球的表面积等于______.【答案】21.(2013年上海高考数学试题(文科))已知圆柱的母线长为,底面半径为, 是上地面圆心, 、是下底面圆周上两个不同的点, 是母线,如图.若直线与所成角的大小为,则________.【答案】22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为, 则正方体的棱长为______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF 与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体的棱长为1, 为的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是__________(写出所有正确命题的编号).①当时, 为四边形;②当时, 为等腰梯形;③当时, 与的交点满足;④当时, 为六边形;⑤当时, 的面积为.【答案】①②③⑤三、解答题26.(2013年高考辽宁卷(文))如图,(I)求证:(II)设【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与APC 所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PGGC 的值.【答案】解:证明:(Ⅰ)由已知得三角形是等腰三角形,且底角等于30°,且,所以;、,又因为;(Ⅱ)设,由(1)知,连接,所以与面所成的角是,由已知及(1)知: ,,所以与面所成的角的正切值是;(Ⅲ)由已知得到: ,因为,在中, ,设28.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积.【答案】解: (Ⅰ) 设...(证毕)(Ⅱ).在正方形AB CD中,AO = 1 ..所以, .29.(2013年高考福建卷(文))如图,在四棱锥中, ,, ,, , , .(1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程);(2)若为的中点,求证: ;(3)求三棱锥的体积.【答案】解法一:(Ⅰ)在梯形中,过点作,垂足为, 由已知得,四边形为矩形,,在中,由, ,依勾股定理得:,从而,又由平面得,从而在中,由, ,得正视图如右图所示:(Ⅱ)取中点,连结,,在中, 是中点,∴, ,又,∴,, ∴四边形为平行四边形,∴又平面, 平面, ∴平面(Ⅲ) ,又, ,所以解法二:(Ⅰ)同解法一(Ⅱ)取的中点,连结,在梯形中, ,且,∴四边形为平行四边形∴,又平面, 平面∴平面,又在中,平面, 平面∴平面.又,∴平面平面,又平面∴平面(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中, 分别是边上的点, , 是的中点, 与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明: //平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.【答案】(1)在等边三角形中,,在折叠后的三棱锥中也成立,, 平面,平面, 平面;(2)在等边三角形中, 是的中点,所以①,.在三棱锥中, , ②;(3)由(1)可知,结合(2)可得.31.(2013年高考湖南(文))如图2.在直菱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= ,AA1=3,D是BC的中点,点E在菱BB1上运动.(I) 证明:AD⊥C1E;(II) 当异面直线AC,C1E 所成的角为60°时,求三菱子C1-A2B1E的体积.【答案】解: (Ⅰ)..(证毕)(Ⅱ) ..32.(2013年高考北京卷(文))如图,在四棱锥中, , , ,平面底面, , 和分别是和的中点,求证:(1) 底面;(2) 平面;(3)平面平面【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD.(II)因为AB‖CD,CD=2AB,E为CD的中点所以AB‖DE,且AB=DE所以ABED为平行四边形,所以BE‖AD,又因为BE 平面PAD,AD 平面PAD所以BE‖平面PAD.(III)因为AB⊥AD,而且ABED为平行四边形所以BE⊥CD,AD⊥CD,由(I)知PA ⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD所以CD⊥PD,因为E和F分别是CD 和PC的中点所以PD‖EF,所以CD⊥EF,所以CD ⊥平面BEF,所以平面BEF⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱中, ,, .(Ⅰ)证明: ;(Ⅱ)若, ,求三棱柱的体积.【答案】【答案】(I)取AB的中点O,连接、、,因为CA=CB,所以,由于AB=A A1,∠BA A1=600,故为等边三角形,所以OA ⊥AB.因为OC⨅OA =O,所以AB 平面OA C.又A CC平面OA C,故AB AC.(II)由题设知34.(2013年高考山东卷(文))如图,四棱锥中, ,,分别为的中点(Ⅰ)求证: ;(Ⅱ)求证:【答案】35.(2013年高考四川卷(文))如图,在三棱柱中,侧棱底面, , ,分别是线段的中点, 是线段上异于端点的点.(Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.(锥体体积公式: ,其中为底面面积, 为高)【答案】解:(Ⅰ)如图,在平面ABC内,过点作直线,因为在平面外,BC在平面内,由直线与平面平行的判定定理可知, 平面.由已知, , 是BC中点,所以BC⊥AD,则直线,又因为底面,所以,又因为AD, 在平面内,且AD与相交,所以直线平面(Ⅱ)过D作于E,因为平面,所以,又因为AC, 在平面内,且AC与相交,所以平面,由,∠BAC ,有,∠DAC ,所以在△ACD中, ,又,所以因此三棱锥的体积为36.(2013年高考湖北卷(文))如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为, ,且. 过, 的中点, 且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.【答案】(Ⅰ)依题意平面, 平面, 平面,所以A1A2‖B1B2‖C1C2. 又, , ,且.因此四边形、均是梯形.由‖平面, 平面,且平面平面,可得AA2‖ME,即A1A2‖DE. 同理可证A1A2‖FG,所以DE‖FG.又、分别为、的中点,则、、、分别为、、、的中点,即、分别为梯形、的中位线.因此, ,而,故,所以中截面是梯形.(Ⅱ) . 证明如下:由平面, 平面,可得.而EM‖A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得, ,故.37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A1B1C1中,D,E 分别是AB,BB1的中点.(1) 证明: BC1//平面A1CD;(2) 设AA1= AC=CB=2,AB=2 ,求三棱锥C一A1DE的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥P-ABCD中,∠ABC=∠BAD=900,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形.(I)证明:PB⊥CD;(II)求点A到平面PCD的距离.【答案】(Ⅰ)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由和都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故,从而.因为O是BD的中点,E是BC的中点,所以OE//CD.因此, .(Ⅱ)解:取PD的中点F,连结OF,则OF//PB.由(Ⅰ)知, ,故.又, ,故为等腰三角形,因此, .又,所以平面PCD.因为AE//CD, 平面PCD, 平面PCD,所以AE//平面PCD.因此,O到平面PCD的距离OF就是A到平面PCD的距离,而,所以A至平面PCD的距离为1.39.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形, .已知.(Ⅰ)证明:(Ⅱ)若为的中点,求三菱锥的体积.【答案】解:(1)证明:连接交于点又是菱形而⊥面⊥(2)由(1) ⊥面=40.(2013年上海高考数学试题(文科))如图,正三棱锥底面边长为,高为,求该三棱锥的体积及表面积.【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12 分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥中, ⊥底面, , ,(Ⅰ)求证: ⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD –A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3(1) 证明:BE⊥平面BB1C1C;(2) 求点B1 到平面EA1C1 的距离【答案】解.(1)证明:过B作CD的垂线交CD于F,则在在,故由(2),同理,因此.设点B1到平面的距离为d,则,从而各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

历届立体几何真题

历届立体几何真题

2013-2017文科数学立体几何集锦2013年全国一卷:1、(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.2、(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.2013年全国二卷:1、(2013课标全国2,文9)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()(A)(B)(C)(D)2、(2013课标全国2,文18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,。

(Ⅰ)证明:1//BC 平面11A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积。

2014年全国一卷:1、(2014课标全国1,文19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(I )证明:;1AB C B ⊥(II )若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.2014全国二卷:1、(2014课标全国2,文6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()(A )1727(B )59(C )1027(D)132、(2014课标全国2,文18)如图,四凌锥p—ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。

2013年全国各地高考文科数学试题分类汇编7:立体几何含答案

2013年全国各地高考文科数学试题分类汇编7:立体几何含答案

2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( ) A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ()A .23B .33C .23D .13【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是 ( )A .棱柱B .棱台C .圆柱D .圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3 【答案】B7 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D 中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(非选择题 共110分) 【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是1D1BPD 1CCBA1A图 2俯视图侧视图正视图 ( )A .16B .13C .23D .1【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,的矩形,则该正方体的正视图的面积等于______ ( )AB .1 CD 【答案】D10.(2013年高考浙江卷(文))设m 。

2017高考试题分类汇编立体几何

2017高考试题分类汇编立体几何

立体几何1(2017北京文)(本小题14分如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 2(2017新课标Ⅱ理)(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠=E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.3(2017天津理)(本小题满分13分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2. (Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.4(2017新课标Ⅲ理数)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有以下结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所称角的最小值为45°; ④直线AB 与a 所称角的最小值为60°;其中正确的选项是________。

(填写所有正确结论的编号)5(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒获取的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.6(2017新课标Ⅰ理数).如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

2013-2017高考数学全国卷立体几何汇编

2013-2017高考数学全国卷立体几何汇编

2013-2017高考数学全国卷理科--立体几何汇编学校: 姓名: 班级: 考号:评卷人 得分 一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 ( )A. 90πB. 63πC. 42πD. 36π3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. √32 B.√155 C. √105 D. √334. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 ( ) A. π B. 3π4 C. π2 D. .π45. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A. √32B. √22C. √33D. 137. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+36√5B. 54+18√5C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A. 4πB. 9π2C. 6π D. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()正视图俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A. 18B. 17C. 16D. 1513. [2015·高考全国新课标卷Ⅱ,9]已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 6√2B. 6C. 4√2D. 415. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 1316. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A. 110B. 25C.√3010 D. √2217. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ) A.500π3 cm 3 B. 866π3 cm 3 C. 1372π3 cm 3 D. 2048π3cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16πD. 8+16π 19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A. α∥β且l ∥αB. α⊥β且l ⊥βC. α与β相交,且交线垂直于lD. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )A. B. C. D.二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、解答题24. [2017·全国新课标卷I(理)] (本小题满分12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面AD,∠BAD=∠ABC=90°,E是PD的中点.ABCD,AB=BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D -AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=5,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=√10.4(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =√3,求三棱锥E -ACD 的体积.34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =√22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.。

2017年高考试题分类汇编(立体几何)

2017年高考试题分类汇编(立体几何)

2017年高考试题分类汇编(立体几何)考点1 三视图1.(2017·全国卷Ⅰ理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.162.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A .90πB .63πC .42πD .36π3.(2017·北京理科)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为正(主)视图侧(左)视图俯视图4.(2017·北京文科)某三棱锥的三视图如图所示,则该三棱锥的体积为 A.60 B.30 C.20 D.105.(2017·山东理科)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .6.(2017·浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A. 13π+ B. 33π+C. 312π+D. 332π+俯视图正视图(主视图)侧视图(左视图) 正(主)视图侧(左)视图俯视图 主视图 侧视图俯视图考点2 位置关系1. (2017·全国卷Ⅰ文科)如图,在下列四个正方体中,,A B 为正方体的两个顶点,,,M N Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是2.(2017·全国卷Ⅲ文科)在正方体1111ABCD A BC D -中,E 为棱CD 的中点,则A.11A E DC ⊥B.1A E BD ⊥C.11A E BC ⊥D.1A E AC ⊥ 考点3 体积1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π42.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 考点4 位置关系与度量关系(解答题)(理科)1.(2017·全国卷Ⅰ理科)如图,在四棱锥P ABCD -中,AB //CD , 且90BAP CDP ∠=∠= .(Ⅰ)证明:平面PAB ⊥平面PAD ; (Ⅱ)若PA PD AB DC ===,90APD ∠= , 求二面角A PB C --的余弦值.2.(2017·全国卷Ⅱ理科)如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,PABCD01,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (Ⅰ)证明:直线//CE 平面PAB ;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为045,求二面角M AB D --的余弦值.3.(2017·全国卷Ⅲ理科)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =. (Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.4.(2017·北京理科)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD //平面MAC,PA PD =,4AB =.(Ⅰ)求证:M 为PB 的中点; (Ⅱ)求二面角B PD A --的大小;(Ⅲ)求直线MC 与平面BDP 所成角的正弦值.5.(2017·天津理科)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点,,D E N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,ABCDPEMABCDEABDMP2AB =.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C EM N --的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE所成角的余弦值为21,求线段AH 的长.6.(2017·山东理科)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120 得到的,G 是 DF的中点. (Ⅰ)设P 是 CE上一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.7.(2017·浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 考点5 位置关系与度量关系(解答题)(文科)1.(2017·全国卷Ⅰ文科)求二面角A PB C --的余弦值. 如图,在四棱锥P ABCD -中,AB //CD ,且90BAP CDP ∠=∠=PABCDABCNEM D PABCDEFPGABCDEP(Ⅰ)证明:平面PAB ⊥平面PAD ; (Ⅱ)若PA PD AB DC ===,90APD ∠= ,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.2.(2017·全国卷Ⅱ文科)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,090BAD ABC ∠=∠=.(Ⅰ)证明:直线BC ∥平面PAD ;(Ⅱ)若PCD ∆面积为P ABCD -的体积.3.(2017·全国卷Ⅲ文科)如图,四面体ABCD 中,ABC ∆是正三角形,AD CD =.(Ⅰ)证明:AC ⊥BD ;(Ⅱ)已知ACD ∆是直角三角形,AB BD =.若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比.4.(2017北京文科)如图,在三棱锥P ABC -中,PA AB ⊥,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BDE 时,求三棱锥E BCD -的体积.ABCDPABCDE5.(2017·天津文科)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.6.(2017·山东文科)由四棱柱1111ABCD A BC D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD .(Ⅰ)证明:1AO ∥平面11B CD ; (Ⅱ)设M 是OD 的中点,证明: 平面1A EM ⊥平面11B CD .ABCDEPA BCDPABCDOE M B 1A 1D 1。

2013年全国各地高考数学分类汇编-13 立体几何

2013年全国各地高考数学分类汇编-13 立体几何

图 2俯视图侧视图正视图2013年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题:1.(2013安徽理)在下列命题中,不是公理..的是( ) (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。

所以选A2. (2013北京文)如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ). A .3个 B .4个 C .5个 D .6个答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63,P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.3.(2013广东理) 某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .143 C .163D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,故选B .4.(2013广东文) 某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .1 【解析】由三视图判断底面为等腰直角三角形, 三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.5.(2013广东文) 设l 为直线,,αβA .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则αC .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.6.(2013广东理) 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【解析】D ;ABC 是典型错误命题,选D .A1A 正视图侧视图7、(2013湖北理) 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积8. (2013湖南文) 已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于____ D ____ A .B.1【答案】 D【解析】 正方体的侧视图面积为.2..2212同,所以面积也为正视图和侧视图完全相为,所以侧视图的底边长⋅=9.(2013湖南理) 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1BCD 【答案】 C【解析】 由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。

2013年全国各省市高考真题——立体几何(带答案)

2013年全国各省市高考真题——立体几何(带答案)

2013年全国各省市文科数学—立体几何1、2013四川文T2.一个几何体的三视图如图所示,则该几何体可以是( )(A )棱柱 (B )棱台 (C )圆柱 (D )圆台 2、2013新课标文T11.某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+3、2013湖南文T7.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是A .4、2013江西文T8.一几何体的三视图如右所示,则该几何体的体积为A.200+9πB. 200+18πC. 140+9πD. 140+18π5、2013浙江文T5.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是A 、108cm 3B 、100 cm 3C 、92cm 3D 、84cm 3图 2俯视图侧视图正视图 6、2013广东文T6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .17、2013新课标Ⅱ文T9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A ) (B) (C) (D)8、2013重庆文T8.某几何体的三视图如题(8)所示,则该几何体的表面积为(A )180(B )200(C )220(D )2409、2013山东文T4.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是 (A)(B) 83(C) 81),3+ (D) 8,810、2013北京文T8.如图,在正方体1111ABCD A BC D 中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个11、2013陕西文T12. 某几何体的三视图如图所示, 则其表面积为 .12、2013辽宁文T13.某几何体的三视图如图所示,则该几何体的体积是 .13、2013北京文T10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2017高考数学全国卷理科--立体几何汇编学校: 姓名: 班级: 考号:一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 ( )A. 90πB. 63πC. 42πD. 36π3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. 32 B.155 C. 105 D. 334. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 ( ) A. π B. 3π4C. π2D. .π45. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A. 32B. 22C. 33D. 137. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+365B. 54+185C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A. 4πB. 9π2C. 6π D. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()正视图俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A. 18B. 17C. 16D. 1513. [2015·高考全国新课标卷Ⅱ,9]已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 6B. 6C. 4D. 415. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727 B. 59 C. 1027 D. 1316. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A. 110B. 25C. 3010D. 2217. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ) A.500π3 cm 3 B. 866π3 cm 3 C. 1372π3 cm 3 D. 2048π3cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16πD. 8+16π 19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A. α∥β且l ∥α B. α⊥β且l ⊥βC. α与β相交,且交线垂直于lD. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )A. B. C. D.二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、解答题24. [2017·全国新课标卷I(理)] (本小题满分12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面AD,∠BAD=∠ABC=90°,E是PD的中点.ABCD,AB=BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D -AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=5,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=4(1)证明:D'H ⊥平面ABCD ; (2)求二面角B -D'A -C 的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD = 3,求三棱锥E -ACD 的体积.34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB = 22AB .(1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.。

相关文档
最新文档