高考数学总复习-集合
新高考2023版高考数学一轮总复习练案1第一章第一讲集合

第一章 集合、常用逻辑用语、不等式第一讲 集合一、单选题1.已知集合M={x|x2-x-6=0},则下列表述正确的是( D )A.{-2}∈M B.2∈MC.-3∈M D.3∈M[解析] ∵集合M={x|x2-x-6=0}.∴集合M={-2,3},∴-2∈M,3∈M,故选D.2.(2019·课标全国Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=( C )A.{1,6} B.{1,7}C.{6.7} D.{1,6,7}[解析] 依题意得∁U A={1,6,7},故B∩(∁U A)={6,7}.故选C.3.(2021·全国甲)设集合M={x|0<x<4},N=,则M∩N=( B )A. B.C.{x|4≤x<5} D.{x|0<x≤5}[解析] 由得≤x<4,故选B.4.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( A )A.7个 B.8个 C.15个 D.16个[解析] ∵集合A={x∈N*|x2-3x-4<0}={x∈N*|-1<x<4}={1,2,3},∴集合A中共有3个元素,∴真子集有23-1=7(个).5.(2021·山东新高考模拟)设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=( C )A.{(1,1)} B.{(-2,4)}C.{(1,1),(-2,4)} D.∅[解析] A∩B==={(1,1),(-2,4)},故选C.6.已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是( D )A.a<1 B.a≤1C.a>2 D.a≥2[解析] 集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,作出数轴如图,可知a≥2.7.(2021·广东肇庆二模,1)图中阴影部分所对应的集合是( C )A.(A∪B)∩(∁U B)B.∁U(A∩B)C.(∁U(A∩B))∩(A∪B)D.(∁U(A∪B))∪(A∩B)[解析] 由题意可得(A∩(∁U B))∪(B∩(∁U A))=((∁U A)∪(∁U B))∩(A∪B)=(∁U(A∩B))∩(A∪B),故选C.思路分析 阴影的左边部分在A内且在B外,转化为集合语言A∩(∁U B),阴影的右边部分在B内且在A外,转化为集合语言B∩(∁U A),取两个集合的并集再化简即可.二、多选题8.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合M可以为( ABD )A.{4,7} B.∅C.{4,7,8} D.{7}[解析] 由题意,M=∅,{7},{4,7},{7,8},{4},{8},共六个,对照选项,A、B、D均可.故选A、B、D.9.(2021·济宁高三月考)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B 可能为( AD )A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析] 集合A={2,3,4},集合A∪B={1,2,3,4,5},所以集合B中必有元素1和5,且有元素2,4,4中的0个,1个,2个或3个都可以,A、D符合,B、C不符合.10.已知集合A={x|x2-3x+2≤0},B={x|2<2x≤8},则下列判断正确的是(CD )A.A∪B=BB.(∁R B)∪A=RC.A∩B={x|1<x≤2}D.(∁R B)∪(∁R A)={x|x≤1或x>2}[解析] 因为x2-3x+2≤0,所以1≤x≤2,所以A={x|1≤x≤2};因为2<2x≤8,所以1<x≤3,所以B={x|1<x≤3}.所以A∪B={x|1≤x≤3},A∩B={x|1<x≤2}.(∁R B)∪A={x|x≤2或x>3},(∁R B)∪(∁R A)={x|x≤1或x>2}.三、填空题11.(2021·上海,2,4分)已知A={x|2x≤1},B={-1,0,1},则A∩B= { -1,0} .[解析] 由题意得A=,又B={-1,0,1},所以A∩B={-1,0}.12.2∈{x2+x,2x},则x= -2 ;-2∉{x2+x,2x},则x≠ 0且x ≠1且x ≠- 1 .[解析] x2+x=2得x=-2或1(舍去),2x=2得x=1(舍去),综上x=-2;不属于按属于处理,-2=x2+x无解.-2=2x,得x=-1,又x2+x与2x不同,∴x≠0,1.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=4 .[解析] 因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x +m=0的两根,由根与系数的关系可得m=1×4=4.14.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=(2,3),A∪B= (1,4) ,(∁R A)∪B= ( -∞,1]∪(2 ,+∞) .[解析] 由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x| 2<x<3},A∪B={x|1<x<4},(∁R A)∪B=(x|x≤1或x>2).15.已知集合A=,B={x|x<2m-1},且A⊆∁R B,则m的最大值是 .[解析] 依题意,A==,∁R B={x|x≥2m-1},又A⊆∁R B,所以2m-1≤,解得m≤.故m的最大值为.B组能力提升1.(多选题)已知集合A={1,3,},B={1,m}.若A∪B=A,则m=( AD ) A.0 B.1 C. D.3[解析] 本题考查根据集合间关系求参数.因为A∪B=A,所以B⊆A,所以m=3或m=,若m=3,则A={1,3,},B={1,3},满足A∪B=A.若m=,解得m=0或m=1.当m=0时,A={1,3,0},B={1,0},满足A∪B=A.当m=1时,A={1,3,1},B={1,1},不满足集合元素的互异性.综上,m=0或m=3,故选AD.2.(2021·北京人大附中月考)定义集合运算:A★B={z|z=x2-y2,x∈A,y∈B}.设集合A={1,},B={-1,0},则集合A★B的元素之和为( C )A.2 B.1 C.3 D.4[解析] 当时,z=0;当或时,z=1;当时,z=2.∴A★B={0,1,2},A★B所有元素之和为0+1+2=3.故选C.3.已知全集U=R,集合A={x|x2-2x-3≤0},集合B={x|log2x≤1},则A∩(∁U B)=( D )A.(2,3] B.∅C.[-1,0)∪(2,3] D.[-1,0]∪(2,3][解析] 集合U=R,A={x|x2-2x-3≤0}={x|-1≤x≤3},集合B={x| log2x≤1}={x|0<x≤2},所以∁U B={x|x≤0或x>2},所以A∩(∁U B)={x|-1≤x≤0或2<x≤3}=[-1,0]∪(2,3],故选D.4.(2022·湖北孝感模拟)已知集合A={x|y=ln(1-2x)},B={x|x2≤x},则∁A∪B(A∩B)=( C )A.(-∞,0) B.C.(-∞,0)∪ D.[解析] 根据题意可知A=,B=[0,1],所以A∪B=(-∞,1],A∩B=,所以∁A∪B(A∩B)=(-∞,0)∪,故选C.5.已知集合A={x∈R|x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m= -1 ,n= 1 .[解析] A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.。
高考数学复习——第一题(集合)及解析(精选)

高考复习学考——第一题(集合)一.选择题(共25小题)1.已知集合A={4,5,6},B={3,5,7},则A∩B=()A.∅B.{5}C.{4,6}D.{3,4,5,6,7} 2.已知集合A={x∈R|1<x<3},则下列关系正确的是()A.1∈A B.2∉A C.3∈A D.4∉A3.已知集合A={x|x2=x},B={﹣1,0,1},则A∩B=()A.{1}B.{0,1}C.{﹣1,0}D.{﹣1,0,1} 4.设全集I={0,1,2,3},∁I M={0,2},则M=()A.{3}B.{1,3}C.{2,3}D.∅5.集合A={1,2,7,8},集合B={2,3,5,8},则A∩B=()A.{2}B.{3,5}C.{2,8}D.{1,2,3,5,7,8}6.设集合A={x|x≥﹣1},则下列四个关系中正确的是()A.1∈A B.1∉A C.{1}∈A D.1⊆A7.已知集合A={1,2,4},B={2,4,6},则A∪B=()A.{4}B.{1,6}C.{2,4}D.{1,2,4,6} 8.已知集合A={x∈Z|x2<2},B={x|2x>1},则A∩B=()A.{1}B.{1,2}C.{0,1}D.{﹣1,0,1} 9.已知集合S={0,1,2},T={2,3},则S∪T=()A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}10.已知集合A={x|x>1},B={x|ax>1},若B⊆A,则实数a的取值范围为()A.(0,1)B.(0,1]C.[0,1]D.[0,1)11.已知集合A={1,2,3,4},B={x|x2﹣x﹣2=0},则A∩B=()A.{1}B.{2}C.{3}D.{1,2}12.若集合A={x|﹣1<x<2},B={﹣2,0,1,2},则A∩B=()A.∅B.{0,1}C.{0,1,2}D.{﹣2,0,1,2} 13.设集合A={x∈N|﹣1≤x≤3},B={y|y=x2,x∈R},则A∩B=()A.{0,1,2,3}B.{1,2,3}C.[1,3]D.[0,3]14.已知集合M={﹣1,0,1,2},N={1,2,3},则M∪N=()A.M B.N C.{﹣1,0,1,2,3}D.{1,2} 15.设全集U=R,集合P={x|﹣2≤x<3},则∁U P等于()A.{x|x<﹣2或x≥3} B.{x|x<﹣2且x≥3}C.{x|x≤﹣2或x>3}D.{x|x≤﹣2且x≥3}16.设集合M={0,1,2},则()A.1∈M B.2∉M C.3∈M D.{0}∈M17.下列表述正确的是()A.∅={0}B.∅⊆{0}C.∅⊇{0}D.∅∈{0}18.集合A={﹣1,0},B={0,1},C={1,2},则(A∩B)∪C等于()A.∅B.{1}C.{0,1,2}D.{﹣1,0,1,2} 19.设集合A={0,1,2},B={1,2,3},则A∩B=()A.{0,1,2,3}B.{0,3}C.{1,2}D.∅20.已知集合A={1,2,3},B={3,4,5,6},则A∩B=()A.{3}B.{1,2}C.{4,5,6}D.{1,2,3,4,5,6}21.已知集合A={1,3,5},B={3,5,7},则A∩B=()A.{1,3,5,7}B.{1,7}C.{3,5}D.{5}22.已知全集U={1,2,3,4,5},集合A={1,3,5},则∁U A=()A.{2,4}B.{1,3,5}C.{1,2,3,4,5}D.∅23.已知集合A={1,3,5,7},B={2,7,8},则A∩B=()A.{3,5,7}B.{1,5,8}C.{7}D.{5,7}24.集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},则∁U M∩N=()A.{0,1,2,3,4}B.{1,2,3}C.{1,2}D.{3}25.若集合A={x|0≤x+1≤3,x∈N},集合B={0,2,4},则A∩B等于()A.{0}B.{0,2}C.{0,2,4}D.{0,1,2,4}参考答案与试题解析一.选择题(共25小题)1.已知集合A={4,5,6},B={3,5,7},则A∩B=()A.∅B.{5}C.{4,6}D.{3,4,5,6,7}【分析】由交集的定义,可求得A∩B.【解答】解:∵A={4,5,6},B={3,5,7},∴A∩B={5}.故选:B.【点评】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2.已知集合A={x∈R|1<x<3},则下列关系正确的是()A.1∈A B.2∉A C.3∈A D.4∉A【分析】根据元素与集合的关系进行判断即可.【解答】解:集合A={x∈R|1<x<3},则1∉A,所以选项A不对;2∈A,所以选项B不对;3∉A,所以选项C不对;4∉A,所以选项D对.故选:D.【点评】本题考查了元素与集合间关系的判断,比较基础.3.已知集合A={x|x2=x},B={﹣1,0,1},则A∩B=()A.{1}B.{0,1}C.{﹣1,0}D.{﹣1,0,1}【分析】可求出集合A,然后进行交集的运算即可.【解答】解:∵A={0,1},B={﹣1,0,1},∴A∩B={0,1}.故选:B.【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.4.设全集I={0,1,2,3},∁I M={0,2},则M=()A.{3}B.{1,3}C.{2,3}D.∅【分析】由全集U及∁I M,即可求解结论.【解答】解:∵全集I={0,1,2,3},∁I M={0,2},则M={1,3},故选:B.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.5.集合A={1,2,7,8},集合B={2,3,5,8},则A∩B=()A.{2}B.{3,5}C.{2,8}D.{1,2,3,5,7,8}【分析】根据题意和交集的运算求解即可.【解答】解:∵集合A={1,2,7,8},集合B={2,3,5,8},则A∩B={2,8},故选:C.【点评】本题考查交集及其运算,属于基础题.6.设集合A={x|x≥﹣1},则下列四个关系中正确的是()A.1∈A B.1∉A C.{1}∈A D.1⊆A【分析】根据描述法表示集合的含义,1≥﹣1,可得1是集合A中的元素.【解答】解:∵集合A={x|x≥﹣1},是所有大于等于﹣1的实数组成的集合,∴1是集合中的元素,故1∈A,故选:A.【点评】本题考查了元素与集合关系的判断,元素与集合的关系是:“∈或∉”的关系.7.已知集合A={1,2,4},B={2,4,6},则A∪B=()A.{4}B.{1,6}C.{2,4}D.{1,2,4,6}【分析】利用并集定义直接求解.【解答】解:∵集合A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}.故选:D.【点评】本题考查并集的求法,考査并集定义等基础知识,考查运算求解能力,是基础题.8.已知集合A={x∈Z|x2<2},B={x|2x>1},则A∩B=()A.{1}B.{1,2}C.{0,1}D.{﹣1,0,1}【分析】求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x∈Z|x2<2}={x∈Z|﹣}={﹣1,0,1},B={x|2x>1}={x|x>0},∴A∩B={1}.故选:A.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.9.已知集合S={0,1,2},T={2,3},则S∪T=()A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}【分析】进行并集的运算即可.【解答】解:S={0,1,2},T={2,3},∴S∪T={0,1,2,3}.故选:C.【点评】本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.10.已知集合A={x|x>1},B={x|ax>1},若B⊆A,则实数a的取值范围为()A.(0,1)B.(0,1]C.[0,1]D.[0,1)【分析】利用集合的子集关系,分类讨论a的范围可解得a,【解答】解:已知集合A={x|x>1},B={x|ax>1},若B⊆A,则A集合包含B集合的所以元素,解B集合时,当a<0时,不满足题设条件,当a=0时,x无实数解,B集合为空集,满足条件,当a>0时,x>,则≥1,a≤1,即0<a≤1,综上则实数a的取值范围为:[0,1],故选:C.【点评】本题的考点是集合的包含关系,考查两个集合的子集关系,解题的关键是正确判断集合的含义.11.已知集合A={1,2,3,4},B={x|x2﹣x﹣2=0},则A∩B=()A.{1}B.{2}C.{3}D.{1,2}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3,4},B={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,一元二次方程的解法,考查了计算能力,属于基础题.12.若集合A={x|﹣1<x<2},B={﹣2,0,1,2},则A∩B=()A.∅B.{0,1}C.{0,1,2}D.{﹣2,0,1,2}【分析】进行交集的运算即可.【解答】解:A={x|﹣1<x<2},B={﹣2,0,1,2},∴A∩B={0,1}.故选:B.【点评】考查描述法、列举法的定义,以及交集的运算.13.设集合A={x∈N|﹣1≤x≤3},B={y|y=x2,x∈R},则A∩B=()A.{0,1,2,3}B.{1,2,3}C.[1,3]D.[0,3]【分析】对集合A用列举法进行表示,对集合B用不等式描述集合元素特征,然后根据集合交集的运算法则,求出A∩B.【解答】解:因为A={x∈N|﹣1≤x≤3}={0,1,2,3},B={y|y=x2,x∈R}={y|y≥0},所以A∩B={0,1,2,3},故选:A.【点评】本题考查了集合交集的运算、集合的表示方法.本题易错的地方是认为自然数集不包括零.解决集合问题的关键是对集合元素属性特征的认识.14.已知集合M={﹣1,0,1,2},N={1,2,3},则M∪N=()A.M B.N C.{﹣1,0,1,2,3} D.{1,2}【分析】进行并集的运算即可.【解答】解:∵M={﹣1,0,1,2},N={1,2,3},∴M∪N={﹣1,0,1,2,3}.故选:C.【点评】本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.15.设全集U=R,集合P={x|﹣2≤x<3},则∁U P等于()A.{x|x<﹣2或x≥3} B.{x|x<﹣2且x≥3}C.{x|x≤﹣2或x>3} D.{x|x≤﹣2且x≥3}【分析】根据全集U及P,求出P的补集即可.【解答】解:∵全集U=R,集合P={x|﹣2≤x<3},∴∁U P={x|x<﹣2或x≥3}.故选:A.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.16.设集合M={0,1,2},则()A.1∈M B.2∉M C.3∈M D.{0}∈M【分析】根据集合中元素的确定性解答.【解答】解:由题意,集合M中含有三个元素0,1,2.∴A选项1∈M,正确;B选项2∉M,错误;C选项3∈M,错误,D选项{0}∈M,错误;故选:A.【点评】本题考查了元素与集合关系的判定,一个元素要么属于集合,要么不属于这个集合,二者必居其一,这就是集合中元素的确定性.17.下列表述正确的是()A.∅={0}B.∅⊆{0}C.∅⊇{0}D.∅∈{0}【分析】直接利用空集与非空集合的关系判断选项即可.【解答】解:因为空集是非空集合的子集,所以B正确.故选:B.【点评】本题考查集合之间的关系,空集的定义,是基本知识题目.18.集合A={﹣1,0},B={0,1},C={1,2},则(A∩B)∪C等于()A.∅B.{1}C.{0,1,2}D.{﹣1,0,1,2}【分析】根据交集和并集的定义,结合已知的集合A、B、C进行求解.【解答】解:(A∩B)∪C=({﹣1,0}∩{0,1})∪{1,2}={0}∪{1,2}={0,1,2}故选:C.【点评】集合的运算一般难度较低,属于送分题,解答时一定要细心,“求稳不求快”.19.设集合A={0,1,2},B={1,2,3},则A∩B=()A.{0,1,2,3}B.{0,3}C.{1,2}D.∅【分析】集合A和集合B的公共元素构成A∩B,由此利用集合A={0,1,2},B={1,2,3},能求出A∩B.【解答】解:∵集合A={0,1,2},B={1,2,3},∴A∩B={1,2}.故选:C.【点评】本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答.20.已知集合A={1,2,3},B={3,4,5,6},则A∩B=()A.{3}B.{1,2}C.{4,5,6}D.{1,2,3,4,5,6}【分析】进行交集的运算即可.【解答】解:∵A={1,2,3},B={3,4,5,6},∴A∩B={3}.故选:A.【点评】考查列举法的定义,以及交集的运算.21.已知集合A={1,3,5},B={3,5,7},则A∩B=()A.{1,3,5,7}B.{1,7}C.{3,5}D.{5}【分析】利用交集定义直接求解.【解答】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.22.已知全集U={1,2,3,4,5},集合A={1,3,5},则∁U A=()A.{2,4}B.{1,3,5}C.{1,2,3,4,5}D.∅【分析】数一下不属于集合A的元素即可得解【解答】解:∵全集U={1,2,3,4,5},集合A={1,3,5}∴∁U A={2,4}故选:A.【点评】本题考查集合运算,当集合是用列举法表示的且元素个数比较少时,可数一下元素,用观察法做题.属简单题23.已知集合A={1,3,5,7},B={2,7,8},则A∩B=()A.{3,5,7}B.{1,5,8}C.{7}D.{5,7}【分析】根据交集的定义可知,交集即为两集合的公共元素所组成的集合,求出即可.【解答】解:由集合A={1,3,5,7},集合B={2,7,8},得A∩B={7}故选:C.【点评】此题考查了两集合交集的求法,是一道基础题.24.集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},则∁U M∩N=()A.{0,1,2,3,4}B.{1,2,3}C.{1,2}D.{3}【分析】由题设条件先求出∁U M,再求(∁U M)∩N.【解答】解:∵集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},∴(∁U M)∩N={1,2}∩{1,2,3}={1,2}.故选:C.【点评】本题考查集合的交、并、补的混合运算,解题时要认真审题,仔细解答.25.若集合A={x|0≤x+1≤3,x∈N},集合B={0,2,4},则A∩B等于()A.{0}B.{0,2}C.{0,2,4}D.{0,1,2,4}【分析】可求出集合A,然后进行交集的运算即可.【解答】解:∵A={x|﹣1≤x≤2,x∈N}={0,1,2},B={0,2,4},∴A∩B={0,2}.故选:B.【点评】本题考查了描述法和列举法的定义,交集及其运算,考查了计算能力,属于基础题。
集合-高考数学复习专题 PPT课件 图文

[例题](2018-全国卷-理Ⅱ)2.已知集合 A {(x, y) | x2
则 A 中元素的个数为( )
A.9
B.8
C.5
D.4
[解析]集合 A 为点集,其中元素为坐标平面上圆 x2 y2
及其内部的整点,分别为下列各点:(-1,-1),(-1,0)
(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),
高考培优增分课题研
高考复习专题篇
高考数学复习专题
集合与命题 2018-6
概要
知识建构 考点问题
Ⅰ.集合基本概念 Ⅱ.集合元素的特征形 Ⅲ.集合间关系 Ⅳ.集合间运算 Ⅴ.集合中的新定义问
知识建构一 集合的基本概念
1.集合的有关概念 (1)集合元素的特性: 确定性 、互异性 、无序性. (2)集合与元素的关系:若 a 属于集合 A,记作 a∈A
且 AB A, A C C ,分别求 a, m 的取值集合.
问题探究三 集合间关系与含参数问题 3
[解析] A {1,3},由 A B A 得 B A ,
方程 x2 ax a 1 0 的判别式 1 (a 2)2 0 ,且 x1 1,或x2
所以: a 1 3 ,即 a 4 ,此时 B {1,3};或 a 11,即 a
1.设集合 P={x|x2- 2x≤0},m=30.5,则下列关系正确的
A.m P B.m∈P C.m∉P
D.m⊆P
解析:由已知得:P={x|0≤x≤ 2},而 m=30.5= 3> ∴m∉P,故选 C.
答案:C
2.已知集合 A={1,2,4},则集合 B={(x,y)|x∈A,y∈A
数为 ( )
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题

专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2024届新高考数学复习:专项(集合及其运算)好题练习(附答案)

2024届新高考数学复习:专项(集合及其运算)好题练习[基础巩固]一、选择题1.[2023ꞏ新课标Ⅰ卷]已知集合M ={-2,-1,0,1,2},N ={x |x 2-x -6≥0},则M ∩N =( )A .{-2,-1,0,1}B .{0,1,2}C .{-2}D .22.[2023ꞏ新课标Ⅱ卷]设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a =( )A .2B .1C .23D .-13.[2023ꞏ全国甲卷(文)]设全集U ={1,2,3,4,5},集合M ={1,4},N ={2,5},则N ∪∁U M =( )A .{2,3,5}B .{1,3,4}C .{1,2,4,5}D .{2,3,4,5}4.[2023ꞏ全国统一考试模拟演练]已知M ,N 均为R 的子集,且(∁R M )⊆N ,则M ∪(∁R N )=( )A .∅B .MC .ND .R5.[2022ꞏ新高考Ⅰ卷,1]若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N =( )A .{x |0≤x <2}B .⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <2 C .{x |3≤x <16} D .⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <166.[2022ꞏ全国甲卷(理),3]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}7.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}8.[2023ꞏ全国乙卷(文)]设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N=()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8} D.U9.[2023ꞏ全国甲卷(理)]设全集U=Z,集合M={x|x=3k+1,k∈Z},N={x|x=3k+2,k∈Z},则∁U(M∪N)=()A.{x|x=3k,k∈Z}B.{x|x=3k-1,k∈Z}C.{x|x=3k-2,k∈Z}D.∅二、填空题10.已知U={1,2,a2-2a-3},A={|a-2|,2},∁U A={0},则a的值为________.11.[2023ꞏ衡水一中测试]已知集合M={x|1-a<x<2a},N=(1,4),且M∩N=M,则实数a的取值范围是________.12.集合A={x|2≤x≤6-m},B={x|m-1≤x≤2m+1},若A∩B≠∅,则实数m的取值范围为________.[强化练习]13.[2023ꞏ全国乙卷(理)]设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N) B.N∪∁U MC.∁U(M∩N) D.M∪∁U N14.(多选)[2023ꞏ武汉部分重点中学联考]已知集合A={1,3,m2},B={1,m},若A∪B =A,则实数m的值可能为()A.0 B.1C.2 D.315.若集合A={x|ax2+ax+1=0,x∈R}不含任何元素,则实数a的取值范围是________.16.已知集合A={x|(x+1)(x-6)≤0},B={x|m-1≤x≤2m+1},若B⊆A,则实数m 的取值范围是________________________________________________.参考答案1.C 方法一 因为N ={x |x 2-x -6≥0}={x |x ≥3或x ≤-2},所以M ∩N ={-2},故选C.方法二 由于1∈/N ,所以1∈/M ∩N ,排除A ,B ;由于2∈/N ,所以2∈/M ∩N ,排除D.故选C.2.B 依题意,有a -2=0或2a -2=0.当a -2=0时,解得a =2,此时A ={0,-2},B ={1,0,2},不满足A ⊆B ;当2a -2=0时,解得a =1,此时A ={0,-1},B ={-1,0,1},满足A ⊆B .所以a =1,故选B.3.A 由题意知,∁U M ={2,3,5},又N ={2,5},所以N ∪∁U M ={2,3,5},故选A.4.B 方法一 由(∁R M )⊆N ,得(∁R N )⊆M ,所以M ∪(∁R N )=M ,故选B.方法二 根据题意作出集合M ,N ,如图所示,集合M 为图中阴影部分,集合N 为图中除内部小圆之外的部分,显然满足(∁R M )⊆N ,由图易得(∁R N )⊆M ,所以M ∪(∁R N )=M ,故选B.5.D 由x <4,得0≤x <16,即M ={x |0≤x <16}.易得N =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥13 ,所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <16 .故选D. 6.D 因为方程x 2-4x +3=0的解为x =1或x =3,所以B ={1,3}.又A ={-1,2},所以A ∪B ={-1,1,2,3}.因为U ={-2,-1,0,1,2,3},所以∁U (A ∪B )={-2,0}.故选D.7.B ∵∁R B ={x |x <1},∴A ∩∁R B ={x |0<x <2}∩{x |x <1}={x |0<x <1}.8.A 由题意知,∁U N ={2,4,8},所以M ∪∁U N ={0,2,4,6,8}.故选A.9.A 方法一 M ={…,-2,1,4,7,10,…},N ={…,-1,2,5,8,11,…},所以M ∪N ={…,-2,-1,1,2,4,5,7,8,10,11,…},所以∁U (M ∪N )={…,-3,0,3,6,9,…},其元素都是3的倍数,即∁U (M ∪N )={x |x =3k ,k ∈Z },故选A.方法二 集合M ∪N 表示被3除余1或2的整数集,则它在整数集中的补集是恰好被3整除的整数集,故选A.10.3答案解析:由U ={1,2,a 2-2a -3},∁U A ={0}可得a 2-2a -3=0.又A ={|a -2|,2},故|a -2|=1,所以⎩⎪⎨⎪⎧a 2-2a -3=0,|a -2|=1 得⎩⎪⎨⎪⎧(a -3)(a +1)=0,a -2=±1, 解得a =3. 11.⎝⎛⎦⎤-∞,13 答案解析:因为M ∩N =M ,所以M ⊆N .当M =∅时,1-a ≥2a ,解得a ≤13 ;当M ≠∅时,a >13 且⎩⎪⎨⎪⎧2a ≤4,1-a ≥1, 无解.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,13 . 12.⎣⎡⎦⎤12,72答案解析:因为A ∩B ≠∅,所以A ,B 为非空集合,所以⎩⎪⎨⎪⎧2≤6-m m -1≤2m +1 ,解得-2≤m ≤4.同时,要使A ∩B ≠∅,则需⎩⎪⎨⎪⎧m -1≤22m +1≥2 或⎩⎪⎨⎪⎧m -1≤6-m 6-m ≤2m +1,解得12 ≤m ≤3或53 ≤m ≤72 ,即12 ≤m ≤72 .综上,12 ≤m ≤72 .13.A M ∪N ={x |x <2},所以∁U (M ∪N )={x |x ≥2},故选A.14.AD 因为A ∪B =A ,所以B ⊆A .因为A ={1,3,m 2},B ={1,m },所以m 2=m 或m =3,解得m =0或m =1或m =3.当m =0时,A ={1,3,0},B ={1,0},符合题意;当m =1时,集合A 中元素不满足互异性,不符合题意;当m =3时,A ={1,3,9},B ={1,3},符合题意.综上,m =0或3.故选AD.15.[0,4)答案解析:当a =0时,原方程无解.当a ≠0时,方程ax 2+ax +1=0无解,则需Δ=a 2-4a <0,解得0<a <4.综上,0≤a <4.16.(-∞,-2)∪⎣⎡⎦⎤0,52 答案解析:显然A ={x |-1≤x ≤6},当B =∅时,m -1>2m +1,即m <-2符合题意;当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6,得0≤m ≤52 . 综上得m <-2或0≤m ≤52 .。
高考数学总复习集合必修1

正解: ∵ y x2 4x 3 ( x 2) 2 1≥ 1 ,
y x2 2x 2 (x 1)2 3≤ 3 ,
∴ A y ≥y 1 B y y ≤ 3
,
,
∴ A B y 1≤ y≤ 3 .
解析:这道题要注意研究的元素(看竖线前的元素) ,均是 y,所以要求出两个集合中
围再求交集, A 中的 y 范围是求表达式的值域、因此此题是表示两个函数值域的集合.
用心 爱心 专心
-1-
( 3)无序性
集合中的元素的次序无先后之分.如:由 1,2,3 组成一个集合,也可以写成 1,3,2 组成一个
集合,它们都表示同一个集合. 帮你总结:学习集合表示方法时应注意的问题
( 1)注意 a 与 a 的区别. a 是集合 a 的一个元素,而 a 是含有一个元素 a 的集合,二
{ x a x b, x R, a b} 记作闭区间 [ a, b] , R 记作 ( , ).
定义 7 空集 ?是任何集合的子集,是任何非空集合的真子集。 补充知识点 对集合中元素三大性质的理解 ( 1)确定性
集合中的元素,必须是确定的.对于集合 A 和元素 a ,要么 a A ,要么 a A ,二者必
,则 实数
x2 y2
{( x, y) |
2. (2010. 湖北卷 2. )设集合 A=
4
16 1} , B={( x, y) | y 3x} , 则 A∩B 的子集的
个数是(
)
A. 4 B.3 C.2 D.1
方法:注意研究元素,是点的形式存在, A 是椭圆, B 是指数函数,有数形结合方法,交于两
{ x x 0}
如 { 有理数 } ,
分别表示有理数集和正实数集。
高考数学集合专项知识点总结

高考数学集合专项知识点总结为了关心大伙儿能够对自己多学的知识点有所巩固,下文整理了这篇数学集合专项知识点,期望能够关心到大伙儿!一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a? A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象差不多上它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且)3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,专门要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B= B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n -1个非空子集,2n-2个非空真子集。
高考数学集合复习知识点

《高考数学集合复习知识点全攻略》引言:高考,是千军万马过独木桥的征程,而数学作为其中的重要科目,往往起着关键作用。
在高考数学中,集合是一个基础且重要的知识点,它贯穿于整个高中数学的学习。
掌握好集合的相关知识,不仅有助于我们在高考中取得优异成绩,更能为后续的数学学习奠定坚实的基础。
那么,让我们一同深入探索高考数学集合复习的知识点吧。
一、集合的概念1. 集合的定义集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,“所有小于 10 的正整数”就可以组成一个集合。
2. 集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
例如,{1,2,3,4,5}。
(2)描述法:用集合中元素的共同特征来表示集合。
例如,{x|x 是小于 10 的正整数}。
二、集合的关系1. 子集如果集合 A 中的所有元素都属于集合 B,那么称集合 A 是集合 B 的子集,记作 A⊆B。
特别地,任何集合都是它自身的子集。
2. 真子集如果集合 A 是集合 B 的子集,且存在元素属于集合 B 但不属于集合 A,那么称集合 A 是集合 B 的真子集,记作 A⊂B。
3. 相等如果集合 A 和集合 B 的元素完全相同,那么称集合 A 与集合B 相等,记作 A=B。
三、集合的运算1. 交集由既属于集合 A 又属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A∩B。
例如,设 A={1,2,3,4},B={3,4,5,6},则A∩B={3,4}。
2. 并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作A∪B。
例如,对于上述集合 A 和 B,A∪B={1,2,3,4,5,6}。
3. 补集设全集为 U,集合 A 是 U 的子集,由 U 中所有不属于集合 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。
四、集合中元素的性质1. 确定性对于一个给定的集合,它的元素是确定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 6 高考数学总复习----集合 【重点知识回顾】 集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。数学是理性思维的学科,高考尤其强调“全卷要贯穿思维能力的考查”简易逻辑用于可以和各章融合命题,正是这一理性思维的体现,学生只有在思维能力上有所提高才能让数学学习有一个质的飞跃。但思维的培养不是一朝一夕的,因此,在第二轮各模块的复习中应尽量加强学生思维能力方面的培养
1.强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn图解题方法的训练,加强两种集合表示方法转换和化简训练; 2.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。 ① 区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② AB时,A有两种情况:A=φ与A≠φ。 ③区分集合中元素的形式:
【典型例题】 1.对集合与简易逻辑有关概念的考查 例1第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是 ( ) A.AB B.BC C.A∩B=C D.B∪C=A 分析:本例主要考查子集的概念及集合的运算. 解析:易知选D. 点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.
例2(07重庆)命题:“若12x,则11x”的逆否命题是( )
A.若12x,则11xx,或 B.若11x,则12x C.若11xx,或,则12x D.若11xx,或,则12x 答案:D.
2.对集合性质及运算的考查 例2.(2011年高考广东卷理科2)已知集合A={ (x,y)|x,y为实数,且x2+y2=l},B={(x,
y) |x,y为实数,且y=x}, 则A ∩ B的元素个数为( ) A.0 B. 1 C.2 D.3 2 / 6
【解析】C.方法一:由题得22222222122yxyxxyyx或,BA元素的个数为2,所以选C.
方法二:直接画出曲线122yx和直线xy,观察得两支曲线有两个交点,所以选C. 点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解. 3.对与不等式有关集合问题的考查
例3.已知集合30,31xMxNxxx,则集合1xx为 ( )
A.MN B.MN C.()RMN D.()RMN 分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算.
解析:依题意:31,3MxxNxx,∴{|1}MNxx, ∴()RMN1.xx故选C. 点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用. 4.对与方程、函数有关的集合问题的考查
例4.已知全集{12345}U,,,,,集合2{|320}Axxx, {|2}BxxaaA,,则集合)(BACU中元素的个数为 ( )
A.1 B.2 C.3 D.4 分析:本题集合A表示方程的解所组成的集合,集合B表示在集合A条件下函数的值域,
故应先把集合A、B求出来,而后再考虑)(BACU. 解析:因为集合1,2,2,4AB,所以1,2,4AB,所以()3,5.UCAB
故选B.
点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合,正确进行集合运算. 3 / 6
【模拟演练】 1. 对新定义问题的考查
例1.(2008江西卷理2)定义集合运算:,,.ABzzxyxAyB设1,2A, 0,2B
,则集合AB的所有元素之和为 ( )
A.0 B.2 C.3 D.6
分析:本题为新定义问题,可根据题中所定义的*AB的定义,求出集合*AB,而后再进一步求解. 解析:由*AB的定义可得:*{0,2,4}AB,故选D. 点评:近年来,新定义问题也是高考命题的一大亮点,此类问题一般难度不大,需严格根据题中的新定义求解即可,切忌同脑海中已有的概念或定义相混淆.
【专题突破】 1.满足M{a1, a2, a3, a4},且M ∩{a1 ,a2, a3}={a1·a2}的集合M的个数是( ) (A)1 (B)2 (C)3 (D)4
2.(2008年广东卷,数学文科,1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( ) A.AB B.B C C.A∩B=C D.B∪C=A
3.设集合1,2,3,4,5,1,2,3,2,3,4UAB,则UAB( ) (A)2,3 (B)1,4,5 (C)4,5 (D)1,5
4.(2008年天津卷,数学理科,6)设集合|23,Sxx|8,TxaxaSTR,则a的取值范围是 (A) 13a (B) 13a (C) 3a或1a (D) 3a或1a
5. 设,aRb,已知命题:pab;命题222:22ababq,则p是q成立的( B ) A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件
6.( “a=1”是“函数()||fxxa在区间[1, +∞)上为增函数”的( A ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
解:若“1a”,则函数||)(axxf=|1|x在区间),1[上为增函数;而若
||)(axxf在区间),1[上为增函数,则0≤a≤1,所以“1a”是“函数4 / 6
||)(axxf在区间),1[上为增函数”的充分不必要条件,选A.
7. 设集合}30|{xxM,}20|{xxN,那么“Ma”是“Na”的( B ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
解析:设集合}30|{xxM,}20|{xxN,MN,所以若“Ma”推不出“Na”;若“Na”,则“Ma”,所以“Ma”是“Na”的必要而不充分条件,选B 8、(07江西)设p:f(x)=ex+In x+2x2+mx+l在(0,+∞)内单调递增,q:m≥-5,则p是q的 (B) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 9、(07湖北)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件。现有下列命题:①s是q的充要条件;②p是q的充分条件而不是
必要条件;③r是q的必要条件而不是充分条件;④sp是的必要条件而不是充分条件;⑤r是s的充分条件而不是必要条件,则正确命题序号是(B) A.①④⑤ B.①②④ C.②③⑤ D. ②④⑤
二.填空题: 1.(江苏省盐城中学2008年高三上学期第二次调研测试题,数学,1)已知集合(1)0Pxxx≥,Q)1ln(|xyx,则PQ= .
2.已知集合}06{2xxxM,}01{mxxN,若MN; 则实数m的取值构成的集合为______ 3. 已知集合}{2xyyA,}2{xyyB,则____AB.
三.解答题: 1.设},12|),{(*NxxyyxA,},|),{(*2NxaaxaxyyxB,问是否存在非零整数a,使AB?若存在,请求出a的值及 BA;若不存在,请说明理由 5 / 6
参考答案 一.选择题: 1.〖解析〗本小题主要考查集合子集的概念及交集运算。集合M中必含有12,aa,则12,Maa或124,,Maaa
〖答案〗B
2.〖解析〗本题考查对集合概念的理解,易知B∪C=A, 〖答案〗D.
3.〖解析〗此题重点考察集合的交集,补集的运算;画韦恩氏图,数形结合;∵1,2,3,2,3,4AB ∴2,3AB 又∵1,2,3,4,5U
∴1,4,5UAB 〖答案〗B
4.〖解析〗本题以集合为背景,求解参数的范围{|15}Sxxx或, 所以13185aaa 〖答案〗A 5.B
6.A〖解析〗若“1a”,则函数||)(axxf=|1|x在区间),1[上为增函数;而若
||)(axxf在区间),1[上为增函数,则0≤a≤1,所以“1a”是“函数
||)(axxf在区间),1[上为增函数”的充分不必要条件,选A.
7.B 解析:设集合}30|{xxM,}20|{xxN,MN,所以若“Ma”推不出“Na”;若“Na”,则“Ma”,所以“Ma”是“Na”的必要而不充分条件,选B 8、B 9、B
二.填空题: 1.〖解析〗考查本题对集合的表示及交集的计算,(1)0,01,Pxxx≥,Q|ln(1)1,xyx,故PQ=1,
2. 11{0,,}23 3.{0}ABxx