高中数学椭圆的简单几何性质教案

合集下载

高中数学椭圆的性质教案

高中数学椭圆的性质教案

高中数学椭圆的性质教案
教学目标:
1. 理解椭圆的基本概念
2. 掌握椭圆的标准方程
3. 熟练运用椭圆的性质进行问题解答
教学重点:
1. 椭圆的定义及数学性质
2. 椭圆的标准方程
3. 椭圆的焦点、长短轴、离心率等性质
教学难点:
1. 椭圆的属性与其他几何图形的比较
2. 椭圆的运用问题解决
教学过程:
一、导入(5分钟)
通过提问引导学生回顾圆的性质,并引入椭圆的概念,让学生猜测椭圆与圆的异同点。

二、讲解(15分钟)
1. 讲解椭圆的定义及性质,介绍椭圆的标准方程及主要属性。

2. 通过示意图讲解椭圆的焦点、长短轴、离心率等概念。

三、练习(20分钟)
1. 完成课堂练习,巩固椭圆的基本算法。

2. 组织学生进行小组讨论,解决椭圆相关问题。

四、拓展(10分钟)
探讨椭圆在实际生活中的应用,如卫星轨道、天文测量等。

五、作业布置(5分钟)
布置课后作业,要求学生继续复习椭圆相关知识,并尝试解决相关问题。

教学反思:
在教学过程中,要注重引导学生思考,让他们通过实际问题解决来理解椭圆的性质和应用。

同时,要注重椭圆与其他几何图形的比较,帮助学生更好地理解椭圆的特点。

椭圆的简单几何性质 精品教案

椭圆的简单几何性质 精品教案

椭圆的简单几何性质第五课时(一)教学目标理解直线与椭圆的位置关系,能判定直线与椭圆的位置关系,会求直线截椭圆所得的弦长,处理与弦长、弦的中点有关的问题.(二)教学过程 【情境设置】问题一:直线与圆的位置关系有几种?(相交、相切、相离),那么直线与椭圆的位置关系有几种?(仍是相交、相切、相离)问题二:如何判断直线与圆的位置关系?又怎样判定直线与椭圆的位置关系呢?(直线与圆位置关系有两种判定方法:一是根据圆心到直线的距离与圆的半径比较当r d <时相交,当r d =时相切,当r d >时相离,另一种判别方法是直线与圆联立方程组,转化为一元二次方程根的判别式来解决,当0>∆时,直线与圆相离直线与椭圆的位置关系应用一元二次方程根的判别式来解决.)【探索研究】1.练习:已知直线和椭圆的方程如下,求它们的交点坐标并说明位置关系.(1)025103=-+y x ,142522=+y x (2)023=+-y x ,141622=+y x 答案:(1)⎪⎭⎫⎝⎛583, 相切 (2)()20,,⎪⎭⎫⎝⎛--37703748,,相交. 2.例题分析例1 中心在原点,一个焦点为()5001,F 的椭圆截直线23-=x y 所得弦的中点横坐标为21,求椭圆的方程. 由于学生接触类似的问题不多,可教师讲解.解:设所求的椭圆方程为12222=+by a x ,()0>>b a由()5001,F 得5022=-b a ① 把直线方程23-=x y 代入椭圆方程,整理得()()0412*******=-+-+a b x b x b a设弦的两个端点为()11y x A ,,()22y x B ,,则由根与系数关系得22221912b a b x x +=+.又AB 中点的横坐标为21. ∴2196222221=+=+b a b x x .得223b a = ② 解①,②得752=a ,252=b .故所求椭圆的方程为1257522=+x y . 例 2 过椭圆141622=+y x 内一点()12,M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程.分析:本例与例1有相似之征,可让一位学生板演,再提问学生是否有不同的解法,然后教师归纳出以下三种解法:解法一:设所求直线的方程为()21-=-x k y ,代入椭圆方程并整理,得()()()0161242142222=--+--+k x k k x k.设直线与椭圆的交点为()11y x A ,、()22y x B ,,则2x ,2y 是上述方程的两根,于是()14282222+-=+k kk y x . 又M 为AB 的中点∴()2142422221=+-=+k kk x x . 解得21-=k .故所求直线的方程为042=-+y x .解法二:设直线与椭圆的交点为()11y x A ,、()22y x B ,.∵()12,M 为AB 的中点 ∴421=+x x ,221=+y y . 又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得()()0422212221=-++y y x x于是()()()()0421212121=-++-+y y y y x x x x .∴()()21244421212121-=⨯-=-+-=--y y x x x x y y即21-=AB k 故所求直线的方程为042=-+y x .解法三 设所求直线与椭圆的一个交点为()y x A ,,由于中点为()12,M ,则另一个交点为()y x B --24,.∵A 、B 两点都在椭圆上. ∴16422=+y x . ①()()1624422=-+-y x ②①-②得042=-+y x .由于过A 、B 的直线只有一条,故所求直线的方程为042=-+y x .例3 椭圆122=+ny mx ,与直线1=+y x 相交于A 、B 两点,C 是AB 的中点.若22=AB ,斜率为22(O 为原点),试确定椭圆的方程.(如图) 分析:注意利用弦长公式2121x x k AB -+=,因为计算比较复杂,可由教师讲解. 解法一:由方程组⎩⎨⎧=+=+1122y x ny mx 得()0122=-+-+n nx x n m 设()11y x A ,、()22y x B ,、()00y x C ,,则n m n x x +=+221 nm n x x +-=121 ()nm nn m n x x y y +=+-=+-=+22222121.∴n m n x x x +=+=2210,n m ny y y +=+=2210 由题设得22=n m ① 又()2122121422x x x x x x AB -+=-=()n m n n m n +--⎪⎭⎫⎝⎛+=142222222=+-+⋅=nm mnn m ②解①、②得31=m ,32=n .∴椭圆方程为132322=+y x .解法二:由22=OC k 得OC 的方程为x y 22=, 由⎪⎩⎪⎨⎧=+=122y x x y 解得()1222--,C . 又由⎩⎨⎧=+=+1122ny mx y x 得()()0122=-+-+n nx x n m .所以22221-=+=+nm nx x 即m n 2= ①. 又因为()[]()22112212=--+=x x AB 得()12=+-+n m mnn m ②, 由①、②求出31=m ,32=n 故所求椭圆方程为1323122=+y x .解法三:由⎪⎩⎪⎨⎧=+=122y x x y 得()1222--,C .因为1-=AB k ,所以直线的l 的倾斜角为135°. 又知C 是AB 的中点,22=AB ,所以2==BC AC .即()221,-A 同理求出点()2223--,B . 将A 、B 坐标代入椭圆方程122=+ny mx ,得()()()()⎪⎩⎪⎨⎧=-+-=+-1222312212222n m n m 解得⎪⎪⎩⎪⎪⎨⎧==3231n m .所以所求椭圆方程为1323122=+y x . 点拨:椭圆的两种形式的标准方程可统一写成()b a b a by ax ≠>>=+,,00122,强以避免对焦点位置的讨论,且使运算过程简化,而弦中点问题常使用韦达定理来解决.(三)随堂练习1.如果椭圆193622=+y x 的弦被点()24,平分,那么这条弦所在的直线的方程是( ) A .02=-y x B .042=-+y x C .01232=-+y x D .082=-+y x2.已知直线m x y l +=2:,椭圆1422=+y x C :(1)当m 为何值时,l 与C 有两个不同的交点?没有交点? (2)当m 为何值时,直线l 被椭圆C 所截的弦长为1720? 答案:1.D 2.(1)1717<<-m ,17>m 或17-<m (2)32±m (四)总结提炼1.直线与椭圆的位置关系,一般是通过方程组转化为一元二次方程,运用一元二次方程的知识(如求根、判别式、根与系数关系)求得.2.要注意二次曲线与二次方程,二次函数三个二次之间的关系. (五)布置作业1.过点()02,-M 的直线l 与椭圆1222=+y x 交于1P 、2P 两点,线段1P 2P 的中点为P ,设直线l 的斜率为()011≠k k ,直线OP 的斜率为2k ,则21k k 的值等于( )A .2B .-2C .21 D .21- 2.直线1+=kx y 与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A .()10, B .()50, C .[)()∞+,,551 D .()∞+,13.已知椭圆C 的方程为()0116222>=+m m y x ,如果直线x y 22=与椭圆的一个交点P 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .22C .32D .84.求与椭圆14922=+y x 相交于A 、B 两点,并且线段AB 的中点为()11,M 的直线方程.5.已知椭圆204522y x +的焦点分别是1F 、2F ,过中心O 作直线与椭圆相交于A 、B 两点,若要使2ABF ∆的面积是20,求该直线方程.答案:1.D 2.C 3.B4.设A 、B 的坐标分别为()11y x ,,()22y x , ∵点A 、B 都在椭圆上∴⎪⎪⎩⎪⎪⎨⎧=+=+②149①14922222121y x y x①-②得()()04921212121=-++++y y y y x x x x ∵AB 的中点为()11,M ∴221=+x x ,221=+y y∴942121-=--x x y y ,即直线AB 的斜率为94-.∴所求直线方程为()1194+--=x y 即01394=-+y x 5.易求得()052,F ,设直线AB 方程为my x =,代入椭圆方程得:()900452022=+y my 即()0900452022=-+y m∴452060221+=-m y y .∴45201502122122+=-⋅=∆m y y OF S ABF . 由2045201502=+m 得43±=m ,∴直线AB 的方程为y x 43±=即034=±y x . (六)板书设计。

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案一、教学目标1. 知识与技能:使学生掌握椭圆的定义,理解椭圆的基本几何性质,如焦点、半长轴、半短轴等概念;2. 过程与方法:通过观察、分析、归纳等方法,让学生发现并证明椭圆的几何性质;3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。

2. 椭圆的基本几何性质:a. 焦点:椭圆的焦点距离为2c,其中c为半焦距,c^2=a^2-b^2;b. 半长轴:椭圆的半长轴为a,表示椭圆的长轴的一半;c. 半短轴:椭圆的半短轴为b,表示椭圆的短轴的一半;d. 椭圆的面积:S=πab。

三、教学重点与难点1. 教学重点:椭圆的定义及其基本几何性质;2. 教学难点:椭圆的焦点、半长轴、半短轴等概念的理解与应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法发现椭圆的几何性质;2. 利用数形结合法,让学生直观地理解椭圆的定义及其几何性质;3. 运用实例讲解法,让学生掌握椭圆在实际问题中的应用。

五、教学过程1. 导入新课:通过介绍椭圆的起源和发展,激发学生的学习兴趣;2. 讲解椭圆的定义:结合图形,解释椭圆的定义,让学生理解椭圆的概念;3. 探索椭圆的基本几何性质:引导学生观察椭圆的图形,发现焦点、半长轴、半短轴等性质;4. 证明椭圆的几何性质:引导学生运用数学方法证明椭圆的基本几何性质;5. 应用实例:让学生运用椭圆的性质解决实际问题,巩固所学知识。

本教案为椭圆的简单几何性质教学教案的第一部分,后续章节将陆续呈现。

希望能对您的教学有所帮助!六、教学练习1. 基本概念练习:a. 定义椭圆的焦点;b. 解释椭圆的半长轴和半短轴;c. 计算椭圆的面积。

2. 应用题练习:a. 已知椭圆的半长轴为5cm,半短轴为3cm,求椭圆的焦点距离;b. 已知椭圆的面积为36πcm²,半长轴为6cm,求椭圆的半短轴;c. 一个椭圆的焦点在x轴上,半长轴为4cm,半短轴为3cm,求椭圆的标准方程。

高中数学 2-1 2.2.2椭圆的简单几何性质 教案

高中数学 2-1 2.2.2椭圆的简单几何性质 教案

2.2.2椭圆的简单几何性质(一)教学目标1。

知识与技能:(1)通过对椭圆图形的研究,让学生熟悉椭圆的几何性质(对称性、范围、顶点、离心率)以及离心率的大小对椭圆形状的影响,进一步加强数形结合的思想。

(2)熟练掌握椭圆的几何性质,会用椭圆的几何性质解决相应的问题2.过程与方法:通过讲解椭圆的相关性质,理解并会用椭圆的相关性质解决问题。

3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(2)培养学生抽象概括能力和逻辑思维能力. (二)教学重点与难点重点:椭圆的几何性质,数形结合思想的贯彻,运用曲线方程研究几何性质难点:数形结合思想的贯彻,运用曲线方程研究几何性质。

(三)教学过程活动一:创设情景、引入课题(5分钟)问题1:前面两节课,说一说所学习过的内容?1、椭圆的定义? 2、 两种不同椭圆方程的对比?问题2:观察椭圆12222=+b y a x (a 〉b>0)的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?点题:今天我们学习“椭圆的简单几何性质"活动二:师生交流、进入新知,(20分钟)1.范围:-a x a ≤≤,b y b -≤≤由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b≤≤, ∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤,∴-a x a ≤≤,b y b -≤≤ 说明椭圆位于直线x a =±,y b =±所围成的矩形里.2.对称性:椭圆关于x 轴、y 轴和原点对称。

在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称.若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称.所以,椭圆关于x 轴、y 轴和原点对称。

教案2:椭圆的简单几何性质(2课时)

教案2:椭圆的简单几何性质(2课时)

椭圆的简单几何性质(一)教学目标:知识与技能:掌握椭圆的范围、对称性、顶点,掌握c b a ,,几何意义以及c b a ,,的相互关系,初步学习利用方程研究曲线性质的方法。

过程与方法:利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力。

情感、态度与价值观:通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质。

重点难点:重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法。

难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质。

教学过程(一)复习与引入过程:引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④探究椭圆的扁平程度量----椭圆的离心率.〖板书〗椭圆的简单几何性质.(二)新课探析(1)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(2)椭圆的简单几何性质:①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率:椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 .(3)例题讲解与引申、扩展例1、 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.扩展:已知椭圆()22550mx y m m +=>的离心率为e =m 的值. 解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=. 例2、如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.分析:若设点(),M x y ,则MF =l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数c e a =()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c=相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2a x c=-. (三)课堂练习:(四)反思小结:(1)利用方程研究椭圆的几何性质时,若椭圆的方程不是标准方程,首先应将方程化为标准方程,然后找出相应的c b a ,,。

人教版高中数学选修一3.1.2 椭圆的简单几何性质(二)教案

人教版高中数学选修一3.1.2 椭圆的简单几何性质(二)教案

3.1.2椭圆的简单几何性质(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。

作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。

因此,内容在解析几何中占有非常重要的地位。

重点:椭圆的方程及其性质的应用 难点:直线与椭圆的位置关系多媒体典例解析例7. 已知直线l:y=2x+时,直线l与椭圆C:法二:由已知可设2F B n =,则两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴ 所求椭圆方程为22132x y +=,故选B .5.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.35 [由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=1+k 2 |x 1-x 2|=54[x 1+x 22-4x 1x 2]=544+24=35.]6.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点的坐标.[解] (1)将(0,4)代入C 的方程,得16b 2=1,∴b =4.由e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),通过椭圆几何性质的应用,培养学生数学建模能力,并介绍椭圆的定义二定义,体会圆锥曲线的统一性。

椭圆的简单几何性质 精品教案

椭圆的简单几何性质 精品教案

椭圆的简单几何性质【教学目标】1.了解椭圆的参数方程,了解参数方程中系数b a ,的含义。

2.通过学习椭圆的参数方程,进一步完善对椭圆的认识,理解参数方程与普通方程的相互联系。

并能相互转化。

提高综合运用能力。

【教学重难点】教学重点:进一步巩固和掌握由曲线求方程及由方程研究曲线的方法及椭圆参数方程的推导。

教学难点:深入理解推导方程的过程。

灵活运用方程求解问题。

【课时安排】1课时【教学过程】一、复习引入1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹。

2.标准方程:2222 1 x y a b +=,2222 1 y x a b += (0>>b a )3.椭圆的性质:由椭圆方程2222 1 x y a b+=(0>>b a )(1)范围:a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中。

(2)对称性:图像关于y 轴对称。

图像关于x 轴对称。

图像关于原点对称原点叫椭圆的对称中心,简称中心。

x 轴、y 轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点。

椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点。

21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。

长分别为b a 2,2,b a ,分别为椭圆的长半轴长和短半轴长。

椭圆的顶点即为椭圆与对称轴的交点。

(4)离心率: c e a =⇒e =,10<<e 。

椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。

,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教案标题:椭圆的简单几何性质教学目标:1. 理解椭圆的定义和特点。

2. 掌握椭圆的几何性质,如长轴、短轴、焦点、离心率等。

3. 能够应用椭圆的性质解决相关几何问题。

教学重点:1. 椭圆的定义和性质。

2. 椭圆的几何性质的应用。

教学准备:1. 教材:提供相关椭圆的定义和性质的教材。

2. 工具:黑板、彩色粉笔、直尺、圆规等。

教学过程:一、导入(5分钟)1. 引入椭圆的概念,通过问题启发学生思考:什么是椭圆?它有什么特点和性质?2. 学生回答后,教师简要介绍椭圆的定义和特点。

二、椭圆的定义和性质(15分钟)1. 教师在黑板上绘制一个椭圆,并解释椭圆的定义:平面上到两个定点的距离之和等于常数的点的轨迹。

2. 教师解释椭圆的几何性质:a. 长轴:通过两个焦点且垂直于短轴的直线段。

b. 短轴:通过两个焦点且垂直于长轴的直线段。

c. 焦点:椭圆上到两个焦点的距离之和等于常数。

d. 离心率:离心率是一个衡量椭圆形状的参数,定义为焦点到椭圆中心的距离与长轴的比值。

三、椭圆的简单几何性质应用(20分钟)1. 教师通过例题演示椭圆的性质应用:a. 例题1:已知椭圆的长轴长度为10cm,短轴长度为6cm,求其焦点坐标。

b. 例题2:已知椭圆的长轴长度为12cm,离心率为0.8,求其焦点距离。

2. 学生进行个别或小组练习,解决类似的椭圆性质应用问题。

3. 学生上台展示解题思路和答案,并进行讨论。

四、总结与拓展(10分钟)1. 教师对本节课的内容进行总结,强调椭圆的定义和几何性质。

2. 教师提供一些拓展问题,让学生进一步思考和探索椭圆的性质。

五、课堂作业(5分钟)布置课后作业:完成教材上的相关练习题,并提醒学生复习本节课的内容。

教学反思:在教学过程中,教师应该注重激发学生的兴趣,通过问题启发和实例演示帮助学生理解椭圆的定义和性质。

在巩固阶段,教师可以设计一些拓展问题,激发学生思考和探索椭圆的更多性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:椭圆的简单几何性质
设计意图:本节内容是椭圆的简单几何性质,是在学习了椭圆的定义和标准方程之后展开的,它是继续学习双曲线、抛物线的几何性质的基础。

因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。

本教案的设计遵循启发式的教学原则,以培养学生的数形结合的思想方法,培养学生观察、实验、探究、验证与交流等数学活动能力。

教学目标:了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.培养学生的数形结合的思想方法。

教学重点:椭圆的简单几何性质的应用。

教学难点:椭圆的简单几何性质的应用。

二过程与方法目标
(1)复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.
〖板书〗椭圆的简单几何性质.
(2)新课讲授过程
(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.
提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
(ii)椭圆的简单几何性质
①范围:由椭圆的标准方程可得,
22
22
10
y x
b a
=-≥,进一步得:a x a
-≤≤,同理可
得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;
②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比a
c e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆
时当a ,b ,c e 00 . (iii )例题讲解与引申、扩展
例1 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.
分析:由椭圆的方程化为标准方程,容易求出,,a b c .引导学生
用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.
扩展:已知椭圆()22550mx y m m +=>的离心率为105
e =求m 的值.
解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有5,,5a b m c m ===-,∴52
55m
-=,得
3m =;②当焦点在y 轴上,即5m >时,有,5,5a m b c m ===-,∴5
102553
m m m -=⇒=. 例2 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程.
解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22
221x y a b
+=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
引申:如图所示, “神舟”截人飞船发射升空,进入预定
轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭
圆,近地点A 距地面200km ,远地点B 距地面350km ,已知
地球的半径6371R km =.建立适当的直角坐标系,求出椭圆
的轨迹方程.
例3如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254
x =的距离的比是常数45
,求点M 的轨迹方程. 分析:若设点(),M x y ,则()224MF x y =-+,到直线l :254x =的距离254
d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点()
,0F c 的距离和它到定直线l :2
a x c
=的距离比是常数c e a
=()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c =相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2
a x c
=-. (3)小结
1.知识总结:椭圆的几何性质
2.思想方法总结:
教师根据学生的总结做适当补充、归纳、点评。

相关文档
最新文档