1,3一偶极环加成反应在叠氮推进剂中的应用

合集下载

偶极环加成反应

偶极环加成反应
目录 CONTENTS
1 背景介绍
2 各项反应
3
总结
BREAD PPT DESIGN
背景介 绍 1,3-偶极环加成反应(1,3-dipolar
cycloaddition)是发生在1,3-偶极体和烯烃、炔烃或 相应衍生物之间的环加成反应,产物是一个五元杂环化 合物。烯烃类化合物在反应中称亲偶极体。德国化学家 Rolf Huisgen首先广泛应用此类反应制取五元杂环化合 物,因此它也称为Huisgen反应。
BREAD PPT DESIGN
通过2-芳亚甲基-6,7-二氢-5H-噻唑并[3,2-a]嘧啶-3酮与靛红、肌氨酸的l,3-偶极环加成反应,合成了一系列新 的螺噻唑并嘧啶类化合物,以期为药物筛选提供先导化合物。
李筱芳 ,于贤勇 ,冯亚青1,3-偶极环加成反应合成螺噻唑并[3,2-a]嘧啶类化合物, 有机化学2010年第30卷第5期,735-739
BREAD PPT DESIGN
反应介 绍
通过1-苄基-3,5-双芳亚甲基哌啶-4-酮与靛 红、脯氨酸的1,3-偶极环加成反应,合成了一系 列新的螺哌啶-六氢吡嗪类化合物。
令玉林,刘彬,李筱芳,于贤勇,易平贵 1,3一偶极环加成反应合成螺哌啶 一六氢吡嗪
类化合物 中图分类号:062 文献标识码:A 文章编号:1672—9102(2010)04一0101-03
BREAD PPT DESIGN
在氧化剂存在下吡啶叶立德与查尔酮进行1,3-偶 极环加成反应,一锅法合成2-苯基-3-乙酰基中氮茚, 以及用类似的一锅法合成1-苯甲酰基-2-苯基-3-乙酰基 吡咯并[2,I-a]异喹啉化合物。
王炳祥,徐助雄,吴婧 吡啶叶立德与查尔酮1,3.1偶极环加成反应制备2-苯基-3乙酰基中氮茚 有机化学 2006年第26卷第11期,1587~1589

两种反应型叠氮硝胺发射药表面钝感剂的性能改进

两种反应型叠氮硝胺发射药表面钝感剂的性能改进

两种反应型叠氮硝胺发射药表面钝感剂的性能改进潘胜;黄振亚;张翔;胡向明【摘要】为改进叠氮硝胺发射药表面钝感剂的性能,以3-丁炔-1-醇和2-甲基-3-丁炔-2-醇为原料设计合成了钝感剂前驱体2,4,6-三(3-丁炔-1-氧基)-1,3,5-三嗪(TPYT)和三乙炔基苯(TEB);采用差示扫描量热(DSC)法和傅里叶变换红外光谱(FT-IR)法研究了前驱体与叠氮基的反应活性,并用转鼓喷涂工艺制得了钝感发射药DAG-DG-1和DAG-DG-2,采用密闭爆发器实验测试了钝感发射药的燃烧性能.结果表明,TPYT和TEB分别能在60℃和50℃下与聚叠氮缩水甘油醚(GAP)反应,60℃下两者与GAP完全反应的时间分别为24h和12h,显示较强的反应活性;TPYT和TEB可用于叠氮硝胺发射药的表面钝感,使钝感发射药DAG-DG-1和DAG-DG-2的燃烧渐增系数分别达到1.78和1.44,获得良好的燃烧渐增性.%To improve properties ot the surface deterrents of azidonitramine gunpropellant,deterrent precursors 2,4,6-tris(3-butyne-l-yloxy)-1,3,5triazine(TPYT) and 1,3,5,-triethynylbenzene(TEB) were designed and synthesized using 3-butyn-1-ol and 2-methyl-3-butyn-2 ol as raw materials.The reactivity between the deterrent precursor and azide were researched by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR).The deterred propellants DAG-DG-1 and DAG-DG-2 were prepared by rotating-drum spraying technique,and their combustion performance were measured by the closed-bombtest.The results show that TPYT and TEB can react with glycidyl azide polymer(GAP) at 60℃ and 50℃ respectively.At 60℃,TPYT and TEB can fully react with GAP in 24h and 12h respectively,revealing that their reactionactivities are strong,TPYT and TEB can be used for surface deterring of azidonitramine gun propellant and make the progressive burning factor of deterred gun propellants DAG-DG-1 and DAG-DG--2 reach 1.78 and 1.44 respectively and obtain good burning progressivity.【期刊名称】《火炸药学报》【年(卷),期】2018(041)001【总页数】5页(P102-106)【关键词】材料科学;端炔基化合物;表面钝感;叠氮硝胺发射药;燃烧性能;TPYT;TEB;GAP【作者】潘胜;黄振亚;张翔;胡向明【作者单位】南京理工大学化工学院,江苏南京210094;南京理工大学化工学院,江苏南京210094;南京理工大学化工学院,江苏南京210094;南京理工大学化工学院,江苏南京210094【正文语种】中文【中图分类】TJ55;TQ562引言叠氮硝胺发射药是一种高能低烧蚀的发射药,然而其初始燃气生成速率高,在高装填密度和底部点火条件下容易产生压力波,限制了其应用[1],通过表面钝感来调节其燃烧性能是解决该问题的一种方法。

GAP/环氧化合物体系胶片的制备与性能表征

GAP/环氧化合物体系胶片的制备与性能表征

GAP/环氧化合物体系胶片的制备与性能表征郑启龙;周伟良;肖乐勤;菅晓霞【摘要】为探索一种新型非异氰酸酯固化体系,以端羟基聚叠氮缩水甘油醚( GAP )为研究对象,三羟甲基丙烷三缩水甘油醚(TMPTGE)为固化剂,通过实验筛选出六亚甲基四胺(HA)为固化催化剂,对GAP/TMPTGE/HA固化体系进行了研究。

通过拉伸试验、DMA试验,研究了固化参数R和固化时间对GAP/TMPTGE胶片力学性能的影响,借助非等温DSC法,研究了GAP/TMPTGE/HA体系的固化动力学特征,并通过TG实验对胶片热性能进行了表征。

结果表明,随着固化参数R的增大,胶片的断裂伸长率先增加后降低,拉伸强度不断增大;R=3.0时,胶片断裂伸长率达到最大值98%,此时拉伸强度为0.67 MPa,玻璃化转变温度为-34.8℃;胶片热分解分为2个阶段,对应的分解峰温分别为250℃和350℃。

%Glycidyl azide polymer(GAP) was curedby trimethylolpropane triglycidyl ether(TMPTGE) in the presence of ater⁃tiary amine catalyst( HA) . The effects of R and cure time on the mechanical properties of the GAP/TMPTGE film were character⁃ized by tensile test and DMA. The kinetic characteristics of this curing reaction were studied thoroughly by means of DSC, and ther⁃mal properties were studied by TG. The results indicate that the breaking elongation of the film increases at first then decreases and the tensile strength increases straightly with the increase of the R. When R is 3.0, the breaking elongation of the film is 98%, the tensile strength is 0.67 MPa and the glasstransition temperature of the film is -34.8℃. The TG experimental results show that the decomposition of cured film can be divided into twosteps, the decomposition peak temperatures of which are 250℃ and 350℃ re⁃spectively.【期刊名称】《固体火箭技术》【年(卷),期】2016(039)004【总页数】6页(P497-502)【关键词】聚叠氮基缩水甘油醚;环氧化合物;力学性能;热性能【作者】郑启龙;周伟良;肖乐勤;菅晓霞【作者单位】南京理工大学化工学院,南京 210094;南京理工大学化工学院,南京 210094;南京理工大学化工学院,南京 210094;南京理工大学化工学院,南京210094【正文语种】中文【中图分类】V512现行复合推进剂多为聚氨酯型推进剂,采用端羟基粘合剂和异氰酸酯固化体系[1],具有力学性能优良、使用温度范围广的特点。

基于丙二腈的含能化合物的合成研究进展

基于丙二腈的含能化合物的合成研究进展
energetic materials with independent intellectual property rights and excellent performance.
[ KEYWORDS] malononitrileꎻ energetic materialꎻ synthesisꎻ reaction mechanismꎻ detonation performance
含能 化 合 物ꎻ 基 于 氰 基 的 反 应 活 性ꎬ 可 以 合 成 四
水环化构成呋咱的核心骨架 3 ̄氨基 ̄4 ̄酰胺肟基呋
可以合成典型的含能结构单元呋咱环 [2] 及呋咱类

[3]
、异呋咱
[4]
含能结构单元ꎻ基于由丙二腈转化
的典型含能化合物 3 ̄氨基 ̄4 氰基呋咱分子中的氨
基的反应活性ꎬ可以构建偶氮桥 [5] 和醚桥联 [6] 等含

[20]
ꎮ 因此ꎬ设计
和合成 C—C 键连接的三呋咱类化合物是获得具有
优异能量特性的含能化合物的有效方法 [21] ꎮ
如图 3 所示ꎬ3 ̄氨基 ̄4 ̄酰氯肟基呋咱在 2 ~ 4 ℃
下ꎬ与 Na2 CO3 溶液反应得到化合物 12ꎬ再经还原得
到二氨基三呋咱(13)
[22]
ꎮ 周彦水等
[7]
用过氧硫酸
氮含能化合物ꎮ
以丙二腈为原料可以合成 3ꎬ4 ̄二(3 ̄硝基呋咱 ̄
4 ̄基) 氧化呋咱( DNTF)
唑二羟胺盐( HATO)
[9]
[7 ̄8]
、1ꎬ1 ̄二羟基 ̄5ꎬ5 ̄联四
等性能优异的含能材料ꎮ 归
纳总结了基于丙二腈的含能化合物的设计思路和合
成路线ꎬ为今后设计、合成性能优异的新型含能材料

重氮化合物在化学生物学中的运用

重氮化合物在化学生物学中的运用

重氮化合物在化学生物学中的运用摘要: 重氮化合物的制备方法进行了简要介绍。

重叠化合成物在化学生物学中的应用:环加成反应、作为探针研究生物分子、蛋白质的烷基化、生物可逆蛋白质修饰、生成卡宾对肽和蛋白质的修饰和核酸的烷基化。

关键词:重氮化合物、化学生物学、蛋白质近日,来自威斯康星大学麦迪逊分校(University of Wisconsin–Madison)的Ronald T. Raines教授在ACS Chemical Biology杂志上发表综述文章介绍了重氮化合物在化学生物学中的应用[1](Diazo Compounds: Versatile Tools for Chemical Biology)。

相信学化学的同学们对重氮化合物肯定不陌生。

现在,我简要粗略的梳理一下这篇综述。

我们先仰望一下这位本科毕业于麻省理工,博士毕业于哈佛的通讯作者Ronald T. Raines教授。

综述开篇,作者先是简要介绍了一下什么是重氮化合物(R1R2C=N2),以及重氮化合物相对叠氮化合物(R1R2CH-N3)在生物学应用中的优势,比如体积更小和更广泛的反应活性。

与叠氮化合物另一个不同点是,自然界存在着含有重氮基团的天然产物,作者列举了含有重氮基团的氨基酸,以及两类活性显著的天然产物kinamycins和lomaiviticins(结构如下图)。

作者接着就重氮化合物的制备方法进行了简要介绍。

主要概括:(i) 重氮基转移[2,3];(ii) 胺类直接重氮化[4,5];(iii) 腙类分解或氧化[6,7];(iv) N-亚硝基化合物重排[8,9];(v) 1,3-二取代酰基三嗪分解[10,12];(vi) 来自其他重氮化合物[13-17]。

尽管在有机化学上有许多制备重氮化合物的方法,但是在化学生物学领域当中也受到很大限制,这主要受制于重氮化合物的多官能团兼容性以及水溶性。

当然作者也不忘推广一下自己开发的从叠氮化合物制备重氮化合物的方法,该方法一定程度上提高了反应的水溶性。

1,3-偶极环加成反应

1,3-偶极环加成反应

冯亚青1 偶极环加成反应合成螺噻唑并[3 [3, a]嘧啶类化合物 嘧啶类化合物, 李筱芳 ,于贤勇 ,冯亚青1,3-偶极环加成反应合成螺噻唑并[3,2-a]嘧啶类化合物, 有机化学2010年第30卷第5 2010年第30卷第 735有机化学2010年第30卷第5期,735-739
BREAD PPT DESIGN
BREAD PPT DESIGN
Yamada等利用 酮亚胺与钴(III) (III)阳离子的络合 Yamada等利用 B-酮亚胺与钴(III)阳离子的络合 物催化氮-芳亚甲基苯基氧化胺(2,R2=Ar,R3 =Ph)与 物催化氮-芳亚甲基苯基氧化胺(2, =Ar, =Ph)与 (2 甲酰基- 环戊烯的1 偶极环加成反应。 1-甲酰基-1-环戊烯的1,3-偶极环加成反应。在反应 液中加入NaBH4的乙醇溶液猝灭环加成反应, NaBH4的乙醇溶液猝灭环加成反应 液中加入NaBH4的乙醇溶液猝灭环加成反应,将环加成 产物的醛基转化为更稳定的醇,产物19保持了1 19保持了 产物的醛基转化为更稳定的醇,产物19保持了1,3-偶 极环加成反应的收率、非对映选择性和对映选择性。 极环加成反应的收率、非对映选择性和对映选择性。
BREAD PPT DESIGN
通过六氢- 芳基-lH-比喃[2, d]并嘧啶-2(8aH)通过六氢-4-芳基-lH-比喃[2,3-d]并嘧啶-2(8aH)[2 并嘧啶 硫酮与丁炔二酸二甲(DMAD)的加成反应, (DMAD)的加成反应 硫酮与丁炔二酸二甲(DMAD)的加成反应,合成了一系列新 的吡喃一嘧啶并噻唑类化合物。 的吡喃一嘧啶并噻唑类化合物。
BREAD PPT DESIGN
叠氮基与碳叠氮基与碳-碳双 碳三键或碳键、碳-碳三键或碳氮三键的1 氮三键的1,3一偶极 环加成反应通常有很 多优点。 多优点。

曼尼希反应方程式

曼尼希反应方程式

曼尼希反应方程式1. 简介曼尼希反应是有机化学中一种重要的合成反应,以德国化学家曼尼希(Rolf Huisgen)的名字命名。

该反应是一种1,3-偶极环加成反应,可以用于合成五元和六元环化合物。

曼尼希反应在有机合成中具有广泛的应用,可以构建复杂分子骨架和多样性药物分子。

2. 反应机理曼尼希反应的机理涉及到1,3-偶极亲电体和炔烃之间的环加成过程。

具体步骤如下:1.形成1,3-偶极亲电体:通常使用含有电子丰富基团的化合物作为1,3-偶极亲电体,如亚硝基化合物、叠氮化合物等。

2.形成炔烃:炔烃可以通过多种方法制备,如卤代烷与碱金属乙炔盐反应、卤代烷与共轭碳酸酯反应等。

3.环加成:在适当的溶剂条件下,将1,3-偶极亲电体和炔烃反应,形成新的环化合物。

该反应通常在室温下进行。

4.生成产物:经过环加成反应后,生成的产物可以是五元环或六元环化合物,具有丰富的结构多样性。

3. 反应条件曼尼希反应的条件取决于所使用的1,3-偶极亲电体和炔烃的性质。

一般来说,以下条件适用于大多数曼尼希反应:•温度:室温下进行。

•溶剂:常用的溶剂包括二氯甲烷、乙醚、二甲基亚砜等。

•催化剂:某些情况下需要催化剂存在,如铜盐催化剂。

•反应时间:根据具体反应体系而定,通常几小时到几天不等。

4. 应用和实例曼尼希反应广泛应用于有机合成领域,可以构建复杂分子骨架和多样性药物分子。

以下是几个典型的实例:4.1 合成五元环化合物曼尼希反应可以用于合成五元环化合物,如吡咯、异吲哚等。

例如,将含有亚硝基的化合物与炔烃反应,可以得到吡咯衍生物。

4.2 合成六元环化合物曼尼希反应还可以用于合成六元环化合物,如噻吩、苯并噻吩等。

例如,将叠氮化合物与炔烃反应,可以得到噻吩衍生物。

4.3 多组分曼尼希反应多组分曼尼希反应是一种重要的变种,可以同时使用多个不同的1,3-偶极亲电体和炔烃进行反应。

这种方法可以高效地构建多样性分子库和药物候选化合物。

5. 总结曼尼希反应是一种重要的有机合成方法,可以用于构建复杂分子骨架和多样性药物分子。

点击化学简介

点击化学简介

角色 , 它的修饰和改性工作一直备受关注。但由于 糖类化合物结构复杂 , 使其在改性时常伴随副反应 发生且产物收率低。而点击化学所独有的反应条件 温和、 产物收率高以及选择性好等特性 , 可避免传统 改性方法带来的这些问题[ 8] 。 目前应用原位点击化学合成类天然化合物的工 作最有吸引力。它借助酶为反应模板 , 选择性链接 各模块组分, 从而合成酶自身的抑制剂。原位点击 化学已被用来发现多种酶的高亲和力的抑制剂, 包 括重要的神经递质酶 , 如乙酰胆 碱酯酶、 新陈代谢 [ 9] 酶、 碳酸酐酶和艾滋病毒蛋白酶 等。原位点击化 学技术, 作为对传统药物合成与筛选方法的补充 , 正 被世界上很多实验室和药物公司所采用。 4. 2 点击化学在聚合物合成中的应用 人们常常利用偶合反应来制备嵌段、 星形、 梳形 以及环形等聚合物 , 但是由于端基活性的问题常使 得目标聚合物收率低和结构不规整 , 而具有高转化 率的点击化学反应则为这一传统方法带来了新的生 机。近两年, 偶极环加成点击化学反应在聚合物化 学上被广泛地应用于官能化合成与修饰大分子。此 后又将它与原子转移自由基聚合相结合合成了许多 各种各样的聚合物。现在, 点击化学从聚合物的本 体聚合到合成复杂的大分子结构上都得到了广泛的 体现。人们利用点击化学引入功能基团改进聚合物 的性能, 同时还可利用点击化学链接所需基团构筑 特殊结构的高分子 [ 8] 。 4. 3 点击化学在表面修饰中的应用 点击化学反应以其高反应活性的特点成为一种 表面修饰的新手段 , 为表面改 性注入了新的 活力。 Collm an 等[ 10] 首次将 点击化学应用 到对电极 表面 修饰的研究中。他们将叠氮化的配体在金电极表面 形成单分子层 , 然后将炔化的二茂铁修饰到电极表 面, 并通过循环伏安法考察了电极性能 , 讨论了不同 配体在表面的吸附。 点击化学还被广泛应用于各种色谱固定相的表 面修饰中。 Punna 等 [ 11] 将各种功能分子 修饰到琼 脂糖粒子表面 , 为其在亲和色谱上的应用提供实验 依据。 Guo 等[ 12] 报道了将 CD、 葡萄糖、 麦芽糖点 击到硅胶表面制备亲水作用液相色谱固定相, 用于 分离高极性混合物。还有许多科研工作者通过点击 反应将各种功能 团修饰到各种基材表面 ( 如金、 硅 [ 13] 等) 拓展其在生物传感器、 图形化等领域的应用 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,31,3-偶极环加成反应
周环反应有电环化反应,环加成反应,和σ 移位反应。而其中的 环加成反应又分为[2+1]环加成,[2+2]环加成,[4+1]环加成。1,3偶极加成和[4+2]环加成即Diels-Alder反应。 本文主要介绍1,3一偶极环加成反应的基础上,综述了该反应在 聚叠氮基缩水甘油醚(GAP)侧基改性、叠氮化合物固化以及在GAP推进 剂中的应用情况。
含有叠氮侧基的聚醚粘合剂可以与含有乙炔基的化合物 通过环加成反应形成三唑粘合剂。在铜催化剂的作用下, 通过环加成反应形成三唑粘合剂。在铜催化剂的作用下,这种 反应简单且非常有效,直接使用GAP可以合成一系列的1 GAP可以合成一系列的 反应简单且非常有效,直接使用GAP可以合成一系列的1,2,3 一三唑基缩水甘油聚合物及衍生物。 一三唑基缩水甘油聚合物及衍生物。
[3+2]环加成(1,3-偶极环加成)中常见1,3-偶极体
R
C N O 腈氧化物
+
-
R
N NR' C 腈亚胺
+
-
R
N O CH2
+
-
N 氧化醛亚胺
1,3一偶极环加成反在叠氮推进剂中的应用
常用的含能叠氮黏合剂
叠氮粘合剂是侧链带有叠氮基团的含能预聚物,常用的含能粘合 剂有聚叠氮基缩水甘油醚(GAP)、双叠氮甲基氧杂丁烷聚醚(BAMO)和 叠氮甲基氧杂丁烷聚醚(AMMO)等。 这类粘合剂应用在推进剂中,能够提高推进剂的比冲和燃速,改善 温度敏感系数,是高能低特征信号、低易损性推进剂理想的含能粘合 剂。
对GAP高聚物叠氦侧基改性 高聚物叠氦侧基改性
尽管含能粘合剂GAP在能量性能方面具有优势, 尽管含能粘合剂GAP在能量性能方面具有优势,但在固体 GAP在能量性能方面具有优势 冲压发动机中,GAP推进剂在低压条件下的燃烧性能差 推进剂在低压条件下的燃烧性能差。 冲压发动机中,GAP推进剂在低压条件下的燃烧性能差。为了 改善燃烧性能, 改善燃烧性能,可以通过添加弹道改良剂或者燃速调节剂来改 变压强对GAP燃烧性能的影响,从而获得较好的燃烧性能。 GAP燃烧性能的影响 变压强对GAP燃烧性能的影响,从而获得较好的燃烧性能。
展望
叠氮基参与的1 叠氮基参与的1,3一偶极环加成反应就在药物合成、分 一偶极环加成反应就在药物合成、 子印迹、超支化聚合物制备、 子印迹、超支化聚合物制备、纳米材料的修饰等众多领域引起 了国内外科学家的重视。 了国内外科学家的重视。 这类反应( 一偶极环加成反应)可生成三唑、 这类反应(1,3一偶极环加成反应)可生成三唑、四唑 类高氮化合物。而唑类化合物的环结构中含高能N 类高氮化合物。而唑类化合物的环结构中含高能N—N、c—N、 键等,使化合物具有高的正生成焓; N—N键等,使化合物具有高的正生成焓;而且其分子中的氮原 子有利于增加密度,氧平衡值高,可产生更多气体, 子有利于增加密度,氧平衡值高,可产生更多气体,火焰温度 共轭体系(给电子共轭,降低体系电子云密度) 低;大π共轭体系(给电子共轭,降低体系电子云密度)则有利 于提高分子的稳定性。 于提高分子的稳定性。 这些特点正是新一代含能材料所要求的。 这些特点正是新一代含能材料所要求的。目前国内外各 研究机构均在一系列 唑系化合物中 寻找能量密度高且安全性 能好的第四代含能材料——高能量密度材料。 ——高能量密度材料 能好的第四代含能材料——高能量密度材料。 这就为叠氮基参与的1,3一偶极环加成反应在含能材料方 面的应用提供了广阔空间。
部分参考文献
[1]Kolb Hartmuth C,Finn M G, Sharpless K B.Click chemistry:diverse chemical function from a few good reactions[J].Angew Chem Int Ed,2001,40:2004-2021.. [2] 李娟,段明,张烈辉等.点击化学及其应用[J].化学 进展,2007,19(11):1784-1760. [3] Talawar M B,Sivabalan R,Mukundan T, et a1.Environm entally compatible next generation green energetic materials(GEMs)[J].Journal of Hazardous M aterials ,2009,161:589-607.
通过炔丙醇与叠氮基团反应可以将三唑环引入到低分子量 GAP增塑剂分子中 实现GAP三唑化合物的安全批量生产, 增塑剂分子中, GAP三唑化合物的安全批量生产 GAP增塑剂分子中,实现GAP三唑化合物的安全批量生产,下图 GAP与炔丙醇反应后得到的两种GAP三唑聚合物异构体结构 与炔丙醇反应后得到的两种GAP三唑聚合物异构体结构。 为GAP与炔丙醇反应后得到的两种GAP三唑聚合物异构体结构。
新浪微博 @无敌的面包
三唑化合物具有较高的生成热(+272 GAP相 三唑化合物具有较高的生成热(+272 kJ/mol ),与GAP相 比具有较好的机械性能、热稳定性和更高的燃速, 比具有较好的机械性能、热稳定性和更高的燃速,可以从结构 上对GAP高分子预聚体进行改性来解决这个问题。 GAP高分子预聚体进行改性来解决这个问题 上对GAP高分子预聚体进行改性来解决这个问题。
常用的使含能叠氮黏合剂进行固化的交联剂
季戊四醇三丙烯酸酯(PETA) 1,6一己二醇二丙烯酸酯 (HDDA) 1,6一己二醇二丙炔酸酯 (HDDP)
采用叠氮基与碳碳双键、二键的1,3一偶极环加成反应 (1,3一dipolar cycloaddition)在叠氮推进剂中的应用。
叠氮基与碳一碳双键、 叠氮基与碳一碳双键、碳一碳三键或碳一氮 三键的1 一偶极环加成反应,通常有很多优点, 三键的1,3一偶极环加成反应,通常有很多优点, 如反应模块化、高产率、立体选择性、 如反应模块化、高产率、立体选择性、反应条 件简单、后处理简单等。 件简单、后处理简单等。 在这类反应中,叠氮化物与炔烃的化学势能都很 高(热力学不稳定),反应生成三唑环时可以放出大量 热量(大于1 88 kJ /mol ),同时三唑环较叠氮基与 端烯烃反应得到的三唑啉稳定。
[3+2]环加成(1,3-偶极环加成) 环加成 偶极环加成) 偶极环加成
cycloaddition)是发生在1,3 1,3(1,3-dipolar cycloaddition)是发生在1,3-偶极体和 1,3烯烃、炔烃或相应衍生物之间的环加成反应, 烯烃、炔烃或相应衍生物之间的环加成反应,产物是一个五元 杂环化合物。烯烃类化合物在反应中称亲偶极体。 杂环化合物。烯烃类化合物在反应中称亲偶极体。德国化学家 Huisgen首先广泛应用此类反应制取五元杂环化合物 首先广泛应用此类反应制取五元杂环化合物, Rolf Huisgen首先广泛应用此类反应制取五元杂环化合物,因 此它也称为Huisgen反应。 Huisgen反应 此它也称为Huisgen反应。 1,3-偶极环加成反应与狄尔斯-阿尔德反应有些相似。 1,3-偶极环加成反应与狄尔斯-阿尔德反应有些相似。 根据前线轨道理论,基态时1,3 偶极体的LUMO 1,3LUMO和亲偶极体的 根据前线轨道理论,基态时1,3-偶极体的LUMO和亲偶极体的 HOMO,以及基态时1,3 偶极体的HOMO和亲偶极体的LUMO 1,3HOMO和亲偶极体的LUMO, HOMO,以及基态时1,3-偶极体的HOMO和亲偶极体的LUMO,都是 为分子轨道对称守恒原理所允许的,因此反应可以发生。 为分子轨道对称守恒原理所允许的,因此反应可以发生。1,3偶极环加成与Diels-Alder反应类似,具有高度立体选择性。
相关文档
最新文档