基于图像预处理的二维码识别技术的研究概要

基于图像预处理的二维码识别技术的研究概要
基于图像预处理的二维码识别技术的研究概要

基于图像预处理的二维码识别技术的研究

摘要:随着计算机科学技术的发展,自动识别技术得到了广泛的应用。在众多自动识别的技术中,条码技术已经成为当今主要的计算机自动识别技术之一。为解决条码信息容量有限的问题,九十年代以来出现一种新的条码——二维码。

二维码是指在平面二维方向上,使用某种特定的几何图形按一定规律分布的黑白相间的,用以记录信息的符号。在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化等特点。

二维码主要分为两大类:一是堆叠式是二维码,其主要代表是pdf417;二是矩阵式二维码,主要包括QR码和Data Matrix码。在现代商业活动中,二维码以其低成本、快速识读、含有大量信息而广泛应用于各个行业,如:产品防伪/溯源、广告推送、网站链接、数据下载、商品交易、定位/导航、电子凭证、车辆管理、信息传递、名片交流、wifi共享等,人们通过手机二维码的扫描软件就可以轻松获得二维码中所储藏的信息。

对QR码进行识别需要使用采集设备采集的图像,但图像的采集过程中由于受到各种因素(如光照不均匀、拍摄角度、二维码有褶皱等)的影响,可能导致二维码图像背景有各种噪声,收到的图像可能存在几何畸变或者图像有阴影,从而导致识读设备很难识读,给解码带来相当大的困难。因此,如何对收集到的图像进行适当的去噪和校正已成为二维码识别的关键问题[1]。

本文主要针对异常QR码以及Data Matrix码的识别进行描述,先表明二维码识别要解决的问题、任务和框架,并对现有方法进行阐述,最后讨论二维码识别技术仍需解决的问题,并展望看其未来研究方向。

1.二维码识别的概念框架

随着二维码的广泛使用,二维码被广泛认知,当人们遇到二维码扫描失败的时候,对其产生的影响也是巨大的,人们会怀疑是不是产品是假的,或者是有诈骗信息,但其主要问题可能是:

1)二维码的扫描不够精确;

2)不是真的二维码图形;

3)更新的条码种类未被录用到扫描软件中;

4)二维码图案被破坏,或没有处于理想状态下;

上述问题只是二维码不能识别的部分原因,就上述问题,还没有某一款软件或产品能够同时解决上面所有的问题,由此,二维码的识别过程中所要完成的主要任务,即在用二维码软件扫描二维码时,先对其图案进行图像的预处理,使其符合各二维码的种类规范,然后再对其进行读取。

基于图像预处理的二维码识别的基本流程包括:图像灰度化、图像滤波、光照均衡化、图像分割、图像二值化、边缘检测、图像定位、图形旋转,失真校正等。

本文主要总结针对二维码图形预处理的方法,以期能够提高二维码的识别度。

2. 二维码条码

2.1 QR码简介

QR码是快速识别矩阵码(quick response code)的简称,最早由日本DENSO公司在1994年9月推出,我国于2000年底颁布了QR码的国家标准。QR码符号呈正方形,由空白区、功能图形区、数据图形区组成。功能图形区又分为位置探测图形、校正图形、格式信息、版本信息、定位图形等不同的图形形式,如图1 所示。

各部分图形都由深色模块(代表二进制1)或浅色模块(代表二进制0)组成,位置清晰,功能性强,有利于进行图像处理和识别[2]。根据编码数据量的多少,QR码可以分为40个版本,从版本1到版本40,符号容量越来越大,相应的图形所占的面积也增大,每增大一个版本,符号图像的每边就多出4个模块。QR码有较强的数据容错能力,使用Reed —Solomon码进行查错控制。根据需要,可设置L、M、Q、H四个纠错等级,分别可恢复传输或识读出错的7%、15%、25%、30%的码字信息。详见文献[3]3-10,[4]93-95。

QR码的基本特点:

①识读速度超高;

②全方位读取;

③能够有效编码中国汉字和日本汉字。

图 1 QR码的符号结构

2.2 Data Matrix的简介[4]

Data Matrix二维码(DM码)是由美国国际资料公司于1989年发明的,DM是矩阵式二维条码,其发展的初衷是在较小的标签上嵌入更多的资料信息。DM的最小尺寸是目前条码中最小的,尤其适用于小零件的标识,直接印刷在实体上。DM分为ECC000—ECC140和ECC200两种类型,ECC000—ECC140具有多种不同等级的错误纠错功能,而ECC200则通过Reed-Solomon纠错算法产生多项式计算出错误纠错码,不同尺寸的ECC200符号应有不同数量的错误纠错词。由于DM只需读取资料的20%即可精确辨认,因此很适合在条码容易受损的场合,例如在暴露于高热、化学剂清洗、机械腐蚀等特殊环境的零件上。

DM码最大特点就是存储效率高,因此被广泛应用于标示集成电路、药品等小件物品。如图2所示,DM码看起来像是一个由黑白两种颜色组成的点阵组合,每一个相同大小的黑色或白色方格成为一个数据单位。矩阵中的1、0就是DM的黑白两色小方格,及数据单位。

图2 DM码示例

每个DM码符号由规则排列的房型模组组成,如图3所示。其中,(a)是一个完整的DM码;(b)是DM码寻边区L型实心边界;(c)是DM码寻边区的反L型虚线边框;

(d)是数据区,包含被编码的有用信息;(e)是结构链接情况下的DM码。DM码看起来

像一个由深浅颜色组成的国际象棋棋盘,每一个相同大小的黑色或白色方格,分别对应于二进位0或1,被称为数据单位。DM符号就是由许多这样的数据单位组成。在寻边区外层有宽度为一个数据单位的静区,静止区的主要作用为将二维条码与其他的背景信息隔离。寻边区是“棋盘”的边界,包括L型的实心边界和反L型的虚线边界,只用于定位和定义数据单位大小,而不含有任何编码信息。被寻边区包围的数据区则包含着编码信息,是对待编码的符号,包括数字、字母和汉字等按照一定的编码规则生成的。

值得指出的是;寻边区是DM的边界,主要用于限定DM码的物理尺寸,定位和符号失真。反L型的虚线边界同样主要用于限定符号的单元结构,但也能帮助确定物理尺寸及失真。图(e)是结构链接的DM码,中间一个黑白交替的十字形称为铁路线,在取样时需要利用它以提高识别率。

图3 DM的符号结构

3. 图像预处理

二维码的识别是通过将采集到的图像通过数学和图像的方法,尽可能地将其中所容纳的信息恢复出来的过程,但无论是从什么仪器所采集的图像都不可避免地会和原图像有所差异。如果图像采集过程中存在各种噪声、模糊、光照不均、畸变,甚至是图像部分区域的沾污,在识别之前都需要进行图像的预处理,才能尽可能保证条码的读取顺利。

二维码的预处理包括:图像的灰度化、图像的增强、图像滤波处理、光照不均处理、二值化、边缘检测、图像的定位、图像校正和畸变校正等。下面就以上图像处理的现有方法进行总结和比较。

3.1 图像灰度化

一般情况下,由智能手机或相机的摄像头采集到的图像信息通常是彩色图像,以常见的RGB格式彩色图像数据来看,每个像素点是由Red、Green、Blue三种颜色的数据信息描述。但在二维码的解码中只需要正确描述出条状区域和空白区域即可,所以进行灰度化的处理,是为了将影响不大的色彩信息去掉,不仅可以降低存储空间,还可以增加解码的速度。

灰度化的主要方法有[5]:

最大值法:在像素点的三个色彩分量信息中,选出数值最大的一项作为该像素点的最大值。这种方法得到的灰度图像亮度将会比较大。

平均值法:将像素点三个色彩分量信息相加求出平均值,将该平均值视为灰度值。

这种方法得到灰度图像比较柔和但会丢失部分图像边缘信息。

加权平均法:将像素点三个色彩分量信息按照一定的权重相加求出平均值,该平均值被作为像素点的灰度值。其转换公式如下:

++(1)W R G B

=0.2990.5870.114

这种方法得到的图像效果最好,几乎所有的灰度化过程都采用这样的方法。

(a)彩色图像(b)灰度化图像

图4 二维码灰度图像效果图

3.2 图像滤波

由于CMOS或CCD摄像头的光学或电学特性,在图像采集过程中不可避免地会采集到噪声,这些噪声一般为椒盐噪声或斑点噪声,在二值化等进一步操作之前,需要将噪声除去。

常用的滤波方法分为线性滤波和非线性滤波[5]。线性滤波是指利用一定的变换关系

对图像中每个像素点的灰度值做变换,线性算子的计算方式不同,线性滤波的算法也就

不同。非线性滤波多采用取绝对值、置零或分区域变换等非线性的方法。

通过分析采集到的二维码图像可知其引出的噪声一般为高斯噪声,利用低通线性滤

波可以对其进行很好地去除,但缺点是可能会使边缘信息变得模糊,这对之后的二值化

操作具有很大的影响,会因为边缘模糊将原本白色空白间隔的区域二值化为黑色条状区

域,直接导致“1”和“0”的误判,在解码过程中有非常大的可能是最终结果出错。

而非线性低通滤波方法——中值滤波可以很好地避开这点,中值滤波是将待处理的

像素点以及以其为中心的小窗口内的像素点的灰度值按照大小进行排列,取中间值代替

需要处理像素点的灰度值。中值滤波的数学表达式如下:

)(

,{(,)}N W x y Med f x y = (2) 优点是:中值滤波对椒盐噪声、斑点噪声去除效果非常好,且由于其处理算法的特

殊性使得图像中的阶跃序列和周期序列不会被滤除,很好地保存了二维码的边缘信息。

缺点是:虽然方法简单易实现,但有时会失掉图像中的细线和小块的目标区域。

对于中值滤波,一般采用5*5的窗口进行滤波,效果图如图5所示:

图5 中值滤波效果图

3.3 光照均衡化

由于二维码特点和摄像头等相关缺点知,光照均衡化在二维码前期处理当中起到至

关重要的作用。非均衡化的光照很容易使二值化过程产生误差,将本来是白色空白区域

的位置二值化为合适条状区域,从而影响解码正确率。

目前已有很多学者提出各种光照均衡算法[5],如直方图修正法,Retinex 增强,童

泰滤波,对数变化和梯度增强等,但是这些算法普遍存在计算时间长,运用大量对数运

算,丢失图像边缘细节等问题。

随着数学形态学的发展,诞生出许多基于数学形态学的去光照算法。

Jimenez-Sanchez等提出的不均匀光照校正算法[8],Chen研究出的基于数学形态学的光照均衡方法。这些方法优点:能够获得很好地效果。缺点是:当分块较大的时候,处理后的图像块效应会分成明显。针对此缺点,Xu提出利用大尺度的结构元素对原始图像进行白TOP-HAP变换来去除光照影响[9-10],优点是:实现起来较简单,大多数情况下的处理效果令人满意。缺点是:因为仅仅使用单一的结构元素,所以对复杂光照处理效果欠佳。张萌提出利用数学形态学实现的基于多结构元素的不均衡光照校正算法,其核心思想即:选用大尺度的多结构元素对图像进行白TOP-HAP变换,之后利用熵理论对图像进行融合,得到最总图像。优点:与传统算法相比较,算法过程简单,无复杂数学运算,充分保留图像细节,去光照效果好,实验对比如图6。

(a) 原图像(b) 去光照后的图像

图6 去光照处理效果图

3.4 图像的二值化

由于二值图像易得到图像的特征信息,所以滤波后的图像都要进行二值化。所谓二值化就是把灰度图像经过一定的变换关系转化为只有黑色和白色两种颜色的图像信息。在二值化的过程中最重要的就是阈值的选择,阈值是指选取一个灰度值,将小于灰度值的像素置为最小灰度即黑色,大于灰度值的像素置为最大灰度值即白色。

根据二值化中对阈值的选取方法不同,二值化算法主要全局选取阈值法和局部区域选取阈值法和动态阈值法[11]。

全局阈值分割方法是指在二值化的过程中只使用一个固定阈值的方法,此法对于质量较好的图像有效。包含的方法有:方差阈值分割法、最大熵法、模糊阈值分割法、共生矩阵分割法、区域生长法等。优点是:应用广泛,算法简单,对于对比度较高、照度均匀、无阴影的图像,能够达到很好地分割效果。缺点是抗噪能力不强,对目标和背景灰度有梯度变化的图像效较差。

局部阈值分割法:将原始图像划分为较小的图像,并对每个子图像选取相应的阈值。优点:能够适应较复杂的情况,抗噪能力强,对一些用全局阈值法不易分割的图像有较好的效果。缺点是:算法的复杂度增加,速度慢,难以适应实时性的要求;容易受到背景不均匀性的影响,在某些情况下会产生失真。常用的方法有灰度差直方图法、微分直方图法。

动态阈值法:其阈值确定不仅取决于改像素的灰度值及周围像素的灰度值,而且与像素位置有关。

事实上,专门适用于二维码的图像二值化比较少[12]。针对DM解码,大部分采用的是现有的算法,如Ostu法进行处理。杨硕[13等提出一种DM码算法的二值化算法。它首先根据Kittler算法找到图像发生光照不均的区域,然后改进Bernsen算法的处理过程、调整参数、削弱原算法的伪影问题,并用改进后的算法处理光照不均的部分,具有较好的稳定性和自适应性。缺点是:该算法的计算量较大,实时性受到影响。

3.5 边缘检测

边缘检测就是检测条码的边界,将图像与周围非相关信息区别开来。图像的边缘是指图像灰度上有明显突变的部分,基本思想是:利用边缘增强算子,突出图像中的局部边缘,然后定义像素的“边缘强度”,通过设置阈值的方法提取边缘点集[11]。

传统的图像边缘检测方法基本上都可以概括为对图像的高频分量进行增强,微分计算理所当然成为边缘检测与提取的重要技术手段。最早提出的一阶边缘检测算子有Robert算子,以及在此基础上发展出来的Sobel算子,Prewitt算子和Kirsh算子等,这些算子会在图像的边缘附近区域发生较宽的响应,这样检测时就需要细化的过程,从而影响图像边缘的精确定位。之后提出二阶边缘检测算子如Laplacian算子。以LOG算子和Canny算子为代表的最优算子则是经过微分算子进行发展和优化产生的。

随着科学技术的发展,借助于各种新的理论研究边缘检测的方法被提出并应用。如基于形态学的边缘检测算子,借助统计学的检测方法、利用神经网络的检测技术、利用模糊理论的检测技术、利用信息论的检测技术、利用遗传算法的检测技术、基于分形特征的边缘检测技术等[14]。

3.6 图像定位

由设备采集到的图像一般包含二维码图像和背景,因此需要将整个二维码从整个图像中分离出来。具体来说:QR码中需要确定定位图形,DM码的定位则是通过L型的寻边区决定的。Radon和Hough变换[14]是常用的两中直线提取方案。可以用这两种算

法确定条码的旋转角度和坐标。

Randon 变换的几班原理:对一个平面内沿不同的直线(直线与原点的距离是d ,

方向角为θ)对f(x,y)做线积分,得到的像F(d,θ)就是函数f 的Randon 变换。标准的

Randon 变换的格式如下:

()(cos sin ,sin cos )R x f x y x y dy θθθθθ+∞

-∞=

-+? (3)

用求出的最大积分的只,求得的对应角度θ,就是二维码的旋转角度。此变换求得

的旋转角度具有提高算法抗噪声性的优点,但由于受到设定的条码的旋转角度范围和步

进角度的限制,算法的运算速度将受到一定影响。

Hough 变换基本原理:利用图像二维空间和hough 参数极坐标空间的点-线对偶关

系,把图像二维空间中的检测问题巧妙地转换到极坐标参数空间。在参数空间再进行简

单的累加统计,然后在hough 参数空间寻找累加器最大值的方法来检测图像二维空间中

的直线。Hough 变换的优点是:受噪声和曲线间断的影响较小,对于形状为正方形的

QR 码,尤其具有一定的优势。

3.7 图像校正

图像的校正就是对由于各种因素导致失真的图像进行恢复原貌的操作。以QR 码为

例,其几何校正的基本方法是寻找QR 码的3个寻像图形,根据寻像图形确定四个控制

点,然后利用四个控制点进行图像的校正。但是当图像失真严重时,寻像图像难以寻找,

以至无法识别。

得到四个控制点的算法[15]:

① 把二值化的图像灰度值取反 ,得到图7(a)。

② 对 图7(a)进行多次的膨胀腐蚀,得到中间挖空的图像图7(b)。

③ 然后对图7(b)进行边缘检测,得到图7(c)。

④ 对图7(c)进行hough 变换,找出四条边线,如图7(d),然后求出四条边线

的交点,得到四个控制点。

(a) 灰度化后的图像(b) 多次膨胀腐蚀后的图像

(c) 边缘检测后的图像(d) 提取四条边线的图像

图7 四个控制点的确定过程

然后运用二维图像的6参数投影变换[15,16,17],可以将几何失真的图像校正。如图8所示。

图8 二维图像投影变换

得到校正后的像素坐标后,再进行双线性插值,可直接得到校正后的图像。值得注意的是:几何校正之后的图像并非严格意义上的原图像,仍然存在少量的失真。如图7中的图像,失真最少的是左下角的部分,失真最大的是右上角的部分。如果使用8参数的仿射变换,校正的效果会更好,但其计算量过大,不易处理。

3.8 图像的采样

图像的取样就是对定位、校正后的图像进行解码得到其编码信息的过程。以DM为例,其主要方法是:通过定位后的DM码,得到版本号确定DM尺寸,并以此为依据画网格,得到每个小格内代表的位是0还是1,就可以得到DM码的点阵式数据流,经简单的译码就可以还原DM码的内容。表1列举DM码的版本号与分区个数之间的关系。

表1 DM码的版本号与分区个数之间的关系

版本号范围符号分块的个数

1-9 1

10-15 4

16-21 16

22-24 36

事实上,符号分块的个数越多,基于分块的网格取样在提高识别率上的效果越好。

4.存在的问题域研究展望

4.1 存在的问题

前面介绍了基于图像预处理的二维码识别的基本流程以及现有的各种,比较之下回去发现,各种方法均有好处,相对的也都有缺点。从目前研究现状来看,仍然存在的问题是:对非正常图像的识别率不高,也就是说没有一种通用的办法能够在识别QR码的同时识别所有的DM码,且识别率达到100%。

4.2 研究展望

图像预处理技术是一门多学科的综合研究问题,涉及计算机视觉、信号处理、计算机图形学、机器学习、成像传感器、模式识别等,而二维码是应用很广泛的“商品”,对各种状态下的二维码的识别,会给社会各界带来非常巨大的影响。未来对此技术的研究还可以集中在以下方面:

1)建立统一的图像预处理技术理论研究

图像预处理的方法经过几十年来科学理论的沉淀以及后人不断的创新,其数量已经很多,但在这些理论的基础上,整合出一套适用于各种码制的处理方法是现在

图像处理领域急需解决的事情。

2)实现自动化与多层次的图像处理

一个理想的图像预处理系统应该是全自动的,并且能够提供多层次的分析。但是目前提出的基本都是分阶段,半自动化的,需要人为对其方法进行选择,判断。

未来的图像处理如果能够通过机器的智能学习,通过其自主的图像处理,自动识

别二维码或图像。将是一个很好的未来。

5. 总结

面向图像预处理的二维码识别在二维码日益广泛的应用中会变成研究的主流,如何找到充分、可靠、有说服力的方法则是未来研究的关键。本文主要介绍了二维码图像处理的基本流程,并对当前主要的处理办法进行分析、比较和探讨。该领域还存在在大量的问题和挑战,深入的研究将可以获得更多原创性的研究成果。

参考文献

[1] 黄宏博,穆志纯.基于图像处理的复杂条件下手机二维码识别[J].北京信息科技大学学报,2011,26(5):40~44.

[2] 中国物品编码中心.GB/T 18284 —2000,快速响应矩阵码[S]. 北京:中国标准出版社,2001.

[3] 黄宏博,肖峻岭,佟俐鹃. 基于Reed-Solomon算法的QR码纠错编码[J].计算机工程,2003.

[4] 邹沿新.Data Matrix二维条形码图像预处理及识别技术研究[D].湖南.湖南大学.2009.

[5] 张萌.基于二维条码图像的光照均衡VISI设计[D].四川.电子科技大学.2013.

[6] 李世进.数字图像的平滑处理[J].湖南科技学院学报.2008.1(29):23-24.

[7] S.J.KO,Y.H.Lee.Center Weighted Median Filter and their Application to Image Enhancement[J].IEEE Trans.circ.syst,1991,vol,38:984-933.

[8] A.R. Jimenez-Sanchez, J.D.Mendiola-Santibanez, I.R.Terol-Villalobors et. Al.Morphological background detection and enhancement of image with poor lighting[J].IEEE Trans,Image processing,vol.18(3):613~623.

[9] G.B.Xu, Zh.B.Su, J.Wang et Al.An adaptive morphological filter based on multiple structure and multi-scale element[C].In Proc.Conf. on Intelligent Information Technology Application, 2008,399~403.

[10] B.Chen, Z.Liu, H.Xu.The Skew Correcting Method for Two Dimension Bar Code Based on Least Square Methods[C].Digital Image Processing.2009,181~184.

[11] 许辉.二维条码QR码的分析和编码设计[D]北京.北京邮电大学.2007.

[12 邹沿新,杨高波. Data Matrix二维条形码解码器图形预处理研究[J].计算机工程与应用学报,2009,45(34):183~185.

[13] 杨硕,尚振宇.一种新的二维条码图像二值化算法[J].昆明理工大学学报,2008,33(1):43~46.

[14] 路阳.基于二维条码QR码的编码及图像处理技术[D].山东.山东太原科技大学.2012.

[15] 欧福超.基于图像处理的QR码图像预处理的研究[D].山东.山东大学.2014.

[16] Eisaku Ohbuchi,Hiroshi Hanaizumi,Lim Ah Hock.Barcode Readers using the Camera Device in Mobile Phones[J].IEEE,10.1109/CW.2004, 260 - 265.

[17] 安玮,李宏,徐晖,孙仲康.模式识中的透射变换与仿射变换[J].系统工程与电子技术.1999.21(1):56~57.

数字图像处理系统毕业设计论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

数字图像处理考试

1. 对下列信源符号进行Huffman 编码,并计算其冗余度和压缩率。 符号 a1 a2 a3 a4 a5 a6 概率 0.1 0.4 0.06 0.1 0.04 0.3 原始信源 信源简化 符号 概率 1 2 3 4 a2 0.4 0.4 0.4 0.4 0.6 a6 0.3 0.3 0.3 0.3 0.4 a1 0.1 0.1 0.2 0.3 a4 0.1 0.1 0.1 a3 0.06 0.1 a5 0.04 从最小的信源开始一直到原始的信源 编码的平均长度: 压缩率:13 1.3642.2 R avg n C L ==≈ 冗余度:11110.26691.364D R R C =- =-≈ (0.4)(1)(0.3)(2)(0.1)3(0.1)(4)(0.06)(5)(0.04)(5) 2.2/avg L bit =+++++=()符号

1. 简述灰度分辨率、空间分辨率与图像质量的关系。: 空间分辨率是看原图像转化为数字图像的像素点数,越多图像质量越高;灰度分辨率,即每一个像素点的灰度级数,灰度级越大,图像越清晰. 2. 简述采样和量化的一般原则: 空间坐标的离散化叫做空间采样,而灰度的离散化叫做灰度量化。图像的空间分辨率主要由采样所决定,而图像的幅度分辨率主要由量化所决定。 3. 图像锐化与图像平滑有何区别与联系?: 图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;图象平滑用于去噪,对图象高频分量即图象边缘会有影响。都属于图象增强,改善图象效果。 4. 伪彩色增强与假彩色增强有何异同点?: 伪彩色增强是对一幅灰度图象经过三种变换得到三幅图象,进行彩色合成得到一幅彩色图像;假彩色增强则是对一幅彩色图像进行处理得到与原图象不同的彩色图像;主要差异在于处理对象不同。 1. 对于椒盐噪声,为什么中值滤波效果比均值滤波效果好?:均值滤波器是一种最常用的线性低通平滑滤波器,可抑制图像中的加性噪声,但同时也使图像变得模糊;中值滤波器是一种最常用的非线性平滑滤波器,可消除图像中孤立的噪声点,又可产生较少的模糊。一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。因此,滤除图像中的椒盐噪声采用中值滤波。 2.什么是区域?什么是图像分割?:图像分割就是把图像分成若干个特定 的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 3.写出颜色RGB模型转换到HIS模型的变换公式;并说明HSI模型各分 量的含义及取值围对应的颜色信息。书上 4.灰度图像:当点足够小,观察距离足够远时,人眼就不容易分开各个小 点,从而得到比较连续,平滑的灰度图像。 5.GIF格式:GIF格式是一种公用的图像文件格式,它是8位文件格式, 所以最多只能存储256色图像,不支持24位的真彩色图像。GIF文件中的图像数据均经过压缩,采用的压缩算法是改进的LZW算法,所提供的压缩率通常在1:1到1:3之间,当图像中有随机噪声时效果不好

基于图像预处理的二维码识别技术的研究概要

基于图像预处理的二维码识别技术的研究 摘要:随着计算机科学技术的发展,自动识别技术得到了广泛的应用。在众多自动识别的技术中,条码技术已经成为当今主要的计算机自动识别技术之一。为解决条码信息容量有限的问题,九十年代以来出现一种新的条码——二维码。 二维码是指在平面二维方向上,使用某种特定的几何图形按一定规律分布的黑白相间的,用以记录信息的符号。在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化等特点。 二维码主要分为两大类:一是堆叠式是二维码,其主要代表是pdf417;二是矩阵式二维码,主要包括QR码和Data Matrix码。在现代商业活动中,二维码以其低成本、快速识读、含有大量信息而广泛应用于各个行业,如:产品防伪/溯源、广告推送、网站链接、数据下载、商品交易、定位/导航、电子凭证、车辆管理、信息传递、名片交流、wifi共享等,人们通过手机二维码的扫描软件就可以轻松获得二维码中所储藏的信息。 对QR码进行识别需要使用采集设备采集的图像,但图像的采集过程中由于受到各种因素(如光照不均匀、拍摄角度、二维码有褶皱等)的影响,可能导致二维码图像背景有各种噪声,收到的图像可能存在几何畸变或者图像有阴影,从而导致识读设备很难识读,给解码带来相当大的困难。因此,如何对收集到的图像进行适当的去噪和校正已成为二维码识别的关键问题[1]。 本文主要针对异常QR码以及Data Matrix码的识别进行描述,先表明二维码识别要解决的问题、任务和框架,并对现有方法进行阐述,最后讨论二维码识别技术仍需解决的问题,并展望看其未来研究方向。 1.二维码识别的概念框架 随着二维码的广泛使用,二维码被广泛认知,当人们遇到二维码扫描失败的时候,对其产生的影响也是巨大的,人们会怀疑是不是产品是假的,或者是有诈骗信息,但其主要问题可能是: 1)二维码的扫描不够精确; 2)不是真的二维码图形;

简单数字图像处理系统

数字图像课程设计简单数字图像处理系统 function varargout = untitled(varargin) % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @untitled_OpeningFcn, ... 'gui_OutputFcn', @untitled_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before untitled is made visible. function untitled_OpeningFcn(hObject, eventdata, handles, varargin) %界面初始化函数 setappdata,'I',0); % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to untitled (see VARARGIN) % Choose default command line output for untitled = hObject;

(完整版)二维码总体分析报告

二维码总体分析报告 一、国际国内二维码行业 世界领先: 1.symbol世界领先的移动数据处理及无线信息系统制造商,其综合实力在自动识别行业最强, 2004 年公司销售额达到17.3亿美元。Symbol在激光式阅读器领域居全球领先位置。 2.HHP多年致力于IMAGE 式阅读器的研发,是这一领域的领导者。 国内领先: 1.新大陆是国内唯一拥有核心技术的自动识别公司。国内一些知名的IT 界的大企业,都曾经有 过大量投入,如联想、四通、南开戈德等,但是最终都没有实现核心技术的自主化。目前,国内有上千家的条码或自动识别企业,但基本上都是系统集成商,系统集成商的盈利模式是:代理各个设备商的数据采集设备和底层软件,然后提供各种行业的数据采集解决方案。公司在一维条码采集器产品方面形成了以自主知识产权为主导的、适应各种主流接口的便携式、枪式条码采集器的产品系列。并且逐步向通用操作系统、适应无线通信和各种主流接口的方向不断发展。开始向东南亚和台湾市场推进。更具特色的是,新大陆的便携式主要产品内置了GPRS、CD-MA 等广域无线通信模块,从条码采集与数据库的实时性具有更大的优势。 二、二维码识读设备市场分析 条码技术主要应用在零售、府部门、运输、物流、仓储、制造、医疗卫生,基本上使用在各个领域。一维条码仍是当今应用的主流,占了条码采集器市场的80%左右。但二维码逐步取代一维条码是一个趋势,业内人士认为:现在一维条码的市场就是将来二维码的市场,但由于一维条码已经在各行业大量使用,要更换这些设备需要巨额成本,在它使用价值完全散失之前,二维码的对其替代只能是逐步的。 二维码在对数据有较大需求的领域应用正逐步获得应用,如诺基亚所有新出厂的手机的内部、电池上和充电器上都已经标识了二维码。 二维码技术与RFID 技术相比,最大的优点在于二维码与一维条码技术一样,基本上是无成本的(基本上就是二维码的印刷成本),RFID 应用推广的瓶颈并不在于识读设备,而在于芯片的成本,据权威人士预测在芯片成本降低到 1 美分之前,RFID 技术是无法取代条码技术的,因此二维码技术与RFID 技术适用在不同的应用场合。 三、国内二维码厂商调研 1.新大陆 A.NLS-HR200条码扫描器: HR200系列手持式数据采集器产品拥有杰出快速的条码识读能力,它采用了752×480像素CMOS、具有国际领先水平的新大陆智能图像识别系统(包括了光学系统、图形数字化、图形处理和解码软件及其电路集成),能识别目前市场上所有主流应用的符合国际标准的二维码及一维码,包括最新颁布的国标码:汉信码。HR200系列产品外形美观、手感良好、接口丰富、应用灵活,并可根据用户需要提供蓝牙无线通讯功能。HR200是政府机关公文流转、交通车辆管理、制造、医疗卫生、仓储管理、邮政、证卡单证等行业应用的理想选择。 B.NLS-HR103手持式条码扫描器:

数字图像处理系统论文

数字图像处理系统论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

二维码的生成与识别技术

二维码的生成与识别 二维码 二维码又称QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型。 二维条码/二维码(2-dimensional bar code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。 二维码的结构 1、版本信息:version1(21*21),version2,...,version40,一共40个版本。版本代表每行有多少模块,每一个版本比前一个版本增加4个码元,计算公式为(n-1)*4+21,每个码元存储一个二进制0或者1。1代表黑色,0表示白色。比如,version1表示每一行有21个码元。 2、格式信息:存储容错级别L(7%),M(15%),Q(25%),R(35%)。容错:允许存储的二维码信息出现重复部分,级别越高,重复信息所占比例越高。目的:即使二维码被图标遮住

一部分,一样可以获取全部二维码内容。有图片的二维码,图片不算二维码的一部分,它遮住一部分码元,但还是可以扫描到所有内容。 3、码字:实际保存的二维码信息,和纠错码字(用于修正二维码损坏带来的错误,就是说当码元被图片遮住,可以通过纠错码字来找回)。 4、位置探测图形、位置探测图形分隔符、定位图形,校正图形:用于对二维码的定位。位置探测图形用于标记矩形大小,3个图形确定一个矩形。定位符是因为二维码有40个版本尺寸,当尺寸过大后需要有根标准线,不然扫描的时候可能会扫歪。 具体的二维码结构如图1-1所示。 图:1-1二维码结构示意图

数字图像处理车牌识别课程设计matlab实现附源代码

基于matlab的车牌识别系统 一、目的与要求 目的:利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,了解了基本程序设计方法,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,并把所学的知识系统、高效的贯穿到实践中来,避免理论与实践的脱离,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。 要求: 1.理解各种图像处理方法确切意义。 2.独立进行方案的制定,系统结构设计要合理。 3.在程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时说明做适当的注释。如果使用matlab来进行开发,要理解每个函数的具体意义和适用范围,在写课设报告时,必须要将主要函数的功能和参数做详细的说明。 4、通过多幅不同形式的图像来检测该系统的稳定性和正确性。 二、设计的内容 学习MATLAB程序设计,利用MATLAB函数功能,设计和实现通过设计一个车牌识别系统。车牌识别系统的基本工作原理为:将手机拍摄到的包含车辆牌照的图像输入到计算机中进行预处理,再对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后将其逐个与创建的字符模板中的字符进行匹配,匹配成功则输出,最终匹配结束则输出则为车牌号码的数字。车牌识别系统的基本工作原理图如图1所下所示:

三、总体方案设计 车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。 为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。但由于是采用智能手机在开放的户外环境拍照,加之车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。 牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。 由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。因此,需要将拍出的车牌进行处理,在这个过程中,我采用画图工具,将汽车图像的车牌部分进行裁剪,并将车牌的蓝色部分过亮的地方颜色加深,还将车牌中的一个白色的原点抹去,另外还将车牌上的铆钉使用车牌的蓝色背景覆盖,这样分割出的字符更加准确。 车牌识别的最终目的就是对车牌上的文字进行识别。主要应用的为模板匹配方法。 因为系统运行的过程中,主要进行的都是图像处理,在这个过程中要进行大量的数据处理,所以处理器和内存要求比较高,CPU要求主频在600HZ及以上,内存在128MB 及以上。系统可以运行于Windows7、Windows2000或者Windows XP操作系统下,程序调试时使用matlabR2011a。 四、各个功能模块的主要实现程序 (一)首先介绍代码中主要的函数功能及用法:

二维码技术在物流行业中的实际应用

二维码技术在物流行业中的实际应用 绪论 随着信息技术的快速发展,条码技术也得到了大大的改进并由原来的一维码发展到了二维码。二维码从根本上改进了一维码的不足,从而更加有利于社会的发展。本文论述了二维码的技术原理、发展、应用领域及应用上存在的问题。关键词:二维码、发展、应用领域。 人们日常见到的印刷在各种商品外包装上的条形码,是普通一维条码,也就是平常所说的传统条码。这种条码自本世纪70 年代初问世以来,得到人们的普遍关注,发展十分迅速。在短短的二十多年时间里,它已广泛应用于工业、商业、交通运输业、金融、医疗卫生、仓储业、邮电及办公自动化等领域。条码的使用,极大地提高了信息处理的速度,提高了工作效率。八十年代末,出现了具有更大信息量的条码--二维码,条码技术因此出现了质的飞跃。二维码在与一维码同样的单位面积上的信息含量是一维码的近百倍,它不但可以存放数字,而且可以直接存放包括汉字在内的所有可以数字化的信息。例如文字、图片、声音、指纹等。二维码的出现是条码技术发展史上的里程碑,从质的方面提高了条码技术的应用水平,从量的方面拓宽了应用领域。在经济全球化、信息网络化、生产国际化的当今社会,作为信息交换、传递的介质,二维码技术有着非常广阔的应用前景。二维码技术作为一项新技术,逐步为银行、公安、物流等行业所采用。1999 年4 月国家经贸部专门召集有关部门会议,讨论贯彻落实二维码在我国的推广应用。 问题背景 某物流有限公司(以下简称:A 物流公司)系某有限责任公司控股的全资子公司,现已投入使用的物流中心面积达6万平方米。多年来,A 物流公司始终坚持信息化是现代物流的灵魂”,自行设计开发了ERP、WMS、第三方物流系统、二维条码、办公自动化系统(0A)、物流网站,成功地应用了温湿度自动监测技术、无线射频技术(RF)、电子标签技术、消防安保红外监控报警技术、GPS监控、业务叫号系统 等,引进了国际先进的托盘提升机、螺旋输送机、自动分拣系统等自动化物流设施,是一个集货品储存、验收养 护、物流加工、装卸搬运、集中配送和信息服务等六大功能于一体的专业化从作业现场了解到,在发货前,需通过自动分拣系统对货品进行分拣,所以,仓

基于Matlab的数字图像处理系统设计要点

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

数字图像处理代码大全

1.图像反转 MATLAB程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on; %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]); axis on; %显示坐标系 J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]的灰度拉伸为[0 1]

subplot(2,2,3),imshow(J); title('线性变换图像[0.1 0.5]'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]的灰度拉伸为[0 1] subplot(2,2,4),imshow(K); title('线性变换图像[0.3 0.7]'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 3.非线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); I1=rgb2gray(I); subplot(1,2,1),imshow(I1); title('灰度图像'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 J=double(I1);

条形码与二维码的优缺点分析

条形码与二维码的优缺点分析 什么是条形码? 条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。条形码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等许多信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到广泛的应用。条形码技术,是随着计算机与信息技术的发展和应用而诞生的,它是集编码、印刷、识别、数据采集和处理于一身的新型技术。它的种类包括有:EAN码,UPC码,UCC/EAN-128码,交叉25码,39码,以及库德巴码。各种不同种类的 UPC-E码 条形码的发展历程 最早被打上条形码的产品是箭牌口香糖。条形码技术最早产生在风声鹤唳的二十世纪二十年代,诞生于威斯汀豪斯(Westinghouse)的实验室里。一位名叫约翰·科芒德(John Kermode)性格古怪的发明家“异想天开”地想对邮政单据实现自动分检,那时候对电子技术应用方面的每一个设想都使人感到非常新奇。他的想法是在信封上做条码标记,条码中的信息是收信人的地址,就象今天的邮政编码。为此科芒德发明了最早的条码标识,设计方案非常的简单(注:这种方法称为模块比较法),即一个“条”表示数字“1”,二个“条”表示数字“2”,以次类推。然后,他又发明了由基本的元件组成的条码识读设备:一个扫描器(能够发射光并接收反射光);一个测定反射信号条和空的方法,即边缘定位线圈;和使用测定结果的方法,即译码器。 此后不久,随着LED(发光二极管)、微处理器和激光二极管的不断发展,迎来了新的标识符号(象征学)和其应用的大爆炸,人们称之为“条码工业”。今天很少能找到没有直接接触过即快又准的条形码技术的公司或个人。由于在这一领域的技术进步与发展非常迅速,并且每天都有越来越多的应用领域被开发,用不了多久条形码就会像灯泡和半导体收音机一样普及,将会使我们每一个人的生活都变得更加轻松和方便。 条形码的的运作原理 识别原理 要将按照一定规则编译出来的条形码转换成有意义的信息,需要经历扫描和译码两个过程。物体的颜色是由其反射光的类型决定的,白色物体能反射各种波长的可见光,黑色物体则吸收各种波长的可见光,所以当条形码扫描器光源发出的光在条形码上反射后,反射光照射到条码扫描器内部的光电转换器上,光电转换器根据强弱不同的反射光信号,转换成相应的电信号。根据原理的差异,扫描器可以分为光笔、红光CCD、激光、影像四种。电

二维码识别技术解析

二维码识别技术解析 当你频繁和它照面的时候,你有没有过这样的好奇:为什么用手机扫一下就会看到一个“花花世界”?二维码的颜色为什么是黑白相间的呢?这些不规则几何图形中究竟藏着怎样的“秘密”? 常见的二维码上为啥三个角上有方块,这是三个定位点,图形旋转也不影响识别 要了解二维码的原理,我们先要来好好认识一下它。现在最常见的二维码是OR 二维码(OR是一种码制),我们便以它为例。 我们看一个二维码,最先看到的当然是几何图形。这些图形中,藏了不少重要的“部件”。南京邮电大学计算机学院副教授黄海平为我们做了详细分析。 首先,OR二维码的三个“角”上有三个方块,可别小瞧这方块,它叫位置探测图形。有了这三个点,不管是从哪个方向读取二维码,信息都可以被识别。即使将二维码图形旋转,也可以识别。也许你会问,为什么不是四个角上都有方块呢?事实上,是可以设更多的点,但几何知识告诉我们,3点就可以确定一个平面,节省出的一个角可以嵌入更多信息。 另外,二维码上还有一些图形混杂在几何图形中,是肉眼看不出来的,比如定位图形和分隔符。定位图形就是图中连接三个位置探测图形之间的两根“线”,它的作用是决定二维码符号中模块的坐标,而分隔符的作用是将位置探测图形与符号的其余部分分开。也就是说,通过扫描能读取的数据信息在二维码中的位置是由定位图形和分隔符决定的。 还有两个图形肉眼也难以发现,位于左下角位置探测图形上面的是“版本信息”,每个二维码都有一个版本号,我们常说的V1.0、V2.0就是版本;包围在三个位置探测图形周边的则是“格式信息”,这指的是这个二维码采用的编码格式。 二维码为什么是黑白相间的 黑色表示二进制的“1”,白色表示二进制的“0” “我们之所以对二维码进行扫描能读出那么多信息,就是因为这些信息被编入了二维码之中。”黄海平说,“制作二维码输入的信息可以分成三类,文本信息,

数字图像处理课程设计——人脸检测与识别

: 数字图像处理 课 程 设 计 ] $

: 人脸检测与识别课程设计 一、简介 人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别是模式识别研究的一个热点, 它在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广泛的应用。人脸图像由于受光照、表情以及姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。因此, 进行人脸识别时, 所选取的特征必须对上述因素具备一定的稳定性和不变 性. 主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设计具有良好分类能力和鲁棒性的分类器. 支持向量机 (SVM ) 模式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。 本此课程设计基于MATLAB,将检测与识别分开进行。其中检测部分使用实验指导书上的肤色模型算法进行,不进行赘述。识别部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最邻近距离分类法对特征向量进行分类识别,将在后文具体表述。仿真结果验

证了本算法是有效的。 二、人脸检测 1.》 2.源码 img=imread('D:\std_test_images\'); figure; imshow(img); R=img(:,:,1); G=img(:,:,2); B=img(:,:,3); faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[],3)>15&abs(R-G)>15&R>B; ~ figure; imshow(faceRgn1); r=double(R)./double(sum(img,3)); g=double(G)./double(sum(img,3)); Y=*R+*G+*B; faceRgn2=(r>&(r<&(g>&(g<&(r>g)&g>='Boundingbox'); BB1=struct2cell(BB); BB2=cell2mat(BB1); ) figure; imshow(img); [s1 s2]=size(BB2); mx=0; for k=3:4:s2-1 p=BB2(1,k)*BB2(1,k+1); if p>mx&(BB2(1,k)/BB2(1,k+1))< mx=p; ! j=k; hold on; rectangle('position',[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j+1)],'linewidth',3,'edg ecolor','r'); hold off; end end

二维码检测标准

2D识读技术以及产品介绍——2D检测技术以及产品介绍 1、符号质量检验概览 DPM方法的范围意味着标识的外观在不同的情况 下可能有很大的差异。除了所选的标识方法,原件有不 同的颜色或形状并可以用不同的材料来制成,表面类型 有光滑的、有沟痕的、有条纹的、有条痕的或粗糙的颗 粒状。任何验证方法必须在所有的情况下提供可靠和一 致的结果。 迄今为止,DPM应用的行业标准和最终用户对于判 定标识质量没有太多的选择。ISO/IEC16022国际规范 规定了如何印刷(或标识)数据矩阵码(代码结构、符 号格式、解码算法等)。虽然16022标准原本包含了一 些质量度量,该作者从未计划用它来进行验证。这项任 务留给了5年后的ISO/IEC 15415。 因为15415的设想目标是高对比度的白色标签上 的黑色标识,它只定义了一种照明方法。验证许多DPM 标识并同时遵循改限制,就好像是让一位摄影师进入一 个暗室,并尝试不用闪光灯拍照。如果照明不合适使检 测仪抓取一个好图像,用于评估标识质量的任何度量都 没有意义。如果从垃圾就入手,你最终得到的仍是垃圾。 15415标准要求在使用前用一张显示有已知的白 度值的白色卡片对验证器进行校准(如NIST认证的校 准卡)。校准涉及调整成像系统设置(例如,相机曝光 或增益),从而使校准卡上的白度值与已知值对应。一 旦校验后,这些设置(包括照明特性)从不变化,不管是何种标识方法、材料或表面特性。另外,该类要求可以产生纸质标签可接受的图像。但是,根据标识的方法以及该元件的反射性,由DPM元件固定设置所产生的图像,在大多数情况下会曝光不足或曝光过度。 代码的验证包括分析该代码的直方图。一个8-bit相机所抓取每个图像的像素,可以为256个灰度值得任何一个。直方图形象地描述了每个可能的灰度值下,图像中的像素数所呈现出的值分布的情况。一个标识清楚的代码直方图应显示两个明显并清楚分离的峰值。没有明显的峰值,区分1和0,并将存储在代码中的信息进行解码变得尤为困难,就像在雨中开车时辨认道路标志。(见图2和图4) 当应用15415标准单一的照明配置以及强制性固定的相机设置时,DPM标识(如一片金属上的一个蚀刻代码)出现的一个常见问题是图像更像是黑底灰字,而不是白底黑字。产生的直方图峰值要不免显得多。 一个标准的评估标准是符号的对比度—最低(“黑色”)和最高(“白色”)的直方图值之间的跨度。使用DPM 标识上的固定设置使“白色”在衡量尺度上大打折扣,产生较低的对比度和不合格分。我们需要一个标准的自动曝光程序来如下描述优化该元件反射的光。 即使是优化的图像,当分析15415中的直方图时,会出现另一个问题。因为它们是由独立过程创建的,实际DPM 代码的直方图一般不显示前景和背景相同尺寸或对称的分布。 那么,你如何区分前景和背景呢? ISO/IEC15415选择基于直方图最暗值(最小反射率)和其最亮值(最大反射率)之间中点的一种及其简单的方法。当然,该方法只有当两个峰值的分布相同时才会产生正确的阈值,而这种情况从来没有发生过,甚至连纸标签也没有。如果把所有像素包括在符号区域时,种种情况将会加剧。理想情况下,一个良好的代码的图像只包含三种类型的灰度分布:前景、背景和边线。“边线”像素将前景与背景分开。

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案 第1 章概述 1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、 形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。 1.2 采用数字图像处理有何优点?答:数字图像处理与光学等 模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进 行获取并转化为数字图像、进行增强、变换、 编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 1.4 讨论数字图像处理系统的组成。列举你熟悉的图像处理系统并分析它们的组成和功能。 答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。图像处理系统包括图像处理硬件和图像处理软件。图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。软件系统包括操作系统、控制软件及应用软件等。 图1.8 数字图像处理系统结构 图 1

1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具) 和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有 相互间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开 发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高 了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且 复杂,为了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动 态链接库 ImageLoad.dll 支持BMP、JPG、TIF 等常用6 种格式的读写功能。 MATLAB 的图像处理工具箱MATLAB 是由MathWorks 公司推出的用于数值计算的有力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆脱繁 杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些函数可 以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计中的重 复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和算法,如 图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检测、二值 图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足之处限制了 其在图像处理软件中实际应用。首先,强大的功能只能在安装有MA TLAB 系统的机器上使用 图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形界面的处理不及C++ 等语言。为此,通应用程序接口API 和编译器与其他高级语言(如C、 C++、Java 等)混 合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MA TLAB 与外部数 据与程序的交互。编译器产生独立于MATLAB 环境的程序,从而使其他语言的应用程序使用MATLAB。 1.6 常见的数字图像应用软件有哪些?各有什么特点?答:图像应用软件是可直接供 用户使用的商品化软件。用户从使用功能出发,只要了解 软件的操作方法就可以完成图像处理的任务。对大部分用户来说,商品化的图像应用软件无 需用户进行编程,操作方便,功能齐全,已经能满足一般需求,因而得到广泛应用。常用图 像处理应用软件有以下几种: 1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 PHOTOSHOP 支持多达 20 多种图像格式和 TWAIN 接口,接受一般扫描仪、数码相机等图像输入设备采集的图像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能可以很 方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对图像进 行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色模式 的转换、改变图像的尺寸和分辨率、制作网页图像等。 2.CorelDRAW:一种基于矢量绘图、功能强大的图形图像制作与设计软件。位图式图像是 由象素组成的,与其相对,矢量式图像以几何、色彩参数描述图像,其内容以线条和色块为主。可见,采用不同的技术手段可以满足用户的设计要求。位图式图像善于表现连续、丰富 色调的自然景物,数据量较大;而矢量式图像强于表现线条、色块的图案,数据量较小。 合理的利用两种不同类型的图像表现方式,往往会收到意想不到的艺术效果。CorelDraw是

相关文档
最新文档