主板上电流程
电脑启动过程详解

电脑从按完开关加电开始直到进入到系统桌面的整个过程详解本文以Windows2000/xp和Windows Vista/7两个内核做讲解电脑从加电到进桌面可以分为两大部分:无论是Windows2000/XP还是Windows Vista/7,在硬件自检方面都是想同的,不同的是在系统加截。
硬件部分:在讲解前,我们先来了解几个概念:BIOS:即“Basic Input/Output System”(基本输入输出系统),它是一组被“固化”在计算机主板上的一块 ROM 中直接关联硬件的程序,保存着计算机最重要的基本输入输出的程序、系统设置信息、开机后自检程序和系统自启动程序,其主要功能是为计算机提供最底层的、最直接的硬件设置和控制,它包括系统 BIOS(主板 BIOS).其它设备 BIOS(例如 IDE 控制器 BIOS、显卡 BIOS 等)其中系统 BIOS 占据了主导地位.计算机启动过程中各个 BIOS 的启动都是在它的控制下进行的。
CMOS:即“Complementary Metal-Oxide-Semiconductor”(互补金属氧化物半导体),它本是计算机系统内一种重要的芯片,保存了系统引导最基本的资料。
内存地址:我们知道,内存空间的最基本单位是位,8 位视为一个字节,即我们常用的单位 B,内存中的每一个字节都占有一个地址(地址是为了让 CPU 识别这些空间,是按照 16 进制表示的),而最早的 8086 处理器只能识别 1MB(2 的 20 次方 B)的空间,这 1MB 内存中低端(即最后面)的 640KB 就被称为基本内存,而剩下的内存(所有的)则是扩展内存。
这 640KB 的空间分别由显存和各 BIOS 所得。
我们来看一下硬件部分的流程图:我们从上图可以看到,在按下电源到启动操作系统前的过程是这样的:1、当电源开关按下时,电源开始向主板和其他设备供电,此时电压并不稳定,于是,当主板认为电压并没有达到 CMOS 中记录的 CPU 的主频所要求的电压时,就会向 CPU 发出 RESET 信号(即复位,不让 CPU 进一步运行),不过仅一瞬间不稳定的电压就能达到符合要求的稳定值,此时复位信号撤销,CPU 马上从基本内存的 BIOS 段读取一条跳转指令,跳转到 BIOS 的真正启动代码处,如此,系统 BIOS 启动,此后的过程都由系统 BIOS 控制。
计算机主板各供电电路图解

计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
主板不上电故障维修流程及实例

主板不上电故障维修流程及实例维修流程:1.检查电源线插头:首先,检查电源线是否正确连接到电源插座,并确保插头完好无损。
有时,插头可能会断开或松动,导致主板无法正常供电。
2.检查电源开关:确认电源开关处于开启状态。
有时,由于误操作或其他原因,用户可能会关闭电源开关,导致主板无法启动。
3.检查电源线路:检查电源线路是否损坏或断开。
使用万用表或电源线路测试仪,检查电源线路是否通电,确保电源线路工作正常。
4.检查电源模块:如果电源线路没有问题,那么可能是电源模块本身故障。
使用维修工具和测试设备,检查电源模块的输出电压是否正常,确保电源模块能够为主板提供足够的电力。
5.检查主板连接器:检查主板上的连接器是否完好无损,并正确插入。
有时,由于连接器松动或脱落,导致主板无法接收电源信号。
6.检查主板元件:使用专业的检测仪器,检查主板上的元件是否损坏。
特别注意检查主板上的电容和电阻是否熔断或出现损坏现象。
7.测试主板电源接口:使用测试设备,检查主板上的电源接口是否能够正常传输电力。
如果电源接口损坏,需要更换或修复。
8.检查BIOS芯片:BIOS芯片是主板上的一个重要组件,用于启动和配置计算机系统。
检查BIOS芯片是否损坏或出现故障,并尝试重新烧写BIOS。
实例:假设在一台计算机上,主板突然无法正常启动,屏幕没有任何显示,也没有听到引导音。
按照以下维修流程进行故障排除:1.检查电源线插头:确认电源线正确连接到电源插座,并插头没有松动或损坏。
2.检查电源开关:确保电源开关处于开启状态,并且电源指示灯正常工作。
3.检查电源线路:使用万用表或电源线路测试仪,检查电源线路的通电情况。
4.检查电源模块:使用测试仪器检查电源模块的输出电压是否正常。
5.检查主板连接器:检查主板上的连接器是否插入正确,并没有松动或脱落。
6.检查主板元件:使用检测仪器,检查主板上的元件是否损坏。
7.测试主板电源接口:使用测试设备,检查主板上的电源接口是否正常传输电力。
通用外置无刷直流道闸控制主板用户手册(V3.1)

无刷直流道闸控制板说明书(V3.1)一、主板安装接线图(日野、城邦电机) (2)二、主板安装接线图(台邦电机) (2)三、控制板外接信号线注意事项 (3)四、外置接收和主板连接图 (3)五、底板尺寸和螺丝孔尺寸 (4)六、上电前检查 (5)七、上电自检流程 (5)八、上电自检注意事项 (6)九、主板参数设置操作流程 (6)十、参数设置表 (7)十一、遥控器对码操作 (8)附图一:左右道闸对开接线图 (9)附图二:共阳红绿灯接线图 (10)附图三:共阴红绿灯接线图 (11)一、主板安装接线图(日野、城邦电机)二、主板安装接线图(台邦电机)三、控制板外接信号线注意事项控制板所有外接信号线线尽量避免用网线连接,网线虽然通信没有问题,但折腾几次容易断芯,最好采用BVR线,减少因线路故障导致的问题。
四、外置接收和主板连接图五、底板尺寸和螺丝孔尺寸六、上电前检查道闸上电前,请务必检查好以下几项:1、供电电源为24V10A的直流电源。
2、所有外接线(电源线、电机线、地感线)等的极性、顺序是否正确,且连接牢固走线稳定。
七、上电自检流程1、道闸上电后,主板数码管显示“190”,主板与电机第一次匹配自检,必须手动按主板上“开”“关”按键自检学习行程一次,主板自动记忆电机行程,后续断电后,只需用遥控,或者车牌识别相机发送“开”或“关”指令。
2、道闸自检是靠学习电机固定的两个极限位置,请确保按键自检学习行程时,开到位大于90°,关到位小于0°,以便后续调试水平与垂直。
注意:初次安装,第一次上电后,必须使用主板上“开”“关”按键完整自检学习一遍开闸、关闸行程!八、上电自检注意事项在自检过程中请注意以下几项:1、电机极性是否正确:如果电机极性错误,道闸自检完成不了。
电机极性调整菜单为:L-d(城邦电机为1/2。
)2、左右方向是否正确:如果不正确,电机在“开”时,道闸实际是“关”的动作。
电机在“关”时,道闸实际是“开”的动作。
电脑主板电路工作原理

第5章主板各电路工作原理在学习主板维修之前,我们先对主板的基本工作原理,做一个大体的讲解。
当插上ATX插头之后,ATX电源紫色线向主板上各参与开机电路的元件提供待机电压,此时主板处于等待状态,当点PWR开关后,触发开机电路,将ATX电源的绿线置为低电平,ATX电源12V、5V、3.3V向主板上输出各项供电,CPU、北桥、南桥等各主要芯片供电正常后,时钟芯片给主板上各设备送出时钟信号,南桥向主板上各设备发出复位信号,CPU被复位后,发出寻址指令,经北桥,南桥选中BIOS,读取BIOS芯片中存储的POST自检程序,由POST程序对主板上各设备包括CPU、芯片组、主存储器、CMOS存储器、板载I/O设备及显卡、软盘/硬盘子系统、键盘/鼠标等进行测试,测试全部通过,喇叭发出一声“嘟”的鸣叫,表示主板检测已经完成,系统可以正常使用。
若检测中出现问题,则会发出报警声并中断检测,此时我们使用主板DEBUG卡,根据上面显示的代码,就可以知道问题是出现在什么部分,进行针对性维修。
我们根据主板的基本工作原理,对应的把主板分为六大电路进行讲解,分别为开机电路、供电电路、时钟电路、复位电路、BIOS电路及接口电路进行讲解。
4.1主板开机电路4.1.1软开机电路的大致构成及工作原理开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1)当操作者瞬间触发主板上POWER开关之后,在POWER开关上会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。
主板电池怎么装正负?电脑主板电池正极在上吗?

主板电池怎么装正负?电脑主板电池正极在上吗?主板电池怎么装正负?电脑主板电池正极在上
吗?
很多⼩伙伴在安装主板电池的时候,不知道电池的正
负要怎么装,主板的电⼦有俩⾯,⼀⾯⼩,⼀⾯⼤,⼤的
⼀⾯是正极,上⾯有⼀个“+”号,向上。
以下有详细的安
装⽅法,不会的⼩伙伴们学起来吧!
主板电池安装
①)关闭电源,将所有插在机箱上⾯的电线与相关设
备移除。
②)⽤⑩字的螺丝⼑启开电脑机箱,将机箱放到⼀边,注意在接触电脑硬件之前⼀定要⽤⼿摸⼀下⾦属的东西,以防静电对硬件造成伤害。
③)打开机箱后即可看到主板电池
④)⽤⼀字的⼩螺丝⼑顶⼀下主板电池旁边的⼩卡⼦,电池的⼀端就会翘起来,将它拿出换上新的即可。
注意:⼀般正极(+号)朝上
有⽹格花纹的⾯向下,表⾯有⽂字标识的(正极)⾯
向上。
有数字的那⼀⾯朝上。
有数字的那⼀⾯朝上。
有数字的朝上。
⼤⽚朝上。
正下负下。
Inter主板上电时序

Inter主板上电时序·装入电池后首先送出RTCRST#,3V--BAT给南桥;·32.768KHz频率给到南桥;·5VSB经过三端稳压器变为3.3V,I/O检查5VSB是否正常,若正常,发出RSMRST#通知南桥待机电压正常;·南桥松竹SUSCLK(32KHz)·按下电源开关后,送出PWRBIN#给I/O;·I/O接受到后发出I/O_PWRBIN#给南桥;·南桥发出SLP_4#和SLP_3#信号给I/O;·I/O收到后发出PS_ON#(持续低电平)给ATX电源绿线;·当ATX电源收到PS_ON#由高到低后输出±12V、±5V、3.3V 电压;·当主板电压送出后,通过主板电路转换出其他工作电压:CPU 供电、内存供电和芯片组供电;·当VTT_CPU供给CPU后,会通过电路转换出VTT_PWRGD 信号(高电平)给CPU、时钟芯片、电源管理芯片;·CPU接受到VTT_PWRGD后,发出VID(0-4)组合信号给电源管理芯片;·电源管理芯片收到VTT_PWRGD和VID(0-4)组合信号后,在内部产生PWM脉冲信号驱动上下管工作输出VCORE;·当VCORE电压正常后,电源管理芯片发出VRMPWRGD信号给南桥:CPU电压已正常;·时钟芯片收到VTT_PWRGD后,其3.3V和14.318MHz都正常后,发出各组时钟频率;·ATX灰线延时发出ATXPWRGD经过电路转换送给南桥,或者由I/O延时发出PWROK给南桥;·南桥发出CPUPWRGD给CPU,通知CPU电压已正常;·南桥电压,时钟都正常且收到VRMPWRGD,PWROK后发出PLTSRST#(平台复位)及PCTRST#给各个设备;·北桥接收到南桥发出的PLTRST#并且电压和时钟都正常大约1ms后发出CPURST#给CPU,通知CPU可以开始执行第一个指令动作。
计算机加电自检过程

计算机启动过程目录简介总结编辑本段简介第一步:当我们按下电源开关时,电源就开始向主板和其它设备供电,此时电压还不太稳定,主板上的控制芯片组会向CPU发出并保持一个RESET(重置)信号,让CPU内部自动恢复到初始状态,但CPU在此刻不会马上执行指令。
当芯片组检测到电源已经开始稳定供电了(当然从不稳定到稳定的过程只是一瞬间的事情),它便撤去RESET信号(如果是手工按下计算机面板上的Reset 按钮来重启机器,那么松开该按钮时芯片组就会撤去RESET信号),CPU马上就从地址FFFF0H 处开始执行指令,从前面的介绍可知,这个地址实际上在系统BIOS的地址范围内,无论是AwardBIOS 还是AMIBIOS,放在这里的只是一条跳转指令,跳到系统BIOS中真正的启动代码处。
第二步:系统BIOS的启动代码首先要做的事情就是进行POST(Power-OnSelfTest,加电后自检),POST的主要任务是检测系统中一些关键设备是否存在和能否正常工作,例如内存和显卡等设备。
由于POST是最早进行的检测过程,此时显卡还没有初始化,如果系统BIOS在进行POST 的过程中发现了一些致命错误,例如没有找到内存或者内存有问题(此时只会检查640K常规内存),那么系统BIOS就会直接控制喇叭发声来报告错误,声音的长短和次数代表了错误的类型。
在正常情况下,POST过程进行得非常快,我们几乎无法感觉到它的存在,POST结束之后就会调用其它代码来进行更完整的硬件检测。
第三步:接下来系统BIOS将查找显卡的BIOS,前面说过,存放显卡BIOS的ROM芯片的起始地址通常设在C0000H处,系统BIOS在这个地方找到显卡BIOS之后就调用它的初始化代码,由显卡BIOS来初始化显卡,此时多数显卡都会在屏幕上显示出一些初始化信息,介绍生产厂商、图形芯片类型等内容,不过这个画面几乎是一闪而过。
系统BIOS接着会查找其它设备的BIOS程序,找到之后同样要调用这些BIOS内部的初始化代码来初始化相关的设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
atx电源psb信号送到io芯片送到南桥电路如果pwsw信号北拉底会产生pson信号pson信号会直接决定atx电源开关状态并会保存在io寄存器中同时主电源准备好后还会产生psok信号psok 信号要与主板预备好信号相与产生一个pg信号pg信号产生后主板开始全面供电电源到cpu 如果cpu供电正常时钟ic正常cpu复位信号正常+寻址正常bios会被选中并与cpu一起开始工作自检在电脑启动过程中经常容易出现故障,了解电脑的启动过程以及电脑启动出现故障时各种现象对分析和处理电脑启动故障很有帮助。
一台电脑的正常启动过程可以分为加电、BIOS自检、引导系统三个部分。
如果三部分都没有出现不正常的现象,那么电脑就可以顺利地进行操作系统的初始化。
在本篇中恩施恒丰电脑维修中心,恩施电脑维修,恩施电脑维修中心,专业笔记本维修中心将详介绍电脑的启动过程之加电和BIOS自检。
电脑正常启动过程之引导系统将放在下一篇去介绍。
1.【加电】——给电脑加电的过程大致相同,其步骤如下所示:步骤(1)电脑的电源连接正常后,按下机箱面板的电源开关,电源就开始向主板和其他设备供电,不过这时CPU电压还不是很稳定,主板会同时发一个RESET信号给CPU,让CPU初识化。
步骤(2)当电源工作稳定后,CPU从主板BIOS地址范围内的FFFFOH地址开始执行一条跳转指令,跳到主板BIOS中的启动代码处,这时就完成了给电脑主机加电的过程。
2.【BIOS自检】——主板BIOS自检将检查电脑连接的各硬件设备,其步骤如下所示:步骤(1)主板BIOS的启动代码首先进行POST,POST是“Power On SelfTest”的缩写,其含义是加电自检。
POST的主要任务是检测系统中的一些关键设备(如内存和显卡等)是否存在和能否正常工作。
由于POST的检测过程在显卡在显卡初始化之前,因此如果在POST 的过程中发现了致命错误,如没有找到内存或者内存有问题时,是无法在屏幕上显示出来的,这时系统POST就通过主板的喇叭发出报警声,用户可以根据报警声来判断故障所在。
步骤(2)当POST检测完成后,通常用户会听到“嘟"的一声,这是POST成功完成的标志.恩施恒丰电脑维修中心,恩施电脑维修,恩施电脑维修中心,专业笔记本维修中心特别提醒:POST过程只检查640KB常规内存,并不会对所有内存进行检查,其过程非常快,用户往往感觉不到这个过程的存在。
步骤(3)接下来主板BIOS将检查显卡的BIOS,并由显卡BIOS 来完成显卡的初始化,通常会在屏幕上显示出一些显卡的信息。
如生产厂商、图形芯片种类、显卡BIOS的版本和显存容量等,这就是开机看到的第一个画面,不过这个画面通常是一闪而过的。
步骤(4)接着主板BIOS将在屏幕上显示包括主板BIOS的类型、序列号和版本号等内容。
然后,系统BIOS将检测CPU的类型和工作频率,并将检测结果显示在屏幕上,这就是人们开机看到的CPU类型和主频。
步骤(5)主板BIOS开始测试主机所有的内存容量,并在屏幕上显示内在测试数。
步骤(6)内存检测通过之后,主板BIOS将开始检测系统中安装的一些标准硬件设备。
这些设备包括:硬盘、存储设备、软驱、串行接口等连接的设备。
每找到一个设备之后,系统BIOS都会在屏幕上显示出设备的名称和型号等信息,并为该设备分配中断、DMA通道和I/O端口等资源。
在此同时,屏幕低端左下角会出现主板信息代码,包括BIOS的日期、主板芯片组型号、主板的识别编码及厂家的代码等。
步骤(7)所有硬件都已经检测配置完毕后,系统BIOS会重新清屏并在屏幕上方显示出一个系统配置表,其中简略地列出系统安装的各种标准硬件设备,以及它们使用的资源和一些相关工作参数。
接下来主板BIOS将更新扩展系统配置数据ESCD(Extended System Configuration Data).1、IRQ是什么?IRQ也就是我们通常说的中断。
中断是计算机的核心部分和外围设备通讯的一个重要的接口,“中断”的意思就是无论核心部分在做什么,都要停下来处理,就是要执行一段专为这个外围设备编写的程序,执行完以后,才恢复刚才所做的工作。
举个例子来说,我们每按一下键盘,就产生一个键盘中断,CPU 就要停下手边的工作来处理,记录下来哪个键被按下了,如果按下这个键要对应某一个操作,就赶快先做这个操作,做完之后,才恢复刚才的工作。
对于接在串口上的MODEM也是一样,从电话线上传来数据了,这个串口就会产生一个中断,CPU就要停下来,先将数据收下来,放到一个安全的地方。
您能够一边写文章,一边从网上下载数据,就全靠中断的正常工作。
如果键盘和MODEM的中断是冲突的,也就是键盘和MODEM共同使用了一个中断,计算机就无法判断刚刚到达的数据是来自键盘还是来自MODEM,就有可能将MODEM收来的数据当作是您从键盘上输入的,而在您正在写的文章中输入一大堆乱字符。
显卡的中断如果和IDE硬盘控制器的中断冲突了,就更危险了,所以,要想计算机正常工作,必须把中断合理分配给外围设备,让它们没有冲突。
2、INT19是什么?INT19也就是中断19,它是ROM-BIOS软中断中的一个中断类型,作用是系统自举,也就是引导加载程序进行冷起动。
3、BIOS是什么?BIOS(基本输入输出系统),BIOS是直接与硬件打交道的底层代码,它为操作系统提供了控制硬件设备的基本功能。
BIOS包括有系统BIOS(即常说的主板BIOS)、显卡BIOS和其它设备(例如IDE控制器、SCSI卡或网卡等)的BIOS,BIOS一般被存放在ROM(只读存储芯片)之中,即使在关机或掉电以后,这些代码也不会消失。
4、内存地址的概念我们的机器中一般安装有32MB、64MB或128MB内存,这些内存的每一个字节都被赋予了一个地址,以便CPU访问内存。
32MB的地址范围用十六进制数表示就是0~1FFFFFFH,其中0~FFFFFH 的低端1MB内存非常特殊,因为最初的8086处理器能够访问的内存最大只有1MB,这1MB的低端640KB被称为基本内存,而A0000H~BFFFFH要保留给显示卡的显存使用,C0000H~FFFFFH 则被保留给BIOS使用,其中系统BIOS一般占用了最后的64KB或更多一点的空间,显卡BIOS 一般在C0000H~C7FFFH处,IDE控制器的BIOS在C8000H~CBFFFH处。
二、计算机的启动过程第一步:当我们按下电源开关时,电源就开始向主板和其它设备供电,此时电压还不太稳定,主板上的控制芯片组会向CPU发出并保持一个RESET(重置)信号,让CPU内部自动恢复到初始状态,但CPU在此刻不会马上执行指令。
当芯片组检测到电源已经开始稳定供电了(当然从不稳定到稳定的过程只是一瞬间的事情),它便撤去RESET信号(如果是手工按下计算机面板上的Reset按钮来重启机器,那么松开该按钮时芯片组就会撤去RESET信号),CPU马上就从地址FFFF0H处开始执行指令,从前面的介绍可知,这个地址实际上在系统BIOS的地址范围内,无论是Award BIOS 还是AMI BIOS,放在这里的只是一条跳转指令,跳到系统BIOS中真正的启动代码处。
第二步:系统BIOS的启动代码首先要做的事情就是进行POST(Power-On Self Test,加电后自检),POST的主要任务是检测系统中一些关键设备是否存在和能否正常工作,例如内存和显卡等设备。
由于POST是最早进行的检测过程,此时显卡还没有初始化,如果系统BIOS在进行POST 的过程中发现了一些致命错误,例如没有找到内存或者内存有问题(此时只会检查640K常规内存),那么系统BIOS就会直接控制喇叭发声来报告错误,声音的长短和次数代表了错误的类型。
在正常情况下,POST过程进行得非常快,我们几乎无法感觉到它的存在,POST结束之后就会调用其它代码来进行更完整的硬件检测。
第三步:接下来系统BIOS将查找显卡的BIOS,前面说过,存放显卡BIOS的ROM芯片的起始地址通常设在C0000H处,系统BIOS在这个地方找到显卡BIOS之后就调用它的初始化代码,由显卡BIOS来初始化显卡,此时多数显卡都会在屏幕上显示出一些初始化信息,介绍生产厂商、图形芯片类型等内容,不过这个画面几乎是一闪而过。
系统BIOS接着会查找其它设备的BIOS程序,找到之后同样要调用这些BIOS内部的初始化代码来初始化相关的设备。
第四步:查找完所有其它设备的BIOS之后,系统BIOS将显示出它自己的启动画面,其中包括有系统BIOS的类型、序列号和版本号等内容。
第五步:接着系统BIOS将检测和显示CPU的类型和工作频率,然后开始测试所有的RAM,并同时在屏幕上显示内存测试的进度,我们可以在CMOS设置中自行决定使用简单耗时少或者详细耗时多的测试方式。
第六步:内存测试通过之后,系统BIOS将开始检测系统中安装的一些标准硬件设备,包括硬盘、CD-ROM、串口、并口、软驱等设备,另外绝大多数较新版本的系统BIOS在这一过程中还要自动检测和设置内存的定时参数、硬盘参数和访问模式等。
第七步:标准设备检测完毕后,系统BIOS内部的支持即插即用的代码将开始检测和配置系统中安装的即插即用设备,每找到一个设备之后,系统BIOS都会在屏幕上显示出设备的名称和型号等信息,同时为该设备分配中断、DMA通道和I/O端口等资源。
第八步:到这一步为止,所有硬件都已经检测配置完毕了,多数系统BIOS会重新清屏并在屏幕上方显示出一个表格,其中概略地列出了系统中安装的各种标准硬件设备,以及它们使用的资源和一些相关工作参数。
第九步:接下来系统BIOS将更新ESCD(Extended System Configuration Data,扩展系统配置数据)。
ESCD是系统BIOS用来与操作系统交换硬件配置信息的一种手段,这些数据被存放在CMOS(一小块特殊的RAM,由主板上的电池来供电)之中。
通常ESCD数据只在系统硬件配置发生改变后才会更新,所以不是每次启动机器时我们都能够看到“Update ESCD… Success”这样的信息,不过,某些主板的系统BIOS在保存ESCD数据时使用了与Windows 9x不相同的数据格式,于是Windows 9x在它自己的启动过程中会把ESCD数据修改成自己的格式,但在下一次启动机器时,即使硬件配置没有发生改变,系统BIOS也会把ESCD的数据格式改回来,如此循环,将会导致在每次启动机器时,系统BIOS都要更新一遍ESCD,这就是为什么有些机器在每次启动时都会显示出相关信息的原因。
第十步:ESCD更新完毕后,系统BIOS的启动代码将进行它的最后一项工作,即根据用户指定的启动顺序从软盘、硬盘或光驱启动。