圆与方程知识点整理
圆与方程知识点小结

圓與方程2、1圓の標准方程:以點),(b a C 為圓心,r 為半徑の圓の標准方程是222)()(r b y a x =-+-.特例:圓心在坐標原點,半徑為r の圓の方程是:222r y x =+.2、2點與圓の位置關系:1. 設點到圓心の距離為d ,圓半徑為r :(1)點在圓上 d=r ; (2)點在圓外 d >r ; (3)點在圓內 d <r .2.給定點),(00y x M 及圓222)()(:r b y a x C =-+-.①M 在圓C 內22020)()(r b y a x <-+-⇔ ②M 在圓C 上22020)()r b y a x =-+-⇔(③M 在圓C 外22020)()(r b y a x >-+-⇔2、3 圓の一般方程:022=++++F Ey Dx y x .當0422>-+F E D 時,方程表示一個圓,其中圓心⎪⎭⎫ ⎝⎛--2,2E D C ,半徑2422F E D r -+=. 當0422=-+F E D 時,方程表示一個點⎪⎭⎫ ⎝⎛--2,2E D . 當0422<-+F E D 時,方程無圖形(稱虛圓).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圓の充要條件是:0=B 且0≠=C A 且0422 AF E D -+.圓の直徑或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A2、4 直線與圓の位置關系: 直線0=++C By Ax 與圓222)()(r b y a x =-+-の位置關系有三種(1)若22B A CBb Aa d +++=,0<∆⇔⇔>相离r d ;(2)0=∆⇔⇔=相切r d ; (3)0>∆⇔⇔<相交r d 。
還可以利用直線方程與圓の方程聯立方程組⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通過解の個數來判斷:(1)當方程組有2個公共解時(直線與圓有2個交點),直線與圓相交;(2)當方程組有且只有1個公共解時(直線與圓只有1個交點),直線與圓相切;(3)當方程組沒有公共解時(直線與圓沒有交點),直線與圓相離;即:將直線方程代入圓の方程得到一元二次方程,設它の判別式為Δ,圓心C 到直線lの距離為d,則直線與圓の位置關系滿足以下關系:相切⇔d=r ⇔Δ=0(2)相交⇔d<r ⇔Δ>0; (3)相離⇔d>r ⇔Δ<0。
高中圆与方程的总结知识点

高中圆与方程的总结知识点一、圆的基本概念1.1. 定义:圆是平面上与一个给定点的距离等于一个常数的点的集合。
1.2. 圆的要素:圆心、半径,圆的圆心记为O,圆的半径记作r。
1.3. 圆的直径:过圆心的两个点之间的线段称为圆的直径,它的长度等于圆的半径的两倍。
1.4. 圆的线段:圆上的一段弧称为圆的线段。
1.5. 圆的弧长:圆的线段的长度。
1.6. 圆的圆周角:圆上的一段的圆弧,其两端点为圆上的两点,则弧所对的圆心角称为圆的圆周角,当圆周角的弧的度数是360度时,这个角也叫圆的周角。
二、圆方程的基本概念2.1. 圆的标准方程:以点(h,k)为圆心,r为半径的圆方程为:(x-h)²+(y-k)²=r²。
2.2. 圆的一般方程:圆的一般方程的一般形式为x²+y²+ax+by+c=0。
三、圆与直线的方程3.1. 圆与坐标轴的交点:圆与x轴的交点(a,0)和与y轴的交点(0,b)。
3.2. 圆与直线的位置关系:圆可能与直线相切、相交或者不相交。
3.3. 圆的切线方程:圆的切线方程要求切点在圆上,与圆的切线垂直于和直径的直线相。
四、圆与圆的方程4.1. 圆的位置关系:两个圆可能相离、外切、内切、相交或者包含。
4.2. 圆的位置关系对应的方程:通过分析圆心之间的距离与半径之间的关系,可以确定两个圆的位置关系。
五、圆的参数化方程5.1. 参数化方程的定义:参数是指由一个或几个变化的量组成的多元函数。
5.2. 圆的参数化方程:圆可以用参数方程表示为:x=r*cos(t),y=r*sin(t)。
六、解题技巧6.1. 圆方程与圆心、半径的关系:根据圆的标准方程,可以直接读出圆心的坐标和半径的值。
6.2. 圆的切线方程:根据圆的切线要求即切点在圆上,利用斜率的关系求出切线的斜率,然后代入切点的坐标得出切线方程。
6.3. 圆与直线的位置关系:通过解方程组,可以得出圆与直线的交点坐标,从而分析它们的位置关系。
圆的方程的知识点总结

圆的方程的知识点总结一、圆的标准方程圆的标准方程是圆心在原点(0,0)、半径为r的圆的方程。
它可以表示为:x^2 + y^2 = r^2其中,(x,y)是圆上的任意点,r是圆的半径。
这个方程可以用来描述一个圆的几何形状和位置。
当圆心不在原点时,我们可以通过平移坐标系的方式将圆心移到原点,然后再应用标准方程。
这样,任意圆的方程都可以被化简为标准方程的形式。
二、圆的一般方程圆的一般方程是一个更一般的表示方法,它可以描述任意圆的方程,即圆心不一定在原点,半径也不一定为正值。
一般方程的形式如下:(x - h)^2 + (y - k)^2 = r^2其中(h,k)是圆心的坐标,r是圆的半径。
通过这个方程,我们可以描述圆的任何位置和大小。
三、圆的参数方程圆的参数方程是用参数形式表示的圆的方程。
一个圆的参数方程可以表示为:x = r*cos(t)y = r*sin(t)其中,t是一个参数,取值范围一般是[0,2π]。
通过不同的参数取值,我们可以得到圆上的所有点。
参数方程的形式在一些数学和物理问题中有一定的应用价值。
四、圆的性质1.圆的直径和周长圆的直径是通过圆心的任意一条线段,它的长度是圆的半径的两倍。
而圆的周长则是圆周的长度,可以通过以下公式计算:C = 2πr其中,r是圆的半径,C是圆的周长。
2.圆的面积圆的面积是圆内部的所有点的集合,可以利用下面的公式来计算:A = πr^2其中,r是圆的半径,A是圆的面积。
这个公式也可以通过积分的方式来推导。
3.切线对于给定的圆和一点P在圆上,我们可以找到一条直线,它通过点P且与圆相切。
切线的斜率可以通过圆心和点P的连线来确定。
这个性质在解决与圆有关的问题时有很大的帮助。
五、圆的应用圆在日常生活和工程中有着广泛的应用,下面是一些例子:1. 圆的几何构造:利用圆的性质可以进行各种几何构造,例如正多边形的内切圆和外接圆、切线的构造等。
2. 圆的运动学:在物理学中,圆的运动学问题是一个常见的问题,如圆周运动、圆形轨道的运动等。
圆知识点总结及归纳

第一讲 圆的方程一、知识清单(一)圆的定义及方程定义标准 方程一般方程平面内与定点的距离等于定长的点的会合 (轨迹 )(x - a)2 +(y -b)2= r 2(r>0)圆心: (a , b),半径: rx 2+ y 2+ Dx + Ey +F = 0圆心: - D ,- E,2 2 (D 2+E 2- 4F>0)半径: 1 D 2+ E 2- 4F21、圆的标准方程与一般方程的互化( 1)将圆的标准方程 (x -a)2+( y -b)2= r 2 睁开并整理得 x 2+ y 2- 2ax - 2by + a 2+ b 2- r 2= 0,取 D =- 2a ,E =- 2b , F = a 2+ b 2- r 2,得 x 2+ y 2+ Dx + Ey + F = 0.( 2)将圆的一般方程 x 2+ y 2+ Dx +Ey + F = 0 经过配方后获得的方程为:(x + D 2+ (y + E 2 D 2 +E 2- 4F2 ) 2 ) = 4①当 D 2+E 2- 4F>0 时,该方程表示以 (-D ,- E)为圆心, 1 D 2+ E 2 - 4F 为半径的圆;2 2 2②当 D 2+ E 2- 4F = 0x =- D , y =- E (- D 时,方程只有实数解2 2,即只表示一个点 2 ,-E);③当 D 2+ E 2- 4F<0 时,方程没有实数解,因此它不表示任何图形.22、圆的一般方程的特点是 : x 2 和 y 2 项的系数都为 1 ,没有 xy 的二次项 .3、圆的一般方程中有三个待定的系数 D 、 E 、 F ,所以只需求出这三个系数,圆的方程就确立了.(二)点与圆的地点关系点 M(x 0, y 0)与圆 (x -a)2+(y - b)2 =r 2 的地点关系:( 1)若 M(x 0, y 0)在圆外,则 (x 0- a)2+ (y 0- b) 2>r 2.( 2)若 M(x 0, y 0)在圆上,则 (x 0- a)2+ (y 0- b) 2= r 2.( 3)若 M(x 0, y 0)在圆内,则 (x 0- a)2+ (y 0- b) 2<r 2.(三)直线与圆的地点关系方法一:方法二:(四)圆与圆的地点关系1外离2外切3订交4内切5内含(五)圆的参数方程(六)温馨提示1、方程 Ax2+ Bxy+ Cy 2+ Dx + Ey+ F = 0 表示圆的条件是:( 1)B= 0;( 2) A=C≠0;( 3)D 2+ E2-4AF> 0.2、求圆的方程时,要注意应用圆的几何性质简化运算.( 1)圆心在过切点且与切线垂直的直线上.( 2)圆心在任一弦的中垂线上.( 3)两圆内切或外切时,切点与两圆圆心三点共线.3、中点坐标公式:已知平面直角坐标系中的两点A(x1,y1),B(x2, y2) ,点 M (x, y) 是线段 AB 的中点,则 x=x1x2 ,y=y1y2 .22二、典例概括考点一:相关圆的标准方程的求法【例1】圆22,半径是. x a y bm2 m 0 的圆心是【例2】点 (1,1)在圆 (x- a)2+ (y+ a)2= 4 内,则实数A . (- 1,1)C.( -∞,- 1)∪ (1,+∞ )a 的取值范围是(D. (1,+∞))B. (0,1)【例 3】圆心在 y 轴上,半径为1,且过点 (1,2)的圆的方程为 ()A . x2+ (y-2)2=1B. x2+ (y+ 2)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x2+ (y- 3)2= 1【例 4】圆 (x+2) 2+ y2= 5 对于原点P(0,0)对称的圆的方程为 ()A . (x- 2)2+y2=5B. x2+ (y- 2)2= 5C.( x+ 2) 2+ (y+2) 2= 5D. x2+ (y+ 2)2= 5【变式 1】已知圆的方程为x 1 x 2y 2 y 40 ,则圆心坐标为【变式 2】已知圆 C 与圆x 1221 对于直线 y x 对称,则圆C的方程为y【变式3】若圆 C 的半径为1,圆心在第一象限,且与直线4x- 3y= 0和x 轴都相切,则该圆的标准方程是()A . (x- 3)2+7y- 3 2= 1B. (x- 2)2+ (y- 1)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x- 3 2+(y- 1)2= 12【变式4】已知ABC 的极点坐标分别是 A 1,5 , B 5,5 , C 6, 2 ,求ABC 外接圆的方程 .方法总结:1.利用待定系数法求圆的方程重点是成立对于a, b, r 的方程组.2.利用圆的几何性质求方程可直接求出圆心坐标和半径,从而写出方程,表现了数形联合思想的运用.考点二、相关圆的一般方程的求法【例 1】若方程 x2+ y2+ 4mx- 2y+5m=0 表示圆,则m 的取值范围是()A .1< m< 1 B . m<1或 m> 1 C .m<1D. m> 1 444【例 2】将圆 x2+ y2- 2x- 4y+1= 0 均分的直线是 ()A . x+ y- 1= 0B. x+ y+ 3= 0C. x-y+ 1= 0D. x- y+ 3= 0【例 3】圆 x2-2x+y2- 3=0 的圆心到直线x+3y- 3= 0 的距离为 ________.【变式 1】已知点P是圆C : x2y24x ay 5 0 上随意一点,P点对于直线2 x y 1 0 的对称点也在圆 C 上,则实数a =【变式 2】已知一个圆经过点 A 3,1 、 B 1,3 ,且圆心在3x y 20 上,求圆的方程 .【变式 3】平面直角坐标系中有 A 0,1 , B 2,1 , C 3,4 , D 1,2 四点,这四点可否在同一个圆上?为何?【变式4】假如三角形三个极点分别是O(0,0), A(0,15) , B(- 8,0),则它的内切圆方程为________________ .方法总结:1.利用待定系数法求圆的方程重点是成立对于D, E, F 的方程组.2.娴熟掌握圆的一般方程向标准方程的转变考点三、与圆相关的轨迹问题【例 1】动点 P到点A(8,0)的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【例 2】方程y25 x2表示的曲线是()A. 一条射线B. 一个圆C. 两条射线D. 半个圆【例3】在ABC 中,若点B,C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点 A 的轨迹方程是()A. x2y23B. x2y24C. x 2222y 9 y 0 D. x y 9 x 01【例4】已知一曲线是与两个定点O(0,0) ,A(3,0) 距离的比为的点的轨迹.求这个曲线的方程,并画出曲线.【变式 1】方程x 1 12y 1 所表示的曲线是()A. 一个圆B. 两个圆C. 一个半圆D. 两个半圆【变式 2】动点 P 到点 A(8,0) 的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【变式 3】如右图,过点M(- 6,0)作圆 C: x2+y2-6x- 4y+ 9= 0 的割线,交圆C于 A、B 两点,求线段 AB 的中点P 的轨迹.【变式4】如图,已知点A( -1,0)与点长至 D ,使得 |CD |= |BC|,求 AC 与 ODB(1,0), C 是圆 x2+ y2= 1 上的动点,连结的交点 P 的轨迹方程.BC 并延方法总结:求与圆相关的轨迹问题时,依据题设条件的不一样常采纳以下方法:(1)直接法:依据题目条件,成立坐标系,设出动点坐标,找出动点知足的条件,而后化简.(2)定义法:依据直线、圆等定义列方程.(3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点知足的关系式等.考点四:与圆相关的最值问题【例 1】已知圆x2+ y2+ 2x- 4y+ a= 0 对于直线y= 2x+b 成轴对称,则a- b 的取值范围是________【例 2】已知 x, y 知足 x2+ y2= 1,则y-2的最小值为 ________.x- 1【例 3】已知点则|MN|的最小值是M 是直线()3x+ 4y- 2= 0 上的动点,点N 为圆( x+1) 2+ (y+1)2= 1 上的动点,9A. 5B. 14C.5D.135【例 4】已知实数x, y 知足 (x- 2)2+ (y+ 1)2= 1 则 2x- y 的最大值为 ________,最小值为________.【变式 1】 P(x, y)在圆 C: (x- 1)2+ (y- 1)2=1 上挪动,则x2+ y2的最小值为 ________.【变式 2】由直线 y= x+ 2 上的点 P 向圆 C: (x- 4)2+ (y+ 2)2= 1 引切线 PT(T 为切点 ),当|PT|最小时,点 P 的坐标是 ()A . (- 1,1)B. (0,2)C . (- 2,0)D. (1,3)【变式 3】已知两点A(- 2,0), B(0,2),点积的最小值是 ________.C 是圆x2+ y2- 2x= 0 上随意一点,则△ABC面【变式 4】已知圆M 过两点 C(1,- 1), D (- 1,1),且圆心M 在 x+y- 2= 0 上.(1)求圆 M 的方程;(2)设 P 是直线 3x+ 4y+ 8=0 上的动点, PA、 PB 是圆 M 的两条切线, A, B 为切点,求四边形 PAMB 面积的最小值.方法总结:解决与圆相关的最值问题的常用方法(1)形如 u=y-b的最值问题,可转变为定点 (a, b)与圆上的动点 ( x,y)的斜率的最值问题x - a(2)形如 t= ax+ by 的最值问题,可转变为动直线的截距的最值问题;(3)形如 (x- a)2+ (y- b)2的最值问题,可转变为动点到定点的距离的最值问题.(4)一条直线与圆相离,在圆上找一点到直线的最大(小)值: d r (此中d为圆心到直线的距离)。
高二数学圆的方程知识点

高二数学圆的方程知识点圆是几何中的重要概念之一,它在数学中有着广泛的应用。
在高二数学中,我们需要掌握圆的方程及相关的知识点。
本文将介绍高二数学圆的方程知识点,以帮助同学们更好地理解和掌握这一内容。
一、圆的基本概念圆是由平面上距离一个固定点(圆心)距离相等的所有点构成的图形。
圆由圆心和半径唯一确定。
二、圆的一般方程圆的一般方程形式为:(x-a)² + (y-b)² = r²其中,(a, b)为圆心的坐标,r为半径的长度。
三、圆的标准方程圆的标准方程形式为:x² + y² + Dx + Ey + F = 0其中,D、E、F为常数,表示圆心及半径的信息。
四、圆的参数方程圆的参数方程形式为:x = a + r*cosθy = b + r*sinθ其中,(a, b)为圆心的坐标,r为半径的长度,θ为参数。
五、圆的切线方程圆的切线方程与切点的坐标有关,一般可以通过求导数来得到。
切线方程的一般形式为:y - y₀ = k(x - x₀)其中,(x₀, y₀)为切点的坐标,k为切线的斜率。
六、圆与直线的位置关系1. 直线与圆相交:直线与圆有两个交点。
2. 直线与圆外切:直线与圆相切,且切点位于圆的外部。
3. 直线与圆内切:直线与圆相切,且切点位于圆的内部。
4. 直线与圆相离:直线与圆没有交点。
七、圆与圆的位置关系1. 外离:两个圆没有交点,且它们的圆心间的距离大于两个圆的半径之和。
2. 外切:两个圆有且仅有一个切点,且它们的圆心间的距离等于两个圆的半径之和。
3. 相交:两个圆有两个交点,且它们的圆心间的距离小于两个圆的半径之和。
4. 内切:两个圆有且仅有一个切点,且它们的圆心间的距离等于两个圆的半径之差。
5. 内含:一个圆完全包含在另一个圆的内部。
八、圆的相关性质1. 直径垂直于弦:如果一条弦的两个端点都在圆的直径上,那么这条弦垂直于直径。
2. 弦的性质:如果两条弦相交于圆上的一个点,那么这两条弦的交点到各自弦上任意一点的线段长度相等。
圆与方程总结知识点

圆与方程总结知识点在数学中,圆与方程是几何学和代数学的重要内容之一,它们在数学中有着广泛的应用和重要的地位。
圆与方程的学习不仅有助于学生对数学的理解和应用,还有助于培养学生的逻辑思维能力和数学解决问题的能力。
本文将对圆与方程的知识点进行总结,希望能够帮助学生更好地掌握这一内容。
圆的基本概念首先,我们来认识一下圆这个几何图形。
圆是一个平面上所有与一个给定点的距离相等的点的集合。
这个给定点叫做圆心,所有距离相等的点到圆心的距离叫做半径。
圆的直径是通过圆心的两条平行线段的长。
圆的周长是圆的边界的长度,用符号C表示。
圆的面积是圆内部的所有点的集合,用符号A表示。
圆的方程通常有两种形式:标准方程和一般方程。
标准方程是x²+y²=r²,其中(x, y)是圆上的任意一点,r是圆的半径。
一般方程是(x-h)²+(y-k)²=r²,其中(h, k)是圆心的坐标。
圆的方程可以通过圆心和半径来确定,也可以通过圆上的某一点和圆的半径来确定。
圆的方程求解求解圆的方程是圆与方程的重要内容之一。
在求解圆的方程时,我们通常需要已知圆的中心坐标和半径。
如果已知圆的中心坐标和半径,我们可以根据标准方程的形式直接写出圆的方程。
如果已知圆上的某一点和圆心的坐标,我们可以利用已知点和圆心的距离等于半径来确定圆的方程。
圆与直线的关系圆与直线的关系是圆与方程的另一个重要内容。
在圆与直线的关系中,我们通常需要研究直线与圆的位置关系、直线与圆的交点和直线与圆的切点等问题。
首先,直线与圆的位置关系包括直线在圆内部、外部和与圆相切三种情况。
其次,直线与圆的交点是指直线与圆的交点的个数。
最后,直线与圆的切点是指直线与圆相切的点的位置。
圆与方程的应用圆与方程的应用是圆与方程的重要内容之一。
在实际应用中,圆与方程的知识可以帮助我们解决实际问题。
例如,在工程领域中,圆与方程的知识可以帮助我们设计圆形结构、计算圆形结构的尺寸等。
圆系方程知识点总结
圆系方程知识点总结圆系方程的一般形式可以表示为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中A、B、C、D、E、F是常数,通常要求A、B、C不全为零。
根据A、B、C的取值不同,圆系方程可以表示不同的曲线形状。
在接下来的内容中,我们将从圆系方程的基本知识开始,逐步深入讨论圆、椭圆、双曲线和抛物线,并介绍它们在数学和物理中的应用。
1. 圆的方程圆是平面上与定点的距离等于定长的点的集合。
它的方程可以表示为:(x - h)^2 + (y - k)^2 = r^2其中(h, k)是圆的圆心坐标,r是圆的半径。
通过这个方程,我们可以得到圆的各种性质,如直径、周长和面积等。
2. 椭圆的方程椭圆是平面上到两个定点的距离之和等于定长的点的集合。
它的一般方程可以表示为:((x - h)^2)/a^2 + ((y - k)^2)/b^2 = 1其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆的中心坐标。
通过椭圆的方程,我们可以得到椭圆的长轴、短轴、焦点、离心率等性质。
3. 双曲线的方程双曲线是平面上到两个定点的距离之差等于定长的点的集合。
它的一般方程可以表示为:((x - h)^2)/a^2 - ((y - k)^2)/b^2 = 1其中(a, b)是双曲线的半长轴和半短轴,(h, k)是双曲线的中心坐标。
通过双曲线的方程,我们可以得到双曲线的渐近线、离心率等性质。
4. 抛物线的方程抛物线是平面上到定点的距离等于定长的点的集合。
它的一般方程可以表示为:y = ax^2 + bx + c其中(a, b, c)是抛物线的常数,a不等于零。
通过抛物线的方程,我们可以得到抛物线的焦点、顶点、对称轴等性质。
除了这些基本的圆系方程,我们还可以将它们进行适当的平移、旋转和缩放,得到不同形式的方程。
这些变换可以帮助我们更好地理解和利用圆系方程。
在数学中,圆系方程有着重要的应用。
例如,在几何学中,我们可以通过圆系方程研究曲线的性质和特征,解决曲线的相关问题。
圆与方程知识点总结
圆与方程知识点总结圆的定义和性质:圆的方程及表达方式:1.标准方程:圆的标准方程是(x-h)^2+(y-k)^2=r^2,其中(h,k)表示圆心的坐标,r表示半径。
标准方程用于表示圆心不在原点的圆。
2.一般方程:圆的一般方程是x^2+y^2+Dx+Ey+F=0,其中D、E、F为任意实数。
一般方程用于表示圆心在原点的圆。
3. 参数方程:圆的参数方程分别为x=h+r*cosθ y=k+r*sinθ,其中(h,k)为圆心坐标,r为半径,θ为取值范围在0到2π之间的参数。
参数方程用于描述圆上各点的坐标。
圆的方程与图像的关系:1.圆心位置:圆的方程可以帮助确定圆心的位置。
当方程为标准方程时,圆心的坐标就是方程中"(h,k)"的值。
当方程为一般方程时,根据方程的形式可以得知圆心在(x等于D/2,y等于E/2)的点上。
2.半径大小:圆的方程中的r值表示半径的大小。
半径是圆上任意一点到圆心的距离,通过方程可以得到半径的值。
3.图像形状:圆的方程描述了圆的几何形状,通过方程可以确定圆的半径,并且可以利用方程画出圆的图像。
当方程中的常数项F为0时,表示圆心在原点,可以用该方程画出圆的图像。
圆与方程的应用:1.几何学中,圆是一种重要的几何图形,广泛应用于计算圆的面积、周长和弧长。
通过圆的方程可以帮助几何学家推导圆的相关性质,以及与其他几何图形的关系。
2.物理学中,圆的方程用于描述运动中的圆形轨迹,如行星在椭圆轨道上运动。
通过分析轨道方程可以计算出行星的运动轨迹、速度和加速度等物理量。
3.工程学中,圆的方程广泛应用于计算机图形学、计算机辅助设计(CAD)和机器人技术等领域。
利用圆的方程可以计算出圆形图案和零件的尺寸,使得工程师能够更好地设计和制造产品。
4.经济学中,圆的方程可应用于计算边际收益、成本曲线和供求关系等经济学模型。
通过圆的方程可以计算出最优决策和市场均衡等经济指标。
总结:圆是数学中一个重要的几何图形,通过方程可以描述圆的几何形状、圆心位置和半径大小。
初中数学圆的方程知识点
初中数学圆的方程知识点
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的'标准方程是(xa)^2+(yb)^2=r^2。
特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^24F)/4.故有:
(1)、当D^2+E^24F0时,方程表示以(D/2,E/2)为圆心,以(√D^2+E^24F)/2为半径的圆;
(2)、当D^2+E^24F=0时,方程表示一个点(D/2,E/2);
(3)、当D^2+E^24F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (xa1)(xa2)+(yb1)(yb2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2 圆的方程学问在学校数学逇学习中涉及到的并不是许多,同学们把握基础就好。
第1页。
圆与方程知识点整理
圆与方程知识点整理一、圆的定义和性质圆是由平面上与一定点距离相等的点的集合组成。
圆的性质:1. 圆心与圆上任意点的距离相等。
2. 圆上任意两点与圆心的连线垂直。
3. 圆的直径是圆上任意两点的距离中最大的。
4. 圆的半径是圆上任意一条线段的一半。
二、圆的方程1. 标准方程一般地,圆的标准方程为:(x - h)² + (y - k)² = r²其中,(h, k)为圆心坐标,r为半径长度。
2. 一般方程圆的一般方程为:x² + y² + Dx + Ey + F = 0其中,D、E、F为实数。
三、圆的常见问题1. 判定点与圆的位置关系当给定一个点P(x₁, y₁)和圆C[(x - h)² + (y - k)² = r²]时,可以通过计算点到圆心的距离是否等于半径来判断点与圆的位置关系。
若 d(P, C) < r,则点P在圆内部;若 d(P, C) = r,则点P在圆上;若 d(P, C) > r,则点P在圆外部。
2. 圆的相交关系两个圆的相交关系有三种情况:(1)外离:两个圆的圆心之间的距离大于两个圆的半径之和;(2)外切:两个圆的圆心之间的距离等于两个圆的半径之和;(3)相交:两个圆的圆心之间的距离小于两个圆的半径之和。
四、圆的应用1. 定义:圆在几何图形中具有重要的作用,常用于解决与圆相关的几何问题。
2. 圆的建模:在现实世界中,很多物体或运动都可以用圆的概念进行建模,例如轮子、钟表等。
3. 圆的运动学:圆的运动学涉及到圆的半径、速度、角速度等概念,广泛应用于航天、机械等领域。
总结:圆是几何学中的重要概念,具有独特的定义和性质。
我们可以通过圆的方程来描述和计算圆的属性,同时也可以利用圆的性质解决与圆相关的问题。
圆的应用范围广泛,不仅在几何学中有重要作用,还在物理学、工程学等领域发挥着重要的作用。
掌握圆与方程的知识点,对于学习和应用几何学具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理关于圆与方程的知识点整理一、标准方程()()222x a y b r-+-=1.求标准方程的方法——关键是求出圆心(),a b和半径r①待定系数:往往已知圆上三点坐标,例如教材119P例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件方程形式圆心在原点()2220x y r r+=≠过原点()()()2222220x a y b a b a b-+-=++≠圆心在x轴上()()2220x a y r r-+=≠圆心在y轴上()()2220x y b r r+-=≠圆心在x轴上且过原点()()2220x a y a a-+=≠圆心在y轴上且过原点()()2220x y b b b+-=≠与x轴相切()()()2220x a y b b b-+-=≠与y轴相切()()()2220x a y b a a-+-=≠与两坐标轴都相切()()()2220x a y b a a b-+-==≠二、一般方程()2222040x y Dx Ey F D E F++++=+->1.220Ax By Cxy Dx Ey F+++++=表示圆方程则222200004040A B A BC CD E AFD E FA A A⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅>⎪ ⎪⎪⎝⎭⎝⎭⎩最新整理2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 43.2240D E F +->常可用来求有关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC ) 四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无②求切线方程的方法及注意点... i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程.答案:3410x y -+=和1x = ii )点在圆上1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目.2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC AP AC rk k ⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用弦长公式:12l x =-=(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,64.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时) 五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____. 答案:3(注意:1m =-时,2240D E F +-<,故舍去)变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________.变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由. 六、最值问题方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:1c ≥(数形结合和参数方程两种方法均可!)七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.提示:12120x x y y +=或弦长公式12d x =-. 答案:10x y -+=或40x y --=3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线x =k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由. 九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距)(1)12d r r >+⇔外离 (2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含 2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦)(2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=(3)有关圆系的简单应用 (4)两圆公切线的条数问题①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动↓ ↓动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例 1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程. 分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=Q ,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C B C x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,42E y ⎛⎤∈- ⎥ ⎝⎦ 222OE CE OC +=Q ,2294E E x y ∴+=L L (1)2222B C E B C E B C E B C Ex x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y yy +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,122422x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设(),G x y ,则()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩L L L 4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,122x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..得到动点轨迹方程,通过参数的范围得出x ,y 的范围. (4)求轨迹方程常用到得知识①重心(),G x y ,33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD AB CDAC=④定比分点公式:AMMB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理.。