cox回归结果解析

合集下载

COX回归分析解析实用

COX回归分析解析实用


H1:
,其它参数β固定。

0 H0成立时,统计量 Z =bk/SE(bk) 服从标准正态分布 。SE(bk)是回归系数bk的标准误。 k
k 0
第27页/共46页
3、Cox回归模型的作用 • (1) 可以分析各因素的作用
• (2)可以计算各因素的相对危险度 (relative risk,RR)
-1.589
Variables in the Equation
SE .421 .530
W ald 6.630 6.799
df 1 1
.695
5.221
1
Sig. .010 .009
.022
Exp(B) 2.957 3.978
.204
第40页/共46页
解释

设第i个因素的回归系数为bi,对应的风险比(risk ratio,记为RRi):
RRi=exp(bi),表示该因素每增加一个单位时,风险度改变多少倍。

在本例中放疗X5,取值0和1,b=-1.589, RR=0.204,表示因子水平1与0比较,前

………… …… …

第32页/共46页


3.SPSS 软件实现方法
• File→Open→相应数据(已存在)→ Analyze→ Survival→Cox regression →Time(dat)→Status →Define event →single value(1) →Continue → Covariates(自变量) →method → Fkward→Continue →
模型: yˆ b0 b1x1 b2 x2 bp xp
其中b0为截距, b1 ,b2 …bp称为偏回归 系数. bi表示当将其它p-1个变量的作用加以固 定后, Xi改变1个单位时Y将改变bi个单位.

cox比例风险回归模型结果解读

cox比例风险回归模型结果解读

COX比例风险回归模型是一种常用的生存分析方法,它能够对生存时间或事件发生时间进行建模,并且能够考虑到不同个体的观测时长不同这一特点。

在研究中,COX比例风险回归模型通常被用来探究某种因素对于生存时间或事件发生时间的影响程度。

本文将以COX比例风险回归模型为主题,深入探讨其原理、应用、结果解读和个人理解。

一、COX比例风险回归模型原理COX比例风险回归模型是由David R. Cox于1972年提出的,它是一种半参数模型,既考虑了危险比的比例关系,又不需要对基本风险函数作出严格的假设。

模型的基本形式为:$$ h(t|x) =h_0(t)exp(\beta_1x_1+\beta_2x_2+...+\beta_px_p) $$ 其中,h(t|x)为在给定协变量x情况下,观测到时间t的瞬时事件发生率;h0(t)为基础风险函数,与协变量无关;β1, β2,…, βp为协变量的回归系数;x1, x2,…, xp为对应的协变量。

二、COX比例风险回归模型应用COX比例风险回归模型主要适用于生存分析领域,例如医学、流行病学和生态学等研究中。

研究者可以利用COX比例风险回归模型来探究不同因素对于生存时间或事件发生时间的影响情况。

这种模型在临床试验中也得到了广泛的应用,可以用来评估治疗效果、预测疾病风险等。

三、COX比例风险回归模型结果解读在进行COX比例风险回归模型分析后,我们通常会得到各个协变量的回归系数、危险比和相应的置信区间。

这些结果对于理解不同因素对生存时间或事件发生时间的影响至关重要。

如果某个协变量的危险比为2.0,且置信区间不包含1.0,就说明该因素对事件发生的影响是显著的。

还需要考虑模型的比例风险假设是否成立,以及是否存在共线性等问题。

个人理解与观点:COX比例风险回归模型是一种非常有用的统计方法,它能够帮助研究者从更深层次理解不同因素对生存能力的影响程度。

然而,在进行模型分析时,我们还需要注意模型的适用性和准确性,避免结果的误导性。

cox回归分析

cox回归分析

cox回归分析Cox回归分析是一种常用的统计学方法,用于分析生存时间数据和生存分析。

它在医学研究、生物学领域以及工程和社会科学等诸多领域得到广泛应用。

本文将介绍Cox回归分析的概念、原理、使用方法以及在实际问题中的应用。

Cox回归分析是由英国统计学家David Cox提出的一种统计方法。

它是基于风险比(Hazard Ratio)的概念,用于估计某个变量对事件发生概率的影响。

所谓“风险比”即某个因素发生后,事件发生概率相对于该因素不发生时的比值。

Cox回归分析的核心思想是通过构建一个风险函数来描述某个因素对事件发生的影响。

具体而言,风险函数是生存时间的密度函数和基准风险函数的乘积。

基准风险函数是指在没有任何因素作用时,事件发生的概率密度函数。

Cox回归分析的目标是估计出各个因素的风险函数,进而计算出它们的风险比。

在进行Cox回归分析时,首先需要收集相关的数据。

数据包括生存时间和事件发生情况,以及可能的影响因素,如年龄、性别、治疗方式等。

然后,通过Cox回归模型,可以估计出每个因素的风险比及其置信区间。

Cox回归分析可以通过不同的方法进行模型拟合和参数估计。

常用的方法包括偏似然估计、梯度下降算法和牛顿-拉夫逊算法等。

根据模型拟合的结果,可以得到每个因素的风险比及其显著性检验结果。

Cox回归分析在实际问题中有广泛的应用。

以医学研究为例,研究者常常希望了解某种治疗方式对患者生存时间的影响。

通过Cox回归分析,可以估计出不同治疗方式的风险比,并判断其是否显著。

这样就可以为临床医生提供有关治疗选择的科学依据。

另外,Cox回归分析也可以用于预测生存时间。

在预测模型中,可以考虑多个因素的影响,并计算出每个因素的权重。

通过对新样本的观测数据进行Cox回归分析,可以基于已知因素的权重预测出其生存时间。

除了医学研究外,Cox回归分析还可以应用于其他领域。

例如,在金融领域,可以使用Cox回归分析来研究某个因素对违约概率的影响;在社会科学中,可以使用Cox回归分析来分析某个因素对离婚率的影响。

COX回归分析解析

COX回归分析解析

a. Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: -61.344 b. Beginning Block Number 1. Method: Enter
Variables in the Equation B X1 X2 X3 X4 X5 X6 .262 .053 -1.274 1.106 -2.587 -.541 SE .896 .053 1.261 .618 1.114 .848 Wald .085 .995 1.020 3.201 5.397 .407 df 1 1 1 1 1 1 Sig. .770 .318 .312 .074 .020 .524 Exp(B) 1.299 1.054 .280 3.023 .075 .582
表2
实验对象
Logistic回归模型的数据结构
y X1 X2 X3 …. XP
1 2 3 … n
y1 y2 y3 … yn
a11 a21 a31 … an1
a12 a22 a32 … an2
a13 a23 a33 … an3
… … … … …
a1p a2p a3p … anp
━━━━━━━━━━━━━━━━━━ 其中:y取值是二值或多项分类

2

2

1

0




2363
88-12-1 95-5-22 1
注:性别‘ 1’ 为男性、放疗‘ 1’ 表示采用,‘ 0’ 表示未采用、结局 ‘1’表示死亡。
3.SPSS 软件实现方法
File→Open→相应数据(已存在)→ Analyze→ Survival→Cox regression →Time(dat)→Status →Define event →single value(1) →Continue → Covariates(自变量)→method → Fkward→Continue →

cox 标准化回归系数

cox 标准化回归系数

cox 标准化回归系数Cox标准化回归系数(Cox standardized regressioncoefficient)是指在Cox回归模型中,对自变量进行标准化后得到的回归系数。

在统计学中,回归系数用于衡量自变量对因变量的影响程度,而标准化回归系数进一步消除了自变量在量纲上的差异,使得各个自变量之间可以进行直接比较。

Cox回归模型是一种常用的生存分析方法,用于研究个体在给定时间段内的生存时间,并探究与其相关的因素。

在生存分析中,我们通常要考虑一些潜在的危险因素,以及它们对于个体生存时间的影响。

Cox回归模型可以帮助我们建立一个生存函数,考虑多个危险因素,并估计它们与生存时间之间的关系。

在Cox回归模型中,标准化回归系数的计算方法与传统的回归系数类似,但在计算过程中,对每个自变量进行标准化处理。

标准化处理的目的是将不同变量的测量单位进行统一,消除量纲差异,并且使得各个自变量的系数能够进行比较。

标准化回归系数的计算公式如下:β^s = β * (s / σ)其中,β^s是标准化回归系数,β是回归系数,s是自变量的标准差,σ是因变量的标准差。

标准差可以衡量一个变量的离散程度,通过对自变量进行标准化,可以使得系数的值变为单位标准差(standard deviation)变化时因变量变化的幅度。

标准化回归系数的解释与传统的回归系数类似,它表示当自变量的值增加一个标准差时,因变量的变化幅度。

然而,标准化回归系数的一个优点在于可以直接比较各个自变量的影响力。

比如,当两个自变量的标准化回归系数分别为0.5和0.2时,我们可以认为前者对因变量的影响更大。

标准化回归系数还可以用于判断自变量之间的相对重要性。

当两个自变量有相似的标准化回归系数时,可以认为它们对因变量的影响程度相近;而当一个自变量的标准化回归系数远大于另一个自变量时,可以认为前者对因变量的影响更为显著。

此外,标准化回归系数还可以用于变量选择(variable selection)。

cox回归结果解析

cox回归结果解析

c o x回归结果解析-CAL-FENGHAI.-(YICAI)-Company One1筛选变量的方法:第一步,结合临床,临床认为有关的变量均筛选出来。

第二步.应用双变量的相关分析,把显着相关的变量筛选出来,保留临床意义更大的那个。

第三步,应用Kaplan-Meier法对每个危险因素的两个暴露水平做生存曲线,若曲线存在交叉,则不能应用Cox生存分析(Cox生存分析也称比例风险回归,它包含一个假定,即在随访期间暴露于预后因素与非暴露的风险比例维持恒定),这类变量需应用更复杂的非比例风险回归模型,这里将不详述了。

第四步,单因素分析。

可应用COX生存分析的第0步结果作为单因素分析的结果。

可在SPSS的Cox回归里选择任何一种前进法,在Option中选择at each step,取因子筛选第0步的Score检验结果作为单因子Cox回归分析的结果。

也有文章的单因素分析对于离散型变量应用卡方检验和连续型变量应用t检验,等级资料应用双变量相关分析。

最后,将进行Cox回归分析。

应用SPSS中analysis-survival-cox regression.在time一栏中选择生存时间;在state一栏中选择数据状态(在数据编码中已经介绍),在激活的define event一栏中设定single value为1。

这里要强调几个小问题:1,SPSS可以支持研究者做两个或以上的变量的共同效应,需在主对话框中同时选中需研究的变量两个或两个以上,这样协变量框中的>a*b>才会被激活。

2,分类变量,在这里被称为哑变量,需单击categorical,然后将分类变量选入对话框。

最后得到的结果,B为协变量的系数,Exp(B)为相对危险度。

可得到比例风险模型:h(t,x)=h0(t)exp(Σβ ixi)公式1-1预后指数也称预后得分,PI(prognostic index)= (Σβ ixi)PI=0代表危险率处于平均水平,PI<0,代表危险率低于平均水平;PI>0,代表危险率高于平均水平。

COX回归分析解析

COX回归分析解析

COX回归分析解析Cox回归分析是一种常用的生存分析方法,用于评估对生存时间有影响的因素。

它可以解决各种因素在时间上对生存时间的影响,并可以考虑协变量的影响。

本文将对Cox回归分析的原理、应用和解读进行详细解析。

1. Cox回归分析原理Cox回归分析基于Cox比例风险模型,该模型假设各个协变量对生存时间的影响是线性的,并且不随时间变化。

其模型的数学表达式如下:h(t,x) = h0(t) * exp(β1x1 + β2x2 + ... + βpxp)其中,h(t,x)表示在给定协变量(x1, x2, ..., xp)条件下,时间t时刻个体的瞬时风险;h0(t)是基准风险函数,表示在所有协变量都为0的情况下,个体的风险函数;β1, β2, ..., βp为协变量x1, x2, ..., xp的回归系数。

2. Cox回归分析应用Cox回归分析广泛应用于生存分析领域,特别是在临床研究中。

它可以研究各种协变量对生存时间的影响,并进行因素筛选和预测。

在临床研究中,Cox回归分析可以用于评估各种因素对疾病生存时间的影响,如性别、年龄、治疗方式等。

同时,它还可以用于预测患者的生存概率,为临床决策提供依据。

除了临床研究外,Cox回归分析还可以用于其他领域的生存分析,如经济学、社会学等。

它可以评估不同因素对个体生存时间的影响,并提供深入的解释和预测。

在进行Cox回归分析后,可以得到每个协变量的回归系数和相应的风险比(HR)。

风险比是比较不同协变量之间风险大小的衡量指标。

当HR大于1时,表示该因素增加了个体生存时间的风险;当HR小于1时,表示该因素减少了个体生存时间的风险。

此外,Cox回归分析还可以得到每个协变量的置信区间(CI),用于对回归系数的显著性进行评估。

当CI不包含1时,表示该因素对生存时间具有显著影响;当CI包含1时,表示该因素对生存时间的影响不显著。

为了更好地解释结果,还可以绘制Kaplan-Meier曲线,用于显示不同组之间的生存差异。

COX回归分析

COX回归分析

COX回归分析
接下来,将事件发生时间、事件状态和预测变量作为输入,进行COX
回归分析。

在COX回归分析中,事件发生时间和事件状态被编码为一个对
数似然函数,即
log(λ(t)) = β0 + β1x1 + β2x2 + ... + βpxp
其中,λ(t)表示在时间t事件发生的概率密度函数,β0是一个基
准风险,β1到βp是对应预测变量的系数,x1到xp是对应预测变量的
取值。

模型评估的主要方法是似然比检验和比例风险检验。

似然比检验用于
检测整个模型的有效性,比例风险检验用于检测每个预测变量的有效性。

如果似然比检验的P值小于显著水平,可以认为预测变量对事件风险有显
著影响。

结果解读时,主要关注风险比(HR)和置信区间(CI)。

风险比可以
用来比较两个组之间的事件风险,HR>1表示高风险,HR<1表示低风险,HR=1表示相同风险。

置信区间表示了对风险比的估计的不确定性范围,
通常使用95%置信区间。

总之,COX回归分析可以帮助研究者识别和评估多个预测变量对事件
风险的影响。

通过选择预测变量、建立模型、评估模型和解读结果,可以
得到有关预测变量对事件风险影响的有效信息,为生存分析提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

筛选变量的方法:第一步,结合临床,临床认为有关的变量均筛选出来。

第二步.应用双变量的相关分析,把显著相关的变量筛选出来,保留临床意义更大的那个。

第三步,应用Kaplan-Meier法对每个危险因素的两个暴露水平做生存曲线,若曲线存在交叉,则不能应用Cox生存分析(Cox生存分析也称比例风险回归,它包含一个假定,即在随访期间暴露于预后因素与非暴露的风险比例维持恒定),这类变量需应用更复杂的非比例风险回归模型,这里将不详述了。

第四步,单因素分析。

可应用COX生存分析的第0步结果作为单因素分析的结果。

可在SPSS的Cox回归里选择任何一种前进法,在Option中选择at each step,取因子筛选第0步的Score检验结果作为单因子Cox回归分析的结果。

也有文章的单因素分析对于离散型变量应用卡方检验和连续型变量应用t检验,等级资料应用双变量相关分析。

最后,将进行Cox回归分析。

应用SPSS中analysis-survival-cox regression.在time一栏中选择生存时间;在state一栏中选择数据状态(在数据编码中已经介绍),在激活的define event一栏中设定single value为1。

这里要强调几个小问题:1,SPSS可以支持研究者做两个或以上的变量的共同效应,需在主对话框中同时选中需研究的变量两个或两个以上,这样协变量框中的>a*b>才会被激活。

2,分类变量,在这里被称为哑变量,需单击categorical,然后将分类变量选入对话框。

最后得到的结果,B为协变量的系数,Exp(B)为相对危险度。

可得到比例风险模型:h(t,x)=h0(t)exp(Σβ ixi)公式1-1
预后指数也称预后得分,PI(prognostic index)= (Σβ ixi)
PI=0代表危险率处于平均水平,PI<0,代表危险率低于平均水平;PI>0,代表危险率高于平均水平。

由公式1-1可以求得全部病人的预后指数。

将所有的预后指数做等级变换,例如分组的界点PI=-1,0,1,以PI为分类变量做COX回归,并估计生存率,便获得预后指数分类生存率,若样本量很大,或代表性比较好,可用内插法分别估计不同预后指数水平的人群的k年生存率,以及中数生存期,编制成参照表,便可用于临床,根据每个病人的PI值,预测其存活k年的概率,以及期望的生存年数。

最后一段摘自方积乾主编的第二版《医学统计学与电脑试验》。

如果我们能够象国外一样做大规模多中心前瞻的研究,我一定要做到最后一步。

其实这个问题关键还是在你自己,就是你为何要定义分类变量?如果变量是连续变量或者是具有等级关系的,那么一般是不定义为分类变量的,比如年龄,身高,体重等等。

如果变量的数值之间没有等级关系,比如组别,我们用1表示A组,2表示B性,3表现C组,这个在分析的时候是需要定义为分类变量的,因为这个数值的大小是没有意义的。

所以关键怎么选择,还是需要看楼主这几个变量所代表的具体意义。

COX回归时如果需要分析的自变量中为有序多分类,为保证结果的准确性,应将其指定为亚变量进行分析(严格的讲,两分类变量也应进行指定,但不指定时的分析结果是等价的),所以您定义为categorical后的计算结果是可信的
the final multivariate Cox regression model, xx was identified as an independent prognostic factor with an adjusted hazard ratio of 1.60 (95% confidence interval 1.07–2.41)”,而有的文章则是这样描述“Cox regression indicated that ING4 expression is an independent prognostic factor for overall 5-year survival (Relative risk = 2.50, 95% confidence interval = 1.09–5.74, P = 0.031)”请问这两种描述有什么区别?hazard ratio与relative risk又有什么不同?谢谢大家!
相关疾病:


1、Enter:所有自变量强制进入回归方程;
2、Forward: Conditional:以假定参数为基础作似然比概率检验,向前逐步选择自变量;
3、Forward: LR:以最大局部似然为基础作似然比概率检验,向前逐步选择自变量;
4、Forward: Wald:作Wald概率统计法,向前逐步选择自变量;
5、Backward: Conditional:以假定参数为基础作似然比概率检验,向后逐步选择自变量;
6、Backward: LR:以最大局部似然为基础作似然比概率检验,向后逐步选择自变量;
7、Backward: Wald:作Wald概率统计法,向后逐步选择自变量。

--------------------------------------------------------------------------------------------------------------
在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。

在这种情况下可用逐步回归分析,进行x因子的筛选,可以很好地剔除一些对模型贡献不大的变量,这样建立的多元回归模型预测效果会比较好。

如下,变量非常多的情况:
y:历年病情指数
x1:前年冬季油菜越冬时的蚜量(头/株)
x2:前年冬季极端气温
x3:5月份最高气温
x4:5月份最低气温
x5:3~5月份降水量
x6:4~6月份降水量
x7:3~5月份均温
x8:4~6月份均温
x9:4月份降水量
x10:4月份均温
x11:5月份均温
x12:5月份降水量
x13:6月份均温
x14:6月份降水量
x15:第一次蚜迁高峰期百株烟草有翅蚜量
x16:5月份油菜百株蚜量
x17:7月份降水量
x18:8月份降水量
x19:7月份均温
x20:8月份均温
x21:元月均温
在变量较少或者是有很多变量没有意义的情况下,用ENTER比较好
forward用得最多,但据说backward效果更好,但两者结果基本一致的,差异的情况很少
我见过有的文章在做回归分析的时候,enter、forward、backward一起用
“多因素logistic回归分析结果:enter、forward、backward 3 种分析均提示慢性炎症状态是最强烈的危险因素,而血红蛋白增多、活动度增多、食欲改善具有保护性作用。


———1239例CKD并发营养不良和心血管疾病的多中心调查及中药干预的实验。

相关文档
最新文档