COX回归分析

合集下载

cox回归分析

cox回归分析

生存分析之COX回归分析1、生存分析,就是将终点事件出现与否与对应时间结合起来分析得一种统计方法;2、生存时间,就是从规定得观察起点到某一特定终点事件出现得时间,如膀胱癌术后5年存活率研究,及膀胱癌手术为观测起点,死亡为事件终点,两点为生存时间;3、完全数据,观测起点到终点事件所经历得时间,上述例子即膀胱癌手术到因膀胱癌死亡得时间;4、删失数据,因失访、研究结束终点事件未发生或患者死于规定得终点事件以外得原因而终止观察,不能确定具体生存时间得一类数据;5、生存概率,表示某时段开始存活得个体到该时段结束仍存活得概率,p=活满某时段得人数/该时段期初有效人口数;6、生存率,为观察起点起到研究时间点内各个时段得生存概率得累积概率,S(tk)=p1、p2、pk=S(tk-1)、pk;7、生存曲线,以生存时间为横轴,将各个时间点得生存率连在一起得曲线图;8、中位生存期,又称半数生存期,表示50%得个体存活得时间;9、PH假定(等比例风险假定),某研究因素对生存得影响不随时间得改变而改变,就是COX回归模型建立得前提条件。

Cox回归分析及其SPSS操作方法概述前面我们已经讲过生存分析及KM法得内容,详细可以回复数字26-28查瞧。

但有对统计不太熟悉得“微粉”还不太明白生存分析与一般统计得区别,不知道如何区别Cox回归与Logistic回归。

在我们做研究时,有时我们不仅关心某种结局就是否出现,还会关心结局出现得时间,例如肺部手术后观察五年生存率,一个有在1年之后死亡,另外一个人在在4、5后死亡,如果只瞧第5年时得结局,两者就是一样得(均死亡),但就是实际我们认为后者得治疗效果可能优于前者,即生存分析同时考虑结局与结局出现得时间,而一般分析只考虑结局。

另外在队列随访时,可能有人在没有到5年时就失访了,如迁徙或者电话更改,我们不了解其结局如何,在一般得分析中这种病例无法使用,而中间失访得病例结局可能更差,如果直接扔掉,可能会产生偏倚;而用生存分析,这种病例可以给我们提供部分资料,即我们记录最后一次随访时病例得状态,失访前得资料可以用于分析。

Cox回归分析

Cox回归分析
βi的实际意义
◦ 当其它协变量相同,变量Xi改变一个单位时,引起的死亡 风险改变倍数的自然对数值
从本质上讲,Cox模型无法准确估计出具体风险状 况和计算生存率
研究癌细胞是否有转移(x1:x1=0 无转移,x1=1 有转移)和是否 手术(x2:x2=0 无手术,x2=1 有手术)这两个协变量对癌症患者 生存时间的影响,建立了如下Cox回归模型:
(proportional hazard model) S (t) = S0 (t)exp( Xβ ')
Xβ'=β1x1+β2x2+…+βmxm
h0(t)称为基础风险函数(Baseline Hazard Function)
◦ 表示个体在时点t的基线死亡风险,也就是说 所有协变量为0,即风险因素为基线值时的死 亡风险率
4
3-
30
30
0.30
0.65
5
4-
10
10
0.10
0.75
6
5-
5
5
0.05
0.80
7
6-
4
4
0.04
0.84
8
7-
3
3
0.03
0.87
9
8-
2
2
0.02
0.89
10
9-
2
2
0.02
0.91
11
10-
1
1
0.01
0.91
12 11-21
8
0.8
0.008
1.00
半参数法
◦ 规定了影响因素和生存结局间的关系,对时间 (和风险函数)的分布没有加以限定
RR=exp(β)

cox回归系数范围

cox回归系数范围

Cox 回归(也称为比例风险回归)是一种生存分析方法,通常用于分析时间到事件发生的数据,如生存时间数据。

Cox 回归的主要目标是评估自变量对事件发生的风险(或概率)的影响。

Cox 回归系数的范围通常是取决于所使用的统计软件和参数化方法。

下面是一些 Cox 回归系数范围的解释:1.系数范围: Cox 回归模型中的系数是自变量对风险的影响的估计值。

这些系数可以为正、负或零,它们表示了自变量对风险的影响程度和方向。

2.指数化系数: Cox 回归系数通常是指数化的。

指数化系数的范围通常是在正实数范围内。

如果系数为1,表示自变量对风险没有影响。

如果系数大于1,表示自变量对风险有正向影响,即增加风险。

如果系数小于1,表示自变量对风险有负向影响,即减小风险。

3.系数的解释: Cox 回归系数的解释通常依赖于所使用的统计软件和模型参数化方法。

在一些软件中,系数可以被解释为相对风险的对数。

这意味着一个单位的系数变化对应于相对风险的对数变化。

在其他软件中,系数可能被解释为相对风险的比例变化。

这些解释方法有助于理解自变量对事件风险的实际影响。

4.信赖区间:与 Cox 回归系数相关的还有信赖区间。

信赖区间提供了系数估计的不确定性范围,通常以95%置信水平表示。

系数估计的信赖区间可以帮助确定系数的显著性以及风险估计的稳定性。

总之,Cox 回归系数的范围通常是指数化的,位于正实数范围内,表示自变量对风险的影响。

系数的解释可能取决于统计软件和参数化方法,通常被解释为相对风险的对数或比例变化。

系数估计的信赖区间可用于确定系数的显著性和稳定性。

cox回归分析

cox回归分析

生存分析之COX回归分析1.生存分析,是将终点事件出现与否与对应时间结合起来分析的一种统计方法;2.生存时间,是从规定的观察起点到某一特定终点事件出现的时间,如膀胱癌术后5年存活率研究,及膀胱癌手术为观测起点,死亡为事件终点,两点为生存时间;3.完全数据,观测起点到终点事件所经历的时间,上述例子即膀胱癌手术到因膀胱癌死亡的时间;4.删失数据,因失访、研究结束终点事件未发生或患者死于规定的终点事件以外的原因而终止观察,不能确定具体生存时间的一类数据;5.生存概率,表示某时段开始存活的个体到该时段结束仍存活的概率,p=活满某时段的人数/该时段期初有效人口数;6.生存率,为观察起点起到研究时间点内各个时段的生存概率的累积概率,S(tk)=p1.p2.pk=S(tk-1).pk;7.生存曲线,以生存时间为横轴,将各个时间点的生存率连在一起的曲线图;8.中位生存期,又称半数生存期,表示50%的个体存活的时间;9.PH假定(等比例风险假定),某研究因素对生存的影响不随时间的改变而改变,是COX回归模型建立的前提条件。

1.Cox回归分析及其SPSS操作方法概述前面我们已经讲过生存分析及KM法的内容,详细可以回复数字26-28查看。

但有对统计不太熟悉的“微粉”还不太明白生存分析与一般统计的区别,不知道如何区别Cox回归与Logistic回归。

在我们做研究时,有时我们不仅关心某种结局是否出现,还会关心结局出现的时间,例如肺部手术后观察五年生存率,一个有在1年之后死亡,另外一个人在在4.5后死亡,如果只看第5年时的结局,两者是一样的(均死亡),但是实际我们认为后者的治疗效果可能优于前者,即生存分析同时考虑结局和结局出现的时间,而一般分析只考虑结局。

另外在队列随访时,可能有人在没有到5年时就失访了,如迁徙或者电话更改,我们不了解其结局如何,在一般的分析中这种病例无法使用,而中间失访的病例结局可能更差,如果直接扔掉,可能会产生偏倚;而用生存分析,这种病例可以给我们提供部分资料,即我们记录最后一次随访时病例的状态,失访前的资料可以用于分析。

cox 标准化回归系数

cox 标准化回归系数

cox 标准化回归系数什么是cox标准化回归系数?Cox标准化回归系数是一种用于生存分析的统计方法,它被用来评估某个因素对个体生存率的影响。

在生存分析中,我们关心的是个体从某个事件(如死亡、失业等)发生的时间到达另一个特定事件(如死亡、失业等)的时间间隔。

Cox标准化回归系数被应用于Cox比例风险模型中,这是一种常用的生存分析方法。

在回归模型中通常使用的回归系数反映了因变量在自变量改变时的变化量,而Cox标准化回归系数则以标准差为单位,可以用来量化不同自变量对生存率的相对影响。

Cox标准化回归系数的计算考虑了其他所有变量的影响,并且它们都要在模型的基础上进行标准化。

步骤一:建立Cox比例风险模型在计算Cox标准化回归系数之前,我们首先需要建立一个Cox比例风险模型。

Cox比例风险模型是一种生存分析模型,它可以估计各个因素对生存时间的影响。

模型的表达式如下:h(t X) = h0(t) * exp(β1*X1 + β2*X2 + ... + βp*Xp)其中,h(t X)表示在给定自变量的条件下,某一特定时间点的风险;h0(t)是基准风险函数,它表示在没有自变量的情况下的风险函数;exp(β1*X1 + β2*X2 + ... + βp*Xp)是个体风险因素的比例。

步骤二:计算Cox变量的标准化因子在计算Cox标准化回归系数之前,我们需要计算每个自变量的标准化因子。

标准化因子是通过将每个自变量减去其均值,然后除以标准差来计算的。

标准化因子的计算可使得回归系数的数量级都在一个可比较的范围内。

标准化因子= (Xi - mean(X)) / sd(X)其中,Xi是第i个自变量的特定值,mean(X)是该自变量的均值,sd(X)是该自变量的标准差。

步骤三:计算Cox标准化回归系数一旦我们获得了每个自变量的标准化因子,我们就可以计算Cox标准化回归系数。

Cox标准化回归系数可以被看作是每个自变量对生存率的相对影响的量化。

univariate cox regression analysis

univariate cox regression analysis

univariate cox regression analysis【原创版】目录1.单变量 Cox 回归分析简介2.单变量 Cox 回归分析的步骤3.单变量 Cox 回归分析的优缺点正文一、单变量 Cox 回归分析简介单变量 Cox 回归分析是一种用于研究生存时间数据和事件发生风险的统计分析方法,由英国统计学家 Richard Cox 于 1972 年首次提出。

该方法主要通过建立一个数学模型,以预测某个事件在特定时间内发生的概率,同时评估不同变量对事件发生风险的影响。

在实际应用中,单变量Cox 回归分析被广泛应用于医学、生物统计学、金融等领域。

二、单变量 Cox 回归分析的步骤1.数据收集:首先需要收集一组生存时间数据,包括事件发生时间、事件类型、个体特征等。

2.数据整理:对收集到的数据进行清洗、整理,确保数据的准确性和完整性。

3.变量筛选:根据研究目的和数据特点,筛选出可能影响事件发生风险的自变量。

4.建立数学模型:根据所选自变量,构建单变量 Cox 回归模型,包括风险函数和生存函数。

5.模型估计:利用最大似然估计法或贝叶斯方法,估计模型中的参数。

6.模型检验:检验模型的有效性和假设是否成立,通常采用 log-rank检验或 Schmidt-Norman 检验。

7.结果解释:根据模型估计结果,解释自变量对事件发生风险的影响程度。

三、单变量 Cox 回归分析的优缺点优点:1.可以处理生存时间数据,适用于研究长时间内事件发生的风险。

2.能够评估多个自变量对事件发生风险的相对影响。

3.具有较强的统计学性质,可以进行模型检验和参数估计。

缺点:1.对模型的假设较强,如线性关系、恒定风险比等,可能不适用于所有情况。

2.参数估计的精确性受样本量和数据分布的影响较大。

cox比例风险回归模型结果解读

cox比例风险回归模型结果解读

COX比例风险回归模型是一种常用的生存分析方法,它能够对生存时间或事件发生时间进行建模,并且能够考虑到不同个体的观测时长不同这一特点。

在研究中,COX比例风险回归模型通常被用来探究某种因素对于生存时间或事件发生时间的影响程度。

本文将以COX比例风险回归模型为主题,深入探讨其原理、应用、结果解读和个人理解。

一、COX比例风险回归模型原理COX比例风险回归模型是由David R. Cox于1972年提出的,它是一种半参数模型,既考虑了危险比的比例关系,又不需要对基本风险函数作出严格的假设。

模型的基本形式为:$$ h(t|x) =h_0(t)exp(\beta_1x_1+\beta_2x_2+...+\beta_px_p) $$ 其中,h(t|x)为在给定协变量x情况下,观测到时间t的瞬时事件发生率;h0(t)为基础风险函数,与协变量无关;β1, β2,…, βp为协变量的回归系数;x1, x2,…, xp为对应的协变量。

二、COX比例风险回归模型应用COX比例风险回归模型主要适用于生存分析领域,例如医学、流行病学和生态学等研究中。

研究者可以利用COX比例风险回归模型来探究不同因素对于生存时间或事件发生时间的影响情况。

这种模型在临床试验中也得到了广泛的应用,可以用来评估治疗效果、预测疾病风险等。

三、COX比例风险回归模型结果解读在进行COX比例风险回归模型分析后,我们通常会得到各个协变量的回归系数、危险比和相应的置信区间。

这些结果对于理解不同因素对生存时间或事件发生时间的影响至关重要。

如果某个协变量的危险比为2.0,且置信区间不包含1.0,就说明该因素对事件发生的影响是显著的。

还需要考虑模型的比例风险假设是否成立,以及是否存在共线性等问题。

个人理解与观点:COX比例风险回归模型是一种非常有用的统计方法,它能够帮助研究者从更深层次理解不同因素对生存能力的影响程度。

然而,在进行模型分析时,我们还需要注意模型的适用性和准确性,避免结果的误导性。

COX回归分析分析

COX回归分析分析
( Cox's proportional harzard model)。
1、数据结构
设含有p个变量x1, x2,…,xp及时间T和结局C的 n个观察对象. 其数据结构见表3。
表3 COX模型数据结构
实验对象 t C
1
t1 1
2
t2 0
3
t3 0
… ……
n
tn 1
X1 X2
a11 a12 a21 a22 a31 a32
下的最 LLP (H1)
大部分似然函 和 LLP (H1 )




▪ 可以证明在H0成立的条件下,统计量
▪ 自χ由2=度-为2[p的LχLP2分(H布1 )。- LLP (H 0 ) ] 服从
(3)Cox比例风险回归模型
ln(h(t)/ h0(t))=β1x1+β2x2+…+βpxp 参数β 1,β2…,βp称为偏回归系数 , 由于h0(t)是未知的,所以COX模型称为半参 数模型。
COX比例风险函数的另一种形式: h(t)= h0(t)exp(β1x1+β2x2+…+βpxp)
(4) 流行病学意义
“ 生存”的概念
生物生存 仪器始使正常 疾病产生 疾病治愈
阴性
与死亡 与出现故障 与治愈 与复发
与阳性
起始事件 随访时间 终点事件
▪ 疾病确诊 治疗开始 治疗开始 接触危险物
死亡 死亡 痊愈 出现反映
截尾数据的处理
▪ 因为不太好处理截尾数据,很多临床 研究工作者常常将失访或中止等原因造 成的截尾数据在分析时抛弃。截尾数据 提供的信息虽然是不完全的,但也很有 价值,不应随便删掉它。
Logit( p) 0 1 X1 p X p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Total a. Dependent Variable: DAY
Omnibus Tests of Model Coefficientsa,b Overall (score) -2 Log Likelihood Chi-square df 45.145 14.783 6 Change From Previous Step Change From Previous Block Sig. Chi-square df Sig. Chi-square df Sig. .022 16.199 6 .013 16.199 6 .013
Enter和Remove的确定同前
调试法:P从大到小取值0.5,0.1, 0.05,一般实际用时, Enter , Remove应多次选取调整。

例.某医师对1988年收治的16例鼻腔 淋巴瘤患者随访了13年,数据见表7, 试作COX回归。

1 2 3
… 16
表2
1 0 0
… 0
鼻腔淋巴瘤患者随访资料
(6)Cox模型中回归系数的检验
假设为 H0: k 0 ,其它参数β固定; H1: k 0 ,其它参数β固定。 H0成立时,统计量 Z =bk/SE(bk) 服 从标准正态分布。SE(bk)是回归系数bk的标准 误。
3、Cox回归模型的作用 (1) 可以分析各因素的作用 (2)可以计算各因素的相对危险度 (relative risk,RR)
logit( p) ln[p /(1 p)]
为Logistic变换,即:
Logit( p) 0 1 X 1 p X p
SPSS操作步骤:
Analyze-----Regression-----Binary Logistic -----Dependent框(y)-----Covariates框 (x1,x2,…)------ok

2

2

1

0




2363
88-12-1 95-5-22 1
注:性别‘1’为男性、放疗‘1’表示采用,‘0’表示未采用、结局 ‘1’表示死亡。
3.SPSS 软件实现方法
File→Open→相应数据(已存在)→ Analyze→ Survival→Cox regression →Time(dat)→Status →Define event →single value(1) →Continue → Covariates(自变量)→method → Fkward→Continue →
整理
生存天数 578 1549 4717
编 项目登记 观察记录 号 性别 年龄 分期 鼻血 放疗 化疗 开始日 终止日 结局
45 36 45 2 2 2 2 2 0 0 0 1 1 1 0 88-1-17 89-8-17 1 88-1-21 92-4-17 1 88-2-2 90-12-31 0

51
(3)可以用 β1x1+β2x2+…+βpxp(预 后指数)估计疾病的预后。
4、筛选变量(逐步COX回归分析)
(1)向前法(forward
selection)
(2)后退法(backward selection) (3)逐步回归法 逐步引入-剔除法(stepwise selection) SPSS实现方法与Logistic回归相同
a. Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: -61.344 b. Beginning Block Number 1. Method: Enter
Variables in the Equation B X1 X2 X3 X4 X5 X6 .262 .053 -1.274 1.106 -2.587 -.541 SE .896 .053 1.261 .618 1.114 .848 Wald .085 .995 1.020 3.201 5.397 .407 df 1 1 1 1 1 1 Sig. .770 .318 .312 .074 .020 .524 Exp(B) 1.299 1.054 .280 3.023 .075 .582
第一,描述生存过程 研究生存时间的分布特点,估计生存 率,生存曲线; 第二,比较生存过程(假设检验) 对两组或多组生存率进行比较; 第三,影响生存时间的因素分析 了解影响生存过程的主要因素为改善 预后提供指导。
例在对资料进行描述时: 5名癌症患者存活时间(月) 6 10 14 20 20 n=5 平均生存时间, mean=18 ,median=14
Options→Correlation of estimate→ Display model→at last step→Entry-removal (0.05,0.10)→Maximum iterations(20)→ Continue→OK
Case Processing Summary N Cases available in analysis Cases dropped Event a Censored Total Cases with missing values Cases with non-positive time Censored cases before the earliest event in a stratum Total 15 1 16 0 0 0 0 16 Percent 93.8% 6.3% 100.0% .0% .0% .0% .0% 100.0%
( Cox's model)。
proportional
harzard
1、数据结构
设含有p个变量x1, x2,…,xp及时间T和结局C的 n个观察对象. 其数据结构见表3。
表3
实验对象 t
COX模型数据结构
C X1 X2 X3
1 2 3 … n
t1 t2 t3 … tn
1 0 0 … 1
a11 a21 a31 … an1
a12 a22 a32 … an2
a13 a23 a33 … an3
… … … … …
…. XP
a1p a2p a3p … anp
3、COX回归模型 (Cox regression model)
(1)风险率(hazard rate):
患者在t时刻仍存活,在时间t后的瞬间 死亡率,以h(t)表示。
死于区间(t , t t )的病人数 h(t ) 在t时刻尚存的病人数 t
始点
终点
始点
终点

生 存 分 析 (survival analysis) : 生存时间一般是通过随访收集。不 完全数据提供了部分信息。须要用 专门的方法进行统计处理,这类统 计方法起源于对寿命资料的统计分 析,故称为生存分析。
“ 生存”的概念
生物生存 仪器始使正常
疾病产生 疾病治愈
与死亡 与出现故障
y X1 X2 X3 …. XP
1 2 3 … n
y1 y2 y3 … yn
a11 a21 a31 … an1
a12 a22 a32 … an2
a13 a23 a33 … an3
… … … … …
a1p a2p a3p … anp
━━━━━━━━━━━━━━━━━━ 其中:y取值是二值或多项分类
定义:

1 2 3 … n
表1
y
多元线性回归分析的数据结构
X1 X2 X3 …. XP
实验对象
y1 y2 y3 … yn
a11 a21 a31 … an1
a12 a22 a32 … an2
a13 a23 a33 … an3
… … … … …
a1p Байду номын сангаас2p a3p … anp
━━━━━━━━━━━━━━━━━━ 其中:y取值是服从正态分布
多元线性回归模型
通过实验测得含有p个自变量x1,x2,x3,…,xp 及一个因变量y的n个观察对象值, 利用最小二乘法 原理, 建立多元线性回归模型:
ˆ y b0 b1x1 b2 x2 bp x p
其中b0为截距, b1 ,b2 …bp称为偏回归系数.
bi表示当将其它p-1个变量的作用加以固定后, Xi
改变1个单位时Y将改变bi个单位.
SPSS实现逐步回归方法:
操作过程:Analyze---Regression--Linear---y选入Dependent---x1、x2、 X3选入Independent---Stepwise--options--ok
表2
实验对象
Logistic回归模型的数据结构
与治愈 与复发
阴性
与阳性
起始事件
疾病确诊
随访时间
终点事件
死亡
治疗开始 治疗开始
接触危险物
死亡 痊愈
出现反映
截尾数据的处理
因为不太好处理截尾数据,很多临床 研究工作者常常将失访或中止等原因造 成的截尾数据在分析时抛弃。截尾数据 提供的信息虽然是不完全的,但也很有 价值,不应随便删掉它。
二、生存分析的主要内容
(2)COX回归模型的构造

多元线性回归模型:
ˆ yi b0 b1x1i b2 x2i bp x pi
Logistic回归模型: ln[p /(1 p)] 0 1 X 1 p X p 设不存在因素X1、X2 、Xp的影响下, 病人t 时刻死亡的风险率为h0(t), 存在因素X1、 X2 、Xp t的影响下, t时刻死亡的风险率为h(t). 用死亡率的比 h(t)/h0(t) 代替P/(1-P)即得。
相关文档
最新文档