定积分的定义及几何意义
定积分的几何意义

2
在[- , ]上连续,且在[- ,0]上
22
2
y f(x)=sinx
sin x 0,在[0, ]上sin x 0,并有
2
A1 = A2 ,所以
2 -
f
(x)dx
=
A2
-
A1
=
0
2
1
-2
A2
A1
x
-1 2
变式:
1)
2
sin xdx = 0
2) sin xdx = 2
2 sin xdx
3、定积分的几何意义:
b a
f (x)d x
的实质
(1)当f(x)在区间[a,b]上大于0时,ba f (x) d x 表示
由 直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲
边梯形的面积 ,这也是定积分的几何意义.
(2)当f(x)在区间[a,b]上小于0时,ba f (x) d x 表示
上述曲边梯形面积的负值。
y=-f (x)
b
S = a[- f (x)]dx
b
S = a[- f (x)]dx
=- b f (x)dx ., a
Oa
bx
b
c
b
a f (x)dx ==-aS f (x)dxc f (x
b
c
b
f (x)dx ==-S f (x)dx
a
a
c
f (x)dyx=f。(x)
ba1dx
=1
S = 0-1[(x -1)2 -1]dx - -102[(x -0 1)2 -1 1x]dx 01 2x
S = 2 x2dx 1
S = 1 1- x2 dx -1
掌握定积分概念及基本性质

供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。
定积分的几何意义是什么

定积分的几何意义是什么定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上局部为正,x轴之下局部为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。
定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上局部为正,x轴之下局部为负,根据cosx 在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。
定积分的几何意义
定积分定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。
即由y=0,x=a,x=b,y=f(X)所围成图形的面积。
这个图形称为曲边梯形,特例是曲边三角形。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;假设只有有限个连续点,那么定积分存在;假设有跳跃连续点,那么原函数一定不存在,即不定积分一定不存在。
定积分的定义性质和几何意义

b
f ( x)dx
b g( x)dx 。
a
a
15
3.1-3 定积分的定义、性质和几何意义
例1 利用定义计算定积分 1 x2dx. 0
解:∵ x2在[0, 1]上 连续,∴ x2在[0, 1]上 可积。
将[ 0,1]
n等分,分点为 xi
i ,(i 1,2, n
,n)
小区间
[ xi1 , xi ]
曲边梯形的面积 A 是曲边函数 y f ( x) 在区间[a,b]
上的定积分: A b f ( x)dx 。 a
变速直线运动的物体所经过的路程 s 是速度函数
v v(t) 在时间区间[a,b]上的定积分: s
b
v(t )dt
。
a
13
3.1-3 定积分的定义、性质和几何意义
2.定积分定义的剖析
b f ( x)dx 0 。 a
性质 5 若 f R[a,b],则| f | R[a,b],且
b
f ( x)dx
b f ( x) dx 。
a
a
26
3.1-3 定积分的定义、性质和几何意义
例 2 比较下列各对积分值的大小.
(1)
13 xdx 与
1 x3dx ;(2)
1 xdx 与
161n12n1,
当
max
1in
xi
1 n
0 时,即 n
,有
1 x2dx 0
n
lim 0 i1
i2xi
lim 11121 1 . n6 n n 3
17
3.1-3 定积分的定义、性质和几何意义
例 2.用定积分的定义计算 1 e xdx 。 0
解:∵ e x在[0, 1]上 连续,∴ e x在[0, 1]上 可积。
定积分的概念

f ( i ) xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当 0时,和式总趋于 确定的极限I ,我们称这个极限 I 为函数 f ( x)
在区间[a, b]上的定积分, 记为
积分上限
b a
f ( x)dx
I
lim 0
n i 1
f
(i )xi
积分和
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表 达 式
变 量
定积分的本质是一种特殊结构的和式的极限
曲边梯形面积A:
n
A lim 0 i1
f (i )xi
记为 b f x dx a
隔[T1 ,T2 ]内,v 的变化不大,可近似看作是
匀速运动问题。按照求曲边梯形面积的思 想。
思路:把整段时间分割成若干个小段,每小段上 速度看作不变。求出各小段的路程再相加,便得到 路程的近似值。最后通过对时间的无限细分过程求 得路程的精确值。
(1)分割 T1 t0 t1 t2 tn1 tn T2 ti ti ti1
sin xdx
1
A2
4
sin
xdx
所以
5
A sin xdx 4 sin xdx
1
内容小结
1. 定积分的定义 — 乘积和式的极限
b
n
a
f ( x)dx lim 0 i1
f (i )xi
2. 定积分的几何意义
1.5.3定积分的几何意义3.14

a
b
f (x)dx =Sf (x)dx
a
c
ba (2)定积分的几何意义: f ( x)dx lim f (i ) a n n i 1
b n
当f(x)0时,由yf (x)、xa、xb 与y=0所围成的曲 边梯形位于 x 轴的下方,
y yf (x)
积分 f (x)dx 在几何上表示
a a
例1、
利用定积分的几何意义 说明等式 成立。
2
2
sin xdx 0
y
解: 在右图中,被积函数 ( x) sin x f
在[
, ]上连续,且在 ,]上 [ 0 2 2 2
2
f(x)=sinx 1
sin x 0, 在[0, ]上sin x 0,并有 2 A1 A2 , 所以
S
y f (x)
x
f ( x) 0,
b
a
f ( x)dx S
曲边梯形的面积的负值
一般地, f(x)在[a, b]上的定积分表示介于y=0、曲线 y=f(x)及直线x=a、x=b之间的各部分面积的代数和.
y
y=f(x)
A1 a
A3
A5
A2
A4
b x
b a
f ( x)d x A1 A2 A3 A4 A5
A1
-1
A2
2
x
2
2
f ( x)dx A2 A1 0
例2、用定积分表示图中四个阴影部分面积
y
f(x)=x2
y
f(x)=x2
定积分的概念

小结
1.定积分的实质:特殊和式的极限.
2.定积分的思想和方法:
分割 求和 化整为零
求近似以直(不变)代曲(变)
积零为整
取极限
取极限
精确值——定积分
四.定积分的性质 一、基本内容
对定积分的补充规定:
(1)当a b 时,a f ( x )dx 0 ;
b
(2)当a b 时, f ( x )dx f ( x )dx .
(4) s lim v ( i )t i v ( t )dt 0 T
T2
1
n
i 1
A lim f ( i )xi
0 i 1
n
b
a
f ( x )dx
二、定积分存在定理
定理1 当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
1 . 2
例2 利用定义计算定积分
i 解 将[0,1]n 等分,分点为 x i ,(i 1,2, , n ) n 1 小区间[ x i 1 , x i ]的长度x i ,(i 1,2, , n ) n
0 x dx.
2
1
i 取 i xi ( i 1,2,3,4...,n) y n n n 2 f ( i )xi i xi
o
i 1 n
i n
1
x
f ( )x
i 1 i i
n 1
n 1 i 1
i 1 n 1 2 i n( n 1) 2 2 n n i 1 2n
n1 2n
0 n
1
0
xdx lim i xi 0
定积分的定义及几何意义

定 积 分教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解.1。
定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间 [,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a x n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n n n i i i i b a S f x f nξξ==-=∆=∑∑ 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()b a f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b af x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ (3)积分的几何意义:曲边图形面积:()ba S f x dx =⎰; 积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()ba W F r dr =⎰ 2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1a b dx b a -=⎰1 性质2⎰⎰=b a b a dx x f k dx x kf )()( (其中k 是不为0的常数) 性质31212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ 性质4 ()()()()bc b a a c f x dx f x dx f x dx a c b =+<<⎰⎰⎰其中例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11i i t n n n-∆=-= (2)近似代替:2)1(1n i n s i -=∆ (3)求和: 1ni i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --= (4)取极限:1111115lim lim lim 112323n n n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 例1.利用定积分的定义计算dx x )1(210+⎰的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档 定 积 分
教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.
教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解.
1.定积分的概念:
一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<
<<<<=将区间 [,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a x n
-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n n n i i i i b a S f x f n
ξξ==-=∆=∑∑ 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()b
a S f x dx =⎰
其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:
(1)定积分()b a f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a
f x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:
①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n
i i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ (3)积分的几何意义:曲边图形面积:()b
a S f x dx =⎰; 积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()b
a W F r dr =⎰ 2.定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1
a b dx b a -=⎰1 性质2 ⎰⎰=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数)
精品文档 性质3
1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ 性质4 ()()()()b
c b a a c f x dx f x dx f x dx a c b =+<<⎰⎰⎰其中
例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11i i t n n n
-∆=-= (2)近似代替:
2)1(1n i n s i -=∆ (3)求和: 1n
i i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --= (4)取极限:
1111115lim lim lim 112323
n n n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 例1.利用定积分的定义计算dx x )1(21
0+⎰的值。
例2.计算定积分21(1)x dx +⎰=52。
练习:
1.利用定积分的定义计算dx x )12(1
0+⎰的值。
2.计算下列定积分
(1)50(24)x dx -
⎰ (2)11x dx -⎰ (3) dx x )43(222--⎰-
(4)求定分3-⎰x .。