定积分几何意义

合集下载

定积分的几何意义 (1)讲解

定积分的几何意义 (1)讲解
定积分的几何意义
一,学习目标:
1,掌握定积分几何意义。 2,会利用几何意义求定积分。
二,学习重点,难点
利用几何意义求定积分
复习回顾 如何求曲边梯形面积 定积分的概念是怎样的。
定积分表达式:
积分上限
被积式
b a
f ( x)dx

I
lim 0
n i 1
f (i )xi.
积分下限

(x
1)2

1在[1,2]
上连续,且在[1,0]上f (x) 0,在[0,2]上f (x) 0,
根据定积分的几何意义可得阴影部分的面积为
A 01[(x 1)2 1]dx 02[(x 1)2 1]dx
例:

利用定积分的几何意义说明等式
2

sin
xdx
上连续,且f (x) 0,根据定积分的几何意
义,可得阴影部分的面积为 A 21x2dx
4.应用
例1.用定积分表示图中四个阴影部分面积
y
y
f(x)=x2
f(x)=x2
y
y f(x)=(x-1)2-1
f(x)=1
0a
x -1 0 2
xa0
b x -1 0
2x




解:(3)在图③中,被积函数f (x) 1在[a,b]
1.利用定积分的几何意义,判断下列定积分 值的正、负号。

1). 2 sin xdx 0
2). 2 x 2dx 1
2.利用定积分的几何意义,说明下列各式。
成立:
1).
2
sin xdx 0
0
2).

定积分的定义性质和几何意义

定积分的定义性质和几何意义

b
f ( x)dx
b g( x)dx 。
a
a
15
3.1-3 定积分的定义、性质和几何意义
例1 利用定义计算定积分 1 x2dx. 0
解:∵ x2在[0, 1]上 连续,∴ x2在[0, 1]上 可积。
将[ 0,1]
n等分,分点为 xi
i ,(i 1,2, n
,n)
小区间
[ xi1 , xi ]
曲边梯形的面积 A 是曲边函数 y f ( x) 在区间[a,b]
上的定积分: A b f ( x)dx 。 a
变速直线运动的物体所经过的路程 s 是速度函数
v v(t) 在时间区间[a,b]上的定积分: s
b
v(t )dt

a
13
3.1-3 定积分的定义、性质和几何意义
2.定积分定义的剖析
b f ( x)dx 0 。 a
性质 5 若 f R[a,b],则| f | R[a,b],且
b
f ( x)dx
b f ( x) dx 。
a
a
26
3.1-3 定积分的定义、性质和几何意义
例 2 比较下列各对积分值的大小.
(1)
13 xdx 与
1 x3dx ;(2)
1 xdx 与
161n12n1,

max
1in
xi
1 n
0 时,即 n
,有
1 x2dx 0
n
lim 0 i1
i2xi
lim 11121 1 . n6 n n 3
17
3.1-3 定积分的定义、性质和几何意义
例 2.用定积分的定义计算 1 e xdx 。 0
解:∵ e x在[0, 1]上 连续,∴ e x在[0, 1]上 可积。

定积分知识点总结等价

定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。

一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。

在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。

1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。

则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。

我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。

对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。

1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。

当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。

当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。

1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。

例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。

1.5定积分的几何意义

1.5定积分的几何意义
定积分的几何意义
1、求曲边梯形面积 、 分割-----近似代替 近似代替-----求和 求和-----取极限 分割 近似代替 求和 取极限 2、定积分定义 、 3、定积分几何意义 、 4、定积分计算性质 、
1.求由连续曲线 =f(x)对应的曲边梯形面积的方法 求由连续曲线y= 求由连续曲线 对应的
n
O
a
b
x
积分

3、定积分的几何意义: 定积分的几何意义:
b ∫a
f ( x) d x
的实质
b (1)当f(x)在区间[a,b]上大于0时,a 在区间[ 大于0 ∫
f ( x) d x 表示
直线x ),y 和曲线y 由 直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲 边梯形的面积 ,这也是定积分的几何意义. 这也是定积分的几何意义. (2)当f(x)在区间[a,b]上小于0时,b f ( x ) d x 表示 在区间[ 小于0 ∫ a 由直线x ),y 和曲线y 由直线x=a,x=b (a≠b),y=0和曲线y=f(x)所围成的 曲边梯形的面积的相反数.
特别地,当 a=b 时,有 ∫ f (x)dx=0。
a
定积分的几何意义: 定积分的几何意义: 当f(x)≤0时,由y=f (x)、x=a、x=b 与 x 轴所围成的 ≤ 时 = 、 = 、 = 轴的下方, 曲边梯形位于 x 轴的下方,
积分 ∫ f (x)dx 在几何上表示
a b
y y=−f (x)
O
a
c
b
x
1.∫ f ( x)dx =
b a
S
f ( x) ≥ 0
-S f ( x ) < 0 表示以y=f(x)为曲边的曲边梯形面积 S表示以 为曲边的曲边梯形面积 y

1.5.3定积分的几何意义3.14

1.5.3定积分的几何意义3.14

a
b
f (x)dx =Sf (x)dx
a
c
ba (2)定积分的几何意义: f ( x)dx lim f (i ) a n n i 1
b n
当f(x)0时,由yf (x)、xa、xb 与y=0所围成的曲 边梯形位于 x 轴的下方,
y yf (x)
积分 f (x)dx 在几何上表示
a a
例1、
利用定积分的几何意义 说明等式 成立。

2

2
sin xdx 0
y
解: 在右图中,被积函数 ( x) sin x f
在[

, ]上连续,且在 ,]上 [ 0 2 2 2



2
f(x)=sinx 1
sin x 0, 在[0, ]上sin x 0,并有 2 A1 A2 , 所以
S
y f (x)
x
f ( x) 0,

b
a
f ( x)dx S
曲边梯形的面积的负值
一般地, f(x)在[a, b]上的定积分表示介于y=0、曲线 y=f(x)及直线x=a、x=b之间的各部分面积的代数和.
y
y=f(x)
A1 a
A3
A5
A2
A4
b x

b a
f ( x)d x A1 A2 A3 A4 A5

A1
-1
A2
2
x

2


2
f ( x)dx A2 A1 0
例2、用定积分表示图中四个阴影部分面积
y
f(x)=x2
y
f(x)=x2

定积分知识点汇总

定积分知识点汇总

定积分知识点汇总在微积分学中,定积分是一个基本概念。

它是将一个区间上的函数的值乘以这个区间的长度进行求和的过程。

在这篇文章中,我们将详细介绍定积分的相关知识点,包括定义、性质、计算方法以及一些重要的定理。

一、定积分的定义定积分的定义是将一个连续函数$f(x)$在某个区间$[a, b]$上的面积或体积表示出来的过程。

这里我们主要探讨二维平面内的定积分。

在数学语言中,定积分的定义可以写作:$\int_a^bf(x)\,dx=\lim_{n\rightarrow\infty}\sum_{i=1}^nf(x_i)\Del ta x$其中$n$表示将区间$[a, b]$等分成$n$份,$\Delta x=\frac{b-a}{n}$表示每份长度。

$x_i$是第$i$份区间的中间点,即$a+(i-\frac{1}{2})\Delta x$。

$\sum_{i=1}^nf(x_i)\Delta x$表示的是矩形的面积之和,$\lim_{n\rightarrow\infty}$表示将矩形的数量趋近于无穷大。

最后的定积分即两个端点为$a$和$b$的函数$f(x)$的积分。

二、定积分的性质1. 线性性$\int_a^b[c_1f_1(x)+c_2f_2(x)]dx=c_1\int_a^bf_1(x)dx+c_2\int_a^ bf_2(x)dx$2. 区间可加性$\int_a^bf(x)dx+\int_b^cf(x)dx=\int_a^cf(x)dx$3. 积分中值定理如果$f(x)$在$[a, b]$上是连续的,则存在一个$c\in[a, b]$,使得$\int_a^bf(x)dx=f(c)(b-a)$。

其中$c$称为积分中值。

4. 牛顿-莱布尼茨公式$\int_a^bf(x)dx=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数(即$F'(x)=f(x)$)。

三、定积分的计算方法1. 分段函数对于分段函数$f(x)$,我们需要将其分段拆分并分别进行计算。

教你学会定积分:定积分知识点总结及简单应用

教你学会定积分:定积分知识点总结及简单应用

定积分知识点总结及简单应用知识点1.定积分的几何意义:如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么函数f (x )在区间[a ,b ]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.2.定积分的性质(1)ʃb a kf (x )d x =__________________ (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =_____________________________________; (3)ʃb a f (x )d x =_______________________________________. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做__________________,为了方便,我们常把F (b )-F (a )记成__________________,即ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).4.定积分在几何中的应用(1)当x ∈[a ,b ]且f (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(2)当x ∈[a ,b ]且f (x )<0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(3)当x ∈[a ,b ]且f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =______________________.(4)若f (x )是偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x ;若f (x )是奇函数,则ʃa-a f (x )d x =0.5.定积分在物理中的应用 (1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )[v (t )≥0]在时间区间[a ,b ]上的定积分,即________________________.(2)变力做功公式一物体在变力F (x )(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a <b )(单位:m),则力F 所做的功W =__________________________.自我检测1.计算定积分ʃ503x d x 的值为 ( ) A.752 B .75 C.252D .252.定积分ʃ10[1-(x -1)2-x ]d x 等于 ( )A.π-24B.π2-1C.π-14D.π-123.如右图所示,阴影部分的面积是 ( )A .2 3B .2- 3 C.323D.3534.ʃ421x d x 等于 ( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 25.若由曲线y =x 2+k 2与直线y =2kx 及y 轴所围成的平面图形的面积S =9,则k =________.探究点一 求定积分的值 例1 计算下列定积分: (1)2111()ex dx x x++⎰; (2)2sin 2cos )x x dx π-⎰(;(3)ʃπ0(2sin x -3e x +2)d x ; (4)ʃ20|x 2-1|d x .变式迁移1 计算下列定积分:(1)ʃ2π0|sin x |d x ;(2)ʃπ0sin 2x d x .探究点二 求曲线围成的面积例2 计算由抛物线y =12x 2和y =3-(x -1)2所围成的平面图形的面积S .变式迁移2 计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.探究点三 定积分在物理中的应用例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.变式迁移3 A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t m/s ,到C 点时速度达24 m/s ,从C 点到B 点前的D 点以匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.例 (12分)在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-ʃt 0x 2d x =23t 3.[2分]S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即S 2=ʃ1t x 2d x -t 2(1-t )=23t 3-t 2+13.[4分] 所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).[6分]令S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12=0时,得t =0或t =12.[8分] t =0时,S =13;t =12时,S =14;t =1时,S =23.[10分]所以当t =12时,S 最小,且最小值为14.[12分]本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.总结;1.定积分ʃb a f (x )d x 的几何意义就是表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x 2d x =π (半径为2的14个圆的面积),ʃ2-24-x 2d x =2π.2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F ′(x )=f (x )的F (x );第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.检测题 一、选择题1.下列值等于1的积分是 ( )A .ʃ10x d xB .ʃ10(x +1)d xC .ʃ1012d xD .ʃ101d x2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x ≤1,3-x ,1<x ≤2,则ʃ20f (x )d x 等于 ( )A.13 B.176 C .6D .173.已知f (x )为偶函数且ʃ60f (x )d x =8,则ʃ6-6f (x )d x 等于 ( ) A .0B .4C .8D .164.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .ʃπ20(sin x -cos x )d xB .2ʃπ40(sin x -cos x )d xC .ʃπ20(cos x -sin x )d xD .2ʃπ40(cos x -sin x )d x5.函数f (x )=ʃx 0t (t -4)d t 在[-1,5]上 ( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 二、填空题6.若1 N 的力使弹簧伸长2 cm ,则使弹簧伸长12 cm 时克服弹力做的功为__________J.7.ʃ10(2x k+1)d x =2,则k =________.8.若f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,则ʃ30f (x )d x =________.三、解答题9.计算以下定积分: (1)ʃ21⎝⎛⎭⎫2x 2-1x d x ; (2)ʃ32⎝⎛⎭⎫x +1x 2d x ;(3)ʃπ30(sin x -sin 2x )d x ; (4)ʃ21|3-2x |d x .10.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.11.求曲线y =e x -1与直线x =-ln 2,y =e -1所围成的平面图形的面积. 答案1.x =a ,x =b (a ≠b ),y =0和曲线y =f (x ) 面积2.(1)k ʃb a f (x )d x (2)ʃb a f 1(x )d x ±ʃb a f 2(x )d x (3)ʃc a f (x )d x +ʃbc f (x )d x (其中a <c <b )3.微积分基本定理 F (x )|b a4.(1)ʃb a f (x )d x (2)-ʃb a f (x )d x (3)ʃba [f (x )-g (x )]d x 5.(1)s =ʃb a v (t )d t (2)ʃb a F (x )d x自我检测1.A 2.A 3.C 4.D 5.±3解析 由⎩⎪⎨⎪⎧y =x 2+k 2,y =2kx .得(x -k )2=0, 即x =k ,所以直线与曲线相切,如图所示,当k >0时,S =ʃk 0(x 2+k 2-2kx )d x=ʃk 0(x -k )2d x =13(x -k )3|k 0=0-13(-k )3=k 33,由题意知k 33=9,∴k =3.由图象的对称性可知k =-3也满足题意,故k =±3. 课堂活动区例1 分析 (1)与绝对值有关的函数均可化为分段函数. ①分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.(2)f (x )是偶函数,且在关于原点对称的区间[-a ,a ]上连续,则ʃa -a f (x )d x =2ʃa 0f (x )d x .解 (1)ʃe 1⎝⎛⎭⎫x +1x +1x 2d x =ʃe 1x d x +ʃe 11x d x +ʃe 11x2d x =12x 2|e 1+ln x |e 1-1x |e 1=12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32.(2)ʃπ20(sin x -2cos x )d x=ʃπ20sin x d x -2ʃπ20cos x d x =(-cos x )|π20-2sin x |π2=-cos π2-(-cos 0)-2⎝⎛⎭⎫sin π2-sin 0 =-1.(3)ʃπ0(2sin x -3e x+2)d x =2ʃπ0sin x d x -3ʃπ0e x d x +ʃπ02d x =2(-cos x )|π0-3e x |π0+2x |π0=2[(-cos π)-(-cos 0)]-3(e π-e 0)+2(π-0) =7-3e π+2π. (4)∵0≤x ≤2,于是|x 2-1|=⎩⎪⎨⎪⎧x 2-1,1<x ≤2,1-x 2,0≤x ≤1,∴ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=⎝⎛⎭⎫x -13x 3|10+⎝⎛⎭⎫13x 3-x |21=2.变式迁移1 解 (1)∵(-cos x )′=sin x ,∴ʃ2π0|sin x |d x =ʃπ0|sin x |d x +ʃ2ππ|sin x |d x =ʃπ0sin x d x -ʃ2ππsin x d x =-cos x |π0+cos x |2ππ=-(cos π-cos 0)+(cos 2π-cos π)=4. (2)ʃπ0sin 2x d x =ʃπ0⎝⎛⎭⎫12-12cos 2x d x =ʃπ012d x -12ʃπ0cos 2x d x=12x |π0-12⎝⎛⎭⎫12sin 2x |π0 =⎝⎛⎭⎫π2-0-12⎝⎛⎭⎫12sin 2π-12sin 0=π2. 例2 分析: 求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.解 作出函数y =12x 2和y =3-(x -1)2的图象(如图所示),则所求平面图形的面积S 为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =12x 2,y =3-(x -1)2,得⎩⎨⎧x =-23,y =29或⎩⎪⎨⎪⎧x =2,y =2.所以两曲线交点为A ⎝⎛⎭⎫-23,29,B (2,2). 所以S =ʃ2-23[3-(x -1)2]d x -ʃ2-2312x 2d x=ʃ2-23(-x 2+2x +2)d x -ʃ2-2312x 2d x=⎪⎪⎝⎛⎭⎫-13x 3+x 2+2x 2-23-⎪⎪16x 32-23 =⎝⎛⎭⎫-83+4+4-⎝⎛⎭⎫881+49-43-16×⎝⎛⎭⎫8+827 =42027. 变式迁移2 解如图, 设f (x )=x +3, g (x )=x 2-2x +3,两函数图象的交点为A ,B ,由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3.得⎩⎪⎨⎪⎧ x =0,y =3或⎩⎪⎨⎪⎧x =3,y =6.∴曲线y =x 2-2x +3与直线y =x +3所围图形的面积 S =ʃ30[f (x )-g (x )]d x=ʃ30[(x +3)-(x 2-2x +3)d x ] =ʃ30(-x 2+3x )d x=⎝⎛⎭⎫-13x 3+32x 2|30=92. 故曲线与直线所围图形的面积为92.例3 分析: 用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s (t )求导后得到速度,对速度积分则得到路程.解 方法一 由速度—时间曲线易知. v (t )=⎩⎪⎨⎪⎧3t ,t ∈[0,10),30,t ∈[10,40),-1.5t +90,t ∈[40,60],由变速直线运动的路程公式可得s =ʃ1003t d t +ʃ401030d t +ʃ6040(-1.5t +90)d t=32t 2|100+30t |4010+⎝⎛⎭⎫-34t 2+90t |6040=1 350 (m). 答 此汽车在这1 min 内所行驶的路程是1 350 m.方法二 由定积分的物理意义知,汽车1 min 内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x 轴围成梯形的面积,∴s =12(AB +OC )×30=12×(30+60)×30=1 350 (m).答 此汽车在这1 min 内所行驶的路程是1 350 m.变式迁移3 解 (1)设v (t )=1.2t ,令v (t )=24,∴t =20.∴A 、C 间距离|AC |=ʃ2001.2t d t=(0.6t 2)|200=0.6×202=240 (m).(2)由D 到B 时段的速度公式为v (t )=(24-1.2t ) m/s ,可知|BD |=|AC |=240 (m).(3)∵|AC |=|BD |=240 (m),∴|CD |=7 200-240×2=6 720 (m).∴C 、D 段用时6 72024=280 (s).又A 、C 段与B 、D 段用时均为20 s ,∴共用时280+20+20=320 (s).课后练习1.D 2.B 3.D 4.D 5.B6.0.36解析 设力F 与弹簧伸长的长度x 的关系式为F =kx ,则1=k ×0.02,∴k =50,∴F =50x ,伸长12 cm 时克服弹力做的功W =ʃ0.12050x d x =502x 2|0.120=502×0.122=0.36(J).7.1解析 ∵ʃ10(2x k +1)d x = ⎪⎪⎝⎛⎭⎫2k +1x k +1+x 10=2k +1+1=2,∴k =1.8.-18解析 ∵f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2),即f ′(2)=-4,∴f (x )=x 2-8x +3,∴ʃ30f (x )d x =13×33-4×32+3×3=-18. 9.解 (1)函数y =2x 2-1x 的一个原函数是y =23x 3-ln x ,所以ʃ21⎝⎛⎭⎫2x 2-1x d x = ⎪⎪⎝⎛⎭⎫23x 3-ln x 21=163-ln 2-23=143-ln 2(2) ʃ32⎝⎛⎭⎫x +1x 2d x =ʃ32⎝⎛⎭⎫x +1x +2d x = ⎪⎪⎝⎛⎭⎫12x 2+ln x +2x 32=⎝⎛⎭⎫92+ln 3+6-(2+ln 2+4)=ln 32+92.(3)函数y =sin x -sin 2x 的一个原函数为y =-cos x +12cos 2x ,所以ʃπ30(sin x -sin 2x )d x= ⎪⎪⎝⎛⎭⎫-cos x +12cos 2x π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14.322(4)3232322311232(32)(23)2312x dx x dx x dxx dx x dx=-=-+-=-+-⎰⎰⎰⎰⎰=(3x -x 2)|321+(x 2-3x )|232=12.10.解 (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积S =ʃ10(x 2-2x +1)d x=⎝⎛⎭⎫13x 3-x 2+x |10=13.11.解 画出直线x =-ln 2,y =e -1及曲线y =e x -1如图所示,则所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧ y =e -1,y =e x -1,解得B (1,e -1). 由⎩⎪⎨⎪⎧ x =-ln 2,y =e x -1,解得A ⎝⎛⎭⎫-ln 2,-12.此时,C (-ln 2,e -1),D (-ln 2,0).所以S =S 曲边梯形BCDO +S 曲边三角形OAD=ʃ1-ln 2(e -1)d x -ʃ10(e x -1)d x +||0-ln 2(e x -1)d x=(e -1)x |1-ln 2-(e x -x )|10+|(e x -x )|0-ln 2|=(e -1)(1+ln 2)-(e -1-e 0)+|e 0-(e -ln 2+ln 2)|=(e -1)(1+ln 2)-(e -2)+ln 2-12=eln 2+12。

定积分的几何意义

定积分的几何意义

单调地变到 b.则
b
a
f
xdx
f
[
(
t
)]
t
dt
几点说明:
“换元必换限”,(原)上(下)限对(新)上(下)限.
从右到左应用上公式,相当于不定积分的第一 换元法(凑微分法).一般不设出新的积分变量, 这时,原积分的上、下限不变.只要求出被积函 数的一个原函数,就可直接应用牛顿-莱布尼 兹公式求出定积分的值.
第一节 定积分的概念
7.1.1 曲边梯形的面积
所谓曲边梯形是由三条直线段和一条曲线所谓成的平 面图形(如下图所示)。
如何求曲边梯形的面积?
求解思路:分割
取近似 求和 取极限
把大的曲边梯形沿着y轴方向 切割成许多窄窄的小曲边梯 形,把每一个小曲边梯形近似 看作一个矩形,用矩形的面积 近似代替小曲边梯形的面积。 把这些近似值加起来,就是大 曲边梯形面积的近似值。显 然,分得越细,近似程度越 高。
牛顿从物理学出发,运用集合方法研究
微积分,其应用上更多地结合了运动学,造 诣高于莱布尼兹。莱布尼兹则从几何问题出 发,运用分析学方法引进微积分概念、得出 运算法则,其数学的严密性与系统性是牛顿 所不及的。莱布尼兹认识到好的数学符号能 节省思维劳动,运用符号的技巧是数学成功 的关键之一。因此,他发明了一套适用的符 号系统,如,引入dx 表示x的微分,∫表示 积分等等。这些符号进一步促进了微积分学 的发展。1713年,莱布尼兹发表了《微积分 的历史和起源》一文,总结了自己创立微积 分学的思路,说明了自己成就的独立性。
0
b
a
f
(
x
)dx
ba
f
(
x
)dx
初等函数在定义区间内部都是可积的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的面积。
y
解 如图所示,阴影部分面积
1
2
S 0 xdx 1 (x 2)dx
1
1
xdx
2
(x 2)dx
60
1
y x 2 yx
y x
1 1 1 11 622
7 6
0
1
2x
(3)用定积分的几何意义求定积分的值的方法 步骤: ①画图形; ②求交点定区间; ③由图像查找“一边恒在一边上”:i全 部就直接作差ii部分就分段。
n(n
1)(2n
1)
1 31
1 0
(2 6
x2dx lim n
n n2
Sn
lim
n
)
1 6
(2
3 n
1 n2
)
0
1x
1(以直代曲、逼近)
3
二、探究新知
探究1:你能通过观察图形得到定积分的 几何意义吗?
y
y f (x)
oa
bx
定积分的几何意义:

f(x)0
时,积分
b
f
(x)dx
a
一 、旧知回顾
练习:计算 1 x2dx
n
[提示:
i2
1 n(n 1)(2n 1)]
0
i 1
6
分析:分割 近似替代 作和 求极限
1 0
x2dx
Sn
n i 1
f
i
x
n i 1
f ( i )x n
y
n ( i )2 • 1 i1 n n
1 n3
n
i2
i 1
y x2
1 n3

1 6
计算定积分
5
(2x 4)dx
0
5
0 (2x 4)dx
94 5
y 6
A
OB -4
x 5
例1 用定积分表示下列阴影部分面积。
y y x2
y
1 x2 y2 1
(1)
(2)
-1
0
1x
01 2x
解(1)由图可知 (2)由图可知
S 2 x2dx 1
S 1 1 x2 dx 1
例2:计算 1 xdx的值 解:由定积0 分几何意义 可知
在几何上表示由 y=f (x)、
xa、xb与 x轴所围成的曲边梯形的面积。
y yf (x)
Oa
b
c
b
f (x)dx f (x)dx
f (x)dx。
a
a
c
bx
定积分的几何意义:
当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成的
曲边梯形位于 x 轴的下方,
积分 b f (x)dx 在几何上表示 y a
y y=x
1 xdx 1 11
0
2
1 2
0
1
x
2 4 x2 dx
变式练习:计算 2
的值。
解:由几何意义可得
2 4 x2 dx 2
1 22
2
-2
2
y 2
x2 y2 4
0
2x
探究2:根据定积分的几何意义,你能用定积分表 示图中阴影部分的面积吗?
y
y f1(x)
b
b
S a f1(x)dx a f2 (x)dxຫໍສະໝຸດ S 1xdx
1 x2dx
0
0
1 1 23
1 6
y y x2 yx
01 x
变式练习
计算
1
(
x x2)dx
0
解 由函数的性质与定积分的几何意义可知
1 (
x x2)dx
0
y
y x2 yx
2 1 x x2 dx 0
y x
21 6
0
1
x
1 3
四、能力提升
计算由曲线y x,直线y x 2和x轴围成的平面
上述曲边梯形面积的负值。
yf (x)
b
S a[ f (x)]dx
b
S a[ f (x)]dx
b f (x)dx ., a
Oa
b
f
(x)dx Sc
f
b
(x)dx
f (x)dx。
a
a
c
bx
b
f
(x)dx Sc
f
b
(x)dx
f (x
a
a
c
yf (x)
定积分的几何意义:
在区间[a,b]上曲线与x轴所围成图形面积的代数 和(x轴上方的面积为正,x轴下方的面积为负).
y f2(x)
0a
b
x
思考:b a
f1(x)dx
b a
f2 (x)dx的几何意义是什么?
例3 计算由曲线y x2,直线y x 2和x轴围
成的平面图形的面积。
分析:如图所示
y
y x2
S
1 x2dx
2
(x 2)dx
0
1
1 1 11
32
5
0
6
y x2
1
2x
例4 求下图阴影部分的面积。 解:由定积分几何意义知
(4)数学思想方法: 数形结合、转化思想
探究:
根据定积分的几何意义,如何用定积分表示图中阴影部分 的面积?
yf (x) y
b
S1
ya
fg((
b
x))dx
S2
g ( x)dx
a
O aa
bb x
b
b
S S1 S2
a
f (x)dx
g(x)dx
a
相关文档
最新文档