第4讲-列方程解应用题(二)(学生版)
小学六年级数学小升初珍藏版复习资料第4讲 式与方程(解析)

2022-2023学年小升初数学精讲精练专题汇编讲义第4讲式与方程知识点一:用字母表示数、数量关系、计算公式和运算定律1.用字母表示数(1)一班有男生a人,有女生b人,一共有(a+b)人;(2)每袋面粉重25千克,x袋面粉一共重25x干克2.用字母表示数量关系(1)路程=速度×时间,用字母表示为s=vt;(2)正比例关系:yx=k(一定),反比例关系:x×y=k(一定)等。
3.用字母表示计算公式(1)长方形的周长:C=2(a+b);(2)长方形的面积:S=ab;(3)长方体的体积:V=abh或V=Sh等。
4.用字母表示运算定律加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c-ac+bo重点提示:○1数与字母、字母与字母相乘时,乘号可以记作简写为一个点或省略不写,但要注意,省略乘号后,数字要写在字母的前面。
○2两个相同的字母相乘时,可以写成这个字母的平方,如a×a可以写作a2知识点二:等式与方程1.等式与方程的意义及关系意义关系等式表示相等关系的式子叫作等式所有的方程都是等式,但是等式不一定知识精讲方程含有未知数的等式叫作方程是方程2.等式的性质(1)性质1:等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)性质2:等式的两边同时乘或除以同一个不为0的数,所得结果仍然是等式。
3.解方程(1)方程的解的概念:使方程左右两边相等的未知数的值,叫作方程的解。
(2)解方程的概念:求方程的解的过程叫作解方程。
(3)解方程的依据:可以根据等式的性质和四则运算中各部分之间的关系解方程。
(4)检验方程的解是否正确,步骤如下:(01)把求出的未知数的值代入原方程中;(02)计算,看等式是否成立;(03)等式成立,说明这个未知数的值是方程的解,等式不成立,说明解方程错误,需要重新求解。
第3章 列方程解应用题(二)知识点精讲精练 初中数学人教版七上课件

【巩Байду номын сангаас】
方案1:尽可能多的制成奶片,其余直接销售鲜奶;
方案2:将一部分制成奶片,其余制成酸奶销售;
请问选择哪种方案获利更多?
解:选择方案2获利更多,理由如下: 方案1可获利润为 1×4×2000+(9-1×4)×500=10500(元) 方案2:设制作奶片x天,则制作酸奶(4-x)天. 依题意,得x+3(4-x)=9 解得x=1.5 所以制作酸奶4-x=2.5(天) 故方案2可获利润为 1×1.5×2000+3×2.5×1200=12000(元) 因为10500<12000, 所以选择方案2获利更多.
第三章 列方程解应用题(二)
知识点一:计费问题
【例1】 某市电力部门对居民用电按月收费,标准如下: ①用电不超过100度,每度收费0.5元; ②用电超过100度,超过部分每度收费0.8元 . (1)小明家1月份用电130度,应缴电费__7_4____元; (2)小明家2月份缴电费90元,则他家2月份用电多少度? 根据分段计费规则,应缴电费 100×0.5+0.8×(130-100)=74(元)
【例3】某地上网有如下两种收费方式,用户可以任选其一. A计时制:1元/时,B包月制:80元/月. 此外每一种上网方式 都加收通讯费0.1元/时. (1)某用户每月上网40 h,选择哪种上网方式比较合算? (2)某用户每月有100元用于上网,选择哪种上网方式比较 合算? (3)请你为用户设计一个方案,使用户能合理地选择上网 方式.
方案一:将蔬菜全部粗加工; 方案二:尽可能进行精加工,没来得及进行加工的在市场上 直接销售; 方案三:将部分蔬菜进行精加工,其余进行粗加工,恰好15 天完成. 你认为选择哪种方案获利最多?为什么?
先分别计算出三种方案的获利,再比较
小学五年级一元一次方程应用题2(二套)

小学五年级一元一次方程应用题2(二套)目录:小学五年级一元一次方程应用题一小学五年级列方程解应用题二小学五年级一元一次方程应用题一2.甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?3.一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?4.甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?5.王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去.这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?6.甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?7. A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米.一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去.这样一直飞下去,燕子飞了多少千米,两车才能相遇?8.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米.一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?9.甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?10.甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?11.甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行.经过3小时后,两人相隔60千米.南北两庄相距多少千米?12.东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?13.甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙?14.甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙?15.解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络.多长时间后,通讯员能赶上队伍?16.小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米.3分钟后两人相距多少米?17.甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?18.一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?19.光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?20.甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍.现在甲在乙后面250米,乙追上甲需要多少分钟?小学五年级列方程解应用题二一、填空题1.每包书有12册,n包书有()册.2.一本书共a页,每天看b页,则10天看了()页,剩下()页.3.甲鱼缸有金鱼b条,比乙鱼缸的条数少12条,b+12表示(),2b+12表示().4.钢笔每支a元,本子每本b元,李明买了3支钢笔和5个本子,一共()元.5.商店原有苹果a箱,卖出b箱后,又购进c箱,则商店现有苹果()箱.6.甲每小时加工零件a个,乙每小时比甲多2个,两个人1小时加工()个,m小时加工()个.二、解方程5(X+2)-2(2X+7)=0 5(14-X)=7(X-20)三、用方程法解文字题.1、一个数减42.6的差加上10乘2的和是3.4?2、一个数的4倍减去8,差是10,求这个数?五、列方程解应用题1、某数的3倍加上5与这个数的4倍减少3相等,这个数是多少?2、两数相除,商是3余数是2,已知被除数,除数,商和余数的和为179,被除数是多少?3、鸡兔同笼,鸡比兔多10只,但鸡脚却比兔脚少60条,问鸡兔各几只?4、三年前,父亲的年龄是儿子的9倍,6年后,父亲的年龄是儿子的3倍,求父、子今年各多少岁?5、一本《唐宋诗选》中,五言诗比七言诗多13首,字数反而少20字,(每首诗都是4句)五言诗和七言诗各多少首?6、小涛今年12岁,爸爸今年36岁,几年前爸爸的年龄是他的5倍?7、一条绳子绕树4圈,剩4米,如果绕5圈,还差1.4米.这棵树的周长是多少米?8、有甲、乙两桶油,甲桶里有油45千克.从甲桶里倒出多少千克油到乙桶里,才能使甲桶里的油是乙桶里油的1.5倍?列方程解应用题1、叔叔今年的年龄是侄子的6倍,6年后,叔叔的年龄是侄子的3倍,今年两人各多少岁?(年龄问题)2、有拾圆钞票和伍圆钞票共128张,其中拾圆的比伍圆的多260元,两种面额的钞票各多少张?(鸡兔同笼问题)3、某校四、五年级的学生乘坐汽车去春游.如果每车坐65人,则有15人坐不下;如果每车多座70人,恰好多出一辆车.四、五年级去春游的学生共有多少人?(盈亏问题)4、一个书架有两层,上层放的书是下层的4倍,如果把上层的书搬60本到下层,则两层的书的本书相同.原来上、下各有多少本书?(倍数问题)5、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙从A地,丙从B地同时出发,相向而行,丙遇到乙后2分钟遇到甲,求A、B两地的距离是多少?(相遇追及问题)列方程解应用题1.一个数的2倍加上3,等于这个数加上12,这个数是多少?2.一条绳子绕树4圈,剩4米;如果绕树5圈,还差1.4米.这棵树的周长是多少米?3.妈妈今年50岁,儿子今年26岁,几年前妈妈的年龄正好是儿子的4倍?4.果园里梨树和桃树共有365棵,桃树的棵树比梨树的5倍多5棵.果园里梨树和桃树各有多少棵?5.原来哥哥的画片是弟弟的3倍,后来2人各买了5张,这样哥哥的画片就是弟弟的2倍.原来兄弟俩各有画片多少张?6.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元.每张桌子多少元?列方程解应用题【倍数应用题】1.某数的5倍减14等于它的2倍加4,那么这个数是多少?2.甲乙丙三个数的和是25,甲数比乙数的5倍还多10,丙比乙的3倍少3,甲乙丙三个数各是多少?3.甲、乙、丙三人共103有张邮票,甲的邮票数是乙的2倍,乙的邮票比丙的3倍多1张,甲、乙、丙各有多少张邮票?4.一个书架有两层,上层放的书是下层的5倍,如果把上层的书搬60本到下层,则两层的书相等.原来上下层各有多少本书?5.甲站原有车52辆,乙站原有车32辆,如果每天从甲站开往乙站3辆,几天后,乙站的车辆是甲站的2倍?6.女儿今年6岁,母亲今年38岁,几年后母亲的年龄是女儿的3倍?7.今年强强的年龄是平平的9倍,5年后,强强的年龄是平平的4倍,今年两人各多少岁?8.刘老师的照片比李老师的2倍多4张,李老师又送给刘老师10张,这时刘老师的照片的张数是李老师的4倍.原来两人各有多少张?9.虹桥瓜果批发部有甲乙两个仓库,乙仓库的水果存数是甲仓库的5倍,如果从甲仓库抽出5吨水果放到乙仓库,那么乙仓库的水果数就是甲仓库的8倍,问原来两仓库的水果存数各是多少?10.两个整数相除,商是5,余数是11,被除数、除数、商及余数的和是99,求被除数和除数.【盈亏问题】11.同学们种树,如果每人栽4棵,还剩19棵;如果每人栽7棵,则差5棵,问有几个同学,有多少棵树?12.幼儿园老师给小朋友分饼干,每人分5块,则剩下66块;每人分8块,则剩下3块,问有多少个小朋友?有多少块饼干?13.小朋友分糖果,每人分10粒,正好分完;若每人分16粒,则缺36粒,问有多少个小朋友?多少粒糖果?14.某年级学生乘汽车春游.如果每车坐38人,则有10人不能乘车,如果每车多坐4人,恰好多一辆汽车.则一共有多少辆车?多少学生?15.某班级同学组织划船,如果每船6人则需加一条船;如果每船9人,则可减少一条船,问有多少条船?多少名同学?【鸡兔问题】16.鸡兔同笼,共51个头,172条腿,鸡兔各几只?17.兔同笼共有50个头,鸡的腿数比兔的腿数少80,问鸡兔各几只?18.46人去划船,恰好坐满大小船12只,已知大船每船坐5人,小船每船坐3人,请问大小船各几只?19.有拾元钞票与伍元钞票共100张,其中拾元的比伍元的多220元,两种面额的钞票各有多少张?20.托运玻璃100箱,合同规定每箱运费4角,如果损坏1箱不给运费并赔偿损失5元.结算时共得运费29.2元,共损失多少箱?列方程解应用题综合训练1、五(三)班在选中队委时,小青的选票比小华多6张,比小红少3张,如果这三人共有选票57张,那么小青得选票多少张?2、某中学利用暑假进行军训,晴天每日行35千米,雨天每日行22千米,13天共行403千米,这期间晴天有多少天?3、文化宫电影院有座位2000张,前排票每张4元,后排票每张2.5元,已知前排票比后排票的总价少1100元,该电影院有前排座和后排座各多少张?4、五(一)班上学期期末考试全班的平均分为87.5分,男生平均分为86分,女生平均分为90分,这个班共有56人.求男女生各有多少人?5、某农民饲养鸡兔若干只,已知鸡比兔多13只,鸡的脚比兔的脚多16条,问鸡兔各几只?6、今年爸爸、妈妈、哥哥、弟弟的年龄分别是36岁、34岁、8岁、6岁,多少年后,爸爸、妈妈的年龄之和是哥哥、弟弟年龄之和的3倍?7、两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨,几天后两堆煤剩下吨数相等?8、甲乙两根绳子,甲绳长65米,乙绳长29米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还多2米,甲绳所剩长度是多少米?9、有一元、二元、五元的人民币50张,面值共计116元.已知1元的人民币比2元的多2张,问三种人民币各有多少张?10、读书活动小组的学生从图书馆借来的科技书是故事书的2倍.平均每人看6本科技书,则余12本,每人看4本故事书,则差3本.读书活动小组有多少人?11、小红为美术兴趣小组买回80枝画笔,有2元一枝的、有5元一枝的、有10元一枝的,共付出人民币490元.已知5元一枝与10元一枝的笔的数量相同.这三种画笔各几枝?12、一架飞机所带燃料最多可以用6小时,飞机去时顺风,每小时可以飞1500千米,飞回时逆风,每小时飞1200千米.这架飞机最多能飞几千米就需往回飞?。
(完整版)小学五年级数学思维训练解方程

小学五年级数学思维训练解方程(一)【例1】解方程:(1)x+63= 100(2)x-127=2.7(3)9x=6.3(4)x÷5=120【巩固】解方程:(1)x-7.4=8 (2)3+x=18(3)0.4x=2.4 (4)x÷5=0.016【例2】解方程:(1)x+3x=664(2)4x-x=72 (3)x+7x-4x+x=(15-5)×4【拓展】解方程:(1)3x+5-2x=13 (2)5x-8x+6x-10x=15【3】解方程:(1)8x-15=3x+5(2)15x+3=28+14x(3)3x-3=2x+2【巩固】解方程:(1)12x-4=7x+6 (2)15x+5=8x+40 (3)0.1x+0.75=3-0.125x【拓展】解方程:(1)x+3x+5+2x+1=840 (2)5x-8+6x=10x+15(3)11x+42-2x=100-9x-22 (4)8x-3+2x+1=7x+6-5x 【例4】解方程:(1)4x+48=6x-8 (2)46-5x=x-6+4【【课后练习】1、解方程:(1)x-0.52=1.3 (2)x+2.7=14.2(3)0.5x=3.9(4)x÷2.5=42、解方程:(1)x+3x=160 (2)4x-x=249 (3)3x-2x+x=(11-3)×4拓展】解方程:(1)2x+35-3x=15x-39(2)0.4x-0.08+1.5=0.7x-0.383、解方程:(1)3.4x-1.02=0.2x+16.9(2)2x+5=25-8x4、解方程:(1)x+3x+14=134 (2)x+3x+2+3+2=1275、解方程:(1)1.5x+0.5=2.5x-0.56、解方程:(1)60x-40=(60+20)×(x-5)(2)32x+32×0.5-25x+64x=24x+496-49x2)6x-59=10x-75(第二讲解方程(二)【知识梳理】1、解方程的依据:(1)方程等号的两边同时加上或减去同一个数,方程仍然成立;(2)方程等式两边同时乘以或除以一个不为零的数,方程等式成立。
五年级奥数专题 列方程解应用题(学生版)

列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。
此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。
利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。
列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。
3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。
五年级奥数(教案)第4讲:列方程解应用题

解:设每千克黄瓜 元。
20-8 =4
8 =16
=2
答:每千克黄瓜2元。
(二)例题4:(13分)
芭啦啦综合教育学校五年级(1)班学生采集标本。采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人。全班学生共有40人,没有采集标本的有多少人?
师:就采集标本来说,全班的人数分为两部分,哪两部分?
40×6+6 =600
6 =600-240
6 =360
=60
答:货车每小时行驶60千米。
三、小结:(5分)
列方程解应用题的步骤:
1.弄清题意,确定未知数并用 表示;
2. 找出题中的数量之间的相等关系;
3. 列方程、解方程;
4. 检查或验算,写出答案。
第二课时(50分)
一、复习导入(3分)
上节课我们学习了列方程解应用题,相信同学们对列方程解应用题的步骤都有了一定的掌握。这节课就让我们继续探讨列方程解应用题,感受方程给我们带来的便利。
板书:
解:设下层原来有书 本,则上层原来有书4 本。
4 -60= +60
3 =120
=40
4×40=160(本)
答:上层原来有书160本,下层原来有书40本。
三、总结:(5分)
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个等式,再设未知数,并将这个相等的关系用含有未知数的式子表示出来。
块。
师:很好.那有谁知道女同学搬砖多少块?
生3:女同学有30人,每人搬砖的块数不知道,可以设为 。这样女同学就搬
砖30 块。
师:大家听明白了吗?有不同意见吗?(没有)掌声送给他。
师:根据等量关系找到未知量,设为 ,下一步干什么?
列方程解应用题(第二课时)沪教版五年级下数学优秀教学案例
(一)知识与技能
1.让学生掌握列方程解应用题的基本步骤,包括找出问题中的等量关系、设未知数、列方程、解方程和验算。
2.培养学生运用方程解决实际问题的能力,使其能够灵活运用所学知识解决生活中的数学问题。
3.通过对不同类型的应用题进行练习,使学生熟练运用方程解决实际问题,提高其解决问题的技巧。
2.小组合作解题:鼓励成员之间积极沟通、讨论,共同解决问题。
3.小组互评:小组成员之间对解题过程和结果进行评价,互相学习,共同提高。
(四)反思与评价
1.学生自我反思:让学生回顾自己的解题过程,总结经验教训,提高解题能力。
2.教师评价:教师对学生的解题过程和结果进行评价,关注学生的成长和进步。
3.家长参与:鼓励家长关注学生的学习情况,参与评价过程,共同促进学生的全面发展。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组选择一个应用题进行讨论。
2.讨论过程:引导学生运用所学知识,找出问题的等量关系,列出方程,并求解。
3.讨论成果:各小组汇报讨论成果,分享解题思路和经验。
(四)总结归纳
1.教师引导:总结本节课的主要内容,强调列方程解应用题的步骤和方法。
2.学生总结:让学生回顾自己的学习过程,总结解题经验和教训。
4.定期反馈:教师定期向学生和家长反馈学生的学习情况,使其了解学生的成长轨迹,调整教学策略。
四、教学内容与过程
(一)导入新课
1.情境创设:以学生熟悉的生活场景为背景,设计具有实际意义的应用题,引发学生的思考。
2.问题提出:引导学生发现问题的本质,找到等量关系,提出解决问题的思路。
3.教师引导:通过提问、讨论等方式,激发学生的学习兴趣,为新课的展开做好铺垫。
小学五年级奥数讲义(学生版)30讲全
⼩学五年级奥数讲义(学⽣版)30讲全五年级奥数第1讲数字迷(⼀)第16讲巧算24第2讲数字谜(⼆) 第17讲位置原则第3讲定义新运算(⼀) 第18讲最⼤最⼩第4讲定义新运算(⼆) 第19讲图形的分割与拼接第5讲数的整除性(⼀) 第20讲多边形的⾯积第6讲数的整除性(⼆) 第21讲⽤等量代换求⾯积第7讲奇偶性(⼀)第22 ⽤割补法求⾯积第8讲奇偶性(⼆)第23讲列⽅程解应⽤题第9讲奇偶性(三)第24讲⾏程问题(⼀)第10讲质数与合数第25讲⾏程问题(⼆)第11讲分解质因数第26讲⾏程问题(三)第12讲最⼤公约数与最⼩公倍数(⼀)第27讲逻辑问题(⼀)第13讲最⼤公约数与最⼩公倍数(⼆)第28讲逻辑问题(⼆)第14讲余数问题第29讲抽屉原理(⼀)第15讲孙⼦问题与逐步约束法第30讲抽屉原理(⼆)第1讲数字谜(⼀)例1 把+,-,×,÷四个运算符号,分别填⼊下⾯等式的○内,使等式成⽴(每个运算符号只准使⽤⼀次):(5○13○7)○(17○9)=12。
例2 将1~9这九个数字分别填⼊下式中的□中,使等式成⽴:□□□×□□=□□×□□=5568。
例3 在443后⾯添上⼀个三位数,使得到的六位数能被573整除。
例4 已知六位数33□□44是89的倍数,求这个六位数。
例5 在左下⽅的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你⽤适当的数字代替字母,使加法竖式成⽴。
FORTYTEN+ TENSIXTY例6 在左下⽅的减法算式中,每个字母代表⼀个数字,不同的字母代表不同的数字。
请你填上适当的数字,使竖式成⽴。
练习11.在⼀个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。
2.在下列竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。
请你⽤适当的数字代替字母,使竖式成⽴:(1) A B (2) A B A B+ B C A - A C AA B C B A A C3.在下⾯的算式中填上括号,使得计算结果最⼤:1÷2÷3÷4÷5÷6÷7÷8÷9。
小学生方程解应用题的意义、步骤、方法(附例题及练习题)
小学生列方程解应用题------意义、步骤、方法(附例题及练习题)1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。
3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数应用题;e比和比例应用题。
5、常见的一般应用题以总量为等量关系建立方程以相差数为等量关系建立方程以题中的等量为等量关系建立方程以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法一、以总量为等量关系建立方程例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米解法一:快车4小时行程+慢车4小时行程=总路程4X+60×4=5364X+240=5364X=296X=74答:快车每小时行驶74千米。
解法二:快车的速度+慢车的速度)×4小时=总路程(X+60)×4=536X+60=536÷4X=134一60X=74练一练:①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55。
五年级奥数:列方程解应用题(二套)
五年级奥数:列方程解应用题(二套)目录:五年级奥数:列方程解应用题一五年级小数乘法计算与应用题二五年级奥数:列方程解应用题一列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法.传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量.而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值.它的优点在于可以使未知数直接参加运算.列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程.而找出等量关系,又在于熟练运用数量之间的各种已知条件.掌握了这两点,就能正确地列出方程.列方程解应用题的一般步骤是:1.弄清题材意,找出未知数,并用x表示;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案.例题与方法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷.这两块地各有多少公顷?例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人.三个班各有多少人?例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍.求原来的被除数和除数.练习与思考:1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数.2.篮球、足球、排球各1个,平均每个36元.篮球比排球贵10元,足球比排球贵8元.每个排球多少元?3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分.小明回答了全部10道题,结果只得了76分,他答对了几道题?4.将自然数1—100排列如下表:在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?5.拉萨路小学图书馆一个书架上有上、下两层,一共有245本书.上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多.上、下两层原来各有图书多少本?6.甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?7.玲玲今年11岁,爷爷今年74岁.再过几年,爷爷的年龄是玲玲年龄的4倍?8.甲、乙两个养鸡专业户,一共养鸡3000只.乙养鸡专业户卖掉800只鸡后,甲养鸡专业户养鸡的只数正好是乙养鸡专业户剩下的3倍.甲、乙两个养鸡专业户原来各养鸡多少只?列方程解应用题(二)这一讲我们继续学习列方程解应用题.列方程解应用题,关键是掌握分析问题的方法,对应用题中数量关系分析得越深刻,所列的方程就越优化,解答起来就越方便.例题与方法:例1.六(1)班同学合买一件礼物送给母校留作纪念.如果每人出6元,则多48元;如果每人出4.5元,则少27元.求六(1)班学生人数.例2.五老村小学体育器材室里的足球个数是排球的2倍.体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个.体育器材室里原有足球、排球各多少个?例3.甲、乙、丙、丁四人共做零件325个.如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等.问:丁做了多少个?例4.如右图,长方的长为12厘米,宽为5厘米.阴影部分甲的面积比乙的面积大15平方厘米.求ED的长.练习与思考:1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨.问:计划吃多少天?妈妈买回香梨多2.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米.这架飞机最多飞出多少千米,就需要往回飞?3.某商店库存的花布比白布的2倍多20米每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米.原来库存这两种布共多少米?4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半.这条大鲨鱼全长是多少米?5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲.如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?6.供销社张叔叔买回一批酒精,放在甲、乙两个桶里,两个桶都未装满.如果把甲酒精倒入乙桶,乙桶装满后,甲桶还剩下10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升.已知甲桶容量是乙桶的2.5倍,张叔叔一共买回多少7.一个两位数十位止的数字比个位上的数字扩大4倍,个位上的数字减去2,那么,所得的两位数比原来大58.求原来的两位数.8.如右图,正方形ABCD的边长是8厘米,三角形ADF的面积比三角形CEF的面积小6平方厘米.求CE的长.五年级小数乘法计算与应用题二*知识点*小数乘法计算原则:①先按整数乘法算出积②看因数一共有几位小数,再在积上点上小数点.③在乘法中,因数的小数点移动的位数会等量作用在积上.一、积的变化规律:1、根据29×36=1044,很快写出下列各题的积.(1)29×0.36= (2)2.9×36= (3)0.29×360= (4)290X0.036=2、根据1.2×3.5=4.2写出四道不同的算式.( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 3、计算(1)60000.0530000.0020012个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅= (2)1301500002240000.0个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅ =二、分段计算:1、做一批零件,师傅每小时可以做12个,单独完成需要2.5小时,这批零件共有多少个?如果由徒弟单独做,每小时完成3个,用4.5小时能完成任务吗?2、五(1)班45人合影,每4张照片收费28.5元,另外再加印是每张1.6元,全班每人要1张,一共需要多少钱?3、某市打固定电话每次前3分钟收费0.16元,超过3分钟每分钟收费0.08元(不足1分钟按1分钟计算).张老师一次通话时间是7分52秒,她这一次通话的费用是多少?4、李叔叔要去18千米外的城里办事,他所乘坐的出租车4千米以内收费10元,超过4千米后,每千米加收1.5元,请你计算李叔叔往返所花的租车费.三、行程问题:1、小恒和小丽在同一所学校上学.小恒早上骑自行车以每小时4.5千米的速度去学校,经过0.25小时到达;小丽乘坐公共汽车以每小时60千米的速度去学校,经过0.03小时到达,小恒和小丽谁的家离学校近些?2、AB两城市相距400千米,小李、小王两人分别从A、B两城市同时相向驾车出发,小李开的车每小时行52.4千米,小王开的车每小时行46.8千米,3.5小时后两车相距多少千米?3、两辆车同时从甲乙两地相对开出,4.5小时后相遇.慢车每小时行60千米,快车的速度是慢车的1.4倍.甲乙两地相距多少千米?4、市政府修一条公路,原计划每天修0.55千米,但实际每天比原计划多修0.08千米,15天后还剩4.6千米,这条路长多少千米?5、两辆客车从东西湖同时出发,甲车每小时行65.9千米,乙车每小时行58.7千米,出发5.5小时后,两车相距多远?*家庭作业*1、根据203×24=4872在括号里填上适当的数.()×()=48.72 ()×()=487.2()×()=4.872 ()×()=0.48722、五(2)班26人合影,每3张照片收费12.5元,另外再加印是每张1.5元,全班每人要1张,一共需要多少钱?3、金银湖区打固定电话每次前5分钟收费0.85元,超过5分钟每分钟收费0.12元(不足1分钟按1分钟计算).彭老师一次通话时间是6分12秒,他这一次通话的费用是多少?4、凌云小学修校外的公路,原计划每天修0.48米,但实际每天比原计划少修0.03米,80天后还剩20.7米,这条路长多少米?5、小战和小胜比赛游泳,两人同时开始,小战每秒游2.6米,小胜每秒游2.4米,出发13秒后,两人相距多远?6、甲乙两城市相距320千米,小樱、小轩两人分别从甲乙两城市同时相向驾车出发,小樱开的车每小时行24.4千米,小轩开的车每小时行26.8千米,4.5小时后两车相距多少千米?判断题(1)小数乘法的意义与整数乘法的意义完全相同.(2)1.25×0.4的积是三位小数.(3)一个数乘小数,所得的积比这个数小.(4)两个小数相乘,积比1小.(5)两个小数的乘积一定比这两个数的和大.(6)0.5×6和6×0.5的结果相同,但意义不同.(7)积大于第一个因数,第二个因数一定大于1.(8)一个自然数与1.01相乘,结果比这个数要大.(9)一个因数扩大10倍,另一个因数扩大100倍,积就扩大110倍.(10)A×00.1=A÷100.(11)积的小数位数是4位,那么两个因数小数位数加起来一定也是4位.(12)50乘0.7的积与50个0.7的和相等.(13)3.56×1.01>3.56×0.999.(14)把一个数乘0.1,也就是把这个数缩小到它的101. (15)两个数的积不是小数,所以这两个数一定都不是小数.(16)一个小数的16.5倍一定大于这个小数.(1)取近似数是5.35的三位小数有10个.(2)保留一位小数,是精确到个位.(3)凡是小数都比1小.(4)在表示近似数时,10.0可以写成10.(5)6.995用四舍五入法精确到百分位是7.00.(6)一个数乘9.9,所得的积一定比这个数大.(7)用四舍五入法取近似数,当得数精确到十位时,表示保留一位小数.(8)2.8和2.80的大小相等,精确度也一样.(9)近似数是两位的小数一定比近似数是一位的小数大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.主要复习、拓展小学阶段“行程问题”的解决方法;
2.尝试用方程解决其他新类型的应用题;
3.强化列方程解应用题的思想.
复习回顾上次课的预习思考内容
1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:× =
2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”
3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。
4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。
本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。
同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。
在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。
要找到这样路程间的关系,辅助的路程线段图就十分重要。
除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。
分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。
在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。
所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。
除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。
“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。
当然,这对于同学们来说会是一个挑战。
例题1:甲、乙两车同时从东、西两地出发,相向而行.甲每小时行36千米,乙每小时行30千米,两车在距离中点9千米处相遇,求东、西两地间的距离.
之前接触的绝大部分都是在直线上的行程问题,其实还有不少是在环形路线上进行的行程问题。
想一想,如果甲乙在400米的环形跑道上同时同方向出发,当甲第一次追上乙时,比乙应该多跑了多少路程呢?如果是背向而行呢?
例题3:甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙从起点同向跑出.又过了5分钟,甲追上乙.请问:乙每分钟跑多少米?
※试一试:一片牧场上原来就有一定量的草,而且草每天还在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了.请问:如果放养32头牛,多少天可以把草吃完?(假设每头牛每天吃10公斤草)
1.小悦一家开车去外地旅游,原计划每小时行驶45千米.实际上,由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到了2小时.请问:小悦一家在路上实际花了几个小时?
4.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?
5.甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。
两人同时出发,同向而行,几秒后乙能追上甲?
让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结回顾【巩固练习】
3.在右边的方格纸中作一个梯形。
已知:图中每个小方格的边长为1cm ,线段AB是梯形的一条高,梯形的面积是12cm2。
A B
11 / 11。