向量范数的等价性定理
向量范数3-1,3-2,3-3

A
X AX
X x1 , x2 , , xn R n
T
试证上述函数是向量范数,称为向量的加权范数或椭圆范数。 证明 因为A是正定对称矩阵,故存在可逆矩阵P,使得
P T AP I
从而
A P
X
A
1 2 A
T 1
P P
T T 1 2
1
1 T
1 2
P 1 B T B
证明 易验证条件(i)和(ii)成立,现验证条件(iii)也 成立。 下面用到了Chauchy-Schwarz不等式。
x y
2 2
x y , x y ( x, x ) ( x, y ) ( y , x ) ( y , y )
x
2 2
2 x
2y2源自 y2 2定理对 x ( x , x ,, x )T C n C n R 分别定义三个函数 1 2 n
x
x
1
x
i 1
n i 1
n
i
1 2
1-范数,
)
2
( xi
2
2-范数(或Euclid范数)
x
max xi
1 i n
∞-范数(或最大值范数)。
它们均构成范数。 说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。
AX
AX H A X H A X
即矩阵范数与向量范数相容
算子范数
定义 设
即由向量范数构造矩阵范数
和
分别是 C m 和 C n
3-1,2,3向量范数

主要内容 一、向量范数 二、矩阵范数与算子范数 三、范数的应用
第一节 向量范数
主要内容: 1·向量范数的定义及几种常见的向量范数 2·向量范数的等价性
一、向量范数的定义
对于向量空间 C上n 的任意向量 x,
如果函数 Cn R 满足:
对应一个实值函数 x
1)正定性 x 0 且 x 0 x 0
d(x, y) x y
实例1 在向量空间C n中, 向量的长度是一种向量范数,
称为2-范数或欧氏范数。
n
1
x ( 2
xi 2 ) 2
i 1
x (x1, x2 , , xn )T C n
证明 易验证条件(i)和(ii)成立,现验证条件(iii)也成立。 下面用到了Chauchy-Schwarz不等式。
2)齐次性 x x , C
3)三角不等式 x y x y
则称 x为向量x的范数。
范数的性质: (1) x x
(2) x y x y
性质(1)利用范数的齐次性即可证明。 下面证明(2)。根据三角不等式,有
x xyy xy y
x y xy 对任意的 x , y C,n 可以利用范数定义向量间的距离如下:
n
x 1
xi
i 1
n
1
x ( 2
xi 2 ) 2
i 1
1-范数, 2-范数(或Euclid范数)
x
max
1in
xi
它们均构成范数。
∞-范数(或最大值范数)。
说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。
x 1,2,3T
x 6 1
x 14 2
1-3范数

解:取
1 1 2 1 0 0 A 0 0 , B , AB 0 1 0 0 那么, 0 0 0 则可得出
0 0 0 0 , 0 0
f A f B 1 , f AB 2, f AB f A f B
其中 x k x1 , x2 , , xn
k
,
T
x x1 , x2 ,
, xn 。
T
向量收敛 分量收敛
范数收敛
1.3.3 矩阵范数
矩阵可以看做是一个向量
向量范数的概念直接推广到矩阵上? 推广应考虑到矩阵的乘法运算
定义1.2
定义在Cm×n上的一个非负实值函数,记为
矩阵范数与向量范数不相容的例子:
取
1 则有 A 1 , 1 1 x x , A , 1 0 0 1
Ax 2 A 1 x
1,
而
故矩阵的 与向量的 不相容。
1
对于酉矩阵 U H U UU H I ,我们可有如下的结论:
x1 x2 x3
4
4
4
,
例:求向量 x 1, 2, 4 的1,2和∞-范数。
T
解:
x 1 1 2 4 7 ;
2 x 2 1 22 42 21
x max 1, 2, 4 4 。
1.3.2 向量范数的等价性
在 C n上可以定义各种向量范数,其数值大小一般不同。 但是在各种向量范数之间存在下述重要的关系
4 4
√4.
2 答: 1.中取 x1 0, x3 2 x2 2.中取 x1 0, x3 x2 5 故,1.和2.不满足非负性条件。
范数及其应用

一般来说,监督学习可以看做最小化下面的目标函数:
L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样 本的预测值f(xi;w)和真实的标签yi之前的误差。
L0范数与L1范数
L0范数是指向量中非0的元素的个数。如果我 们用L0范数来规则化一个参数矩阵W的话,就是 希望W的大部分元素都是0,让参数W是稀疏的 。
c1 x
x
c2 x
并称 和 定理
为 Cn上的等价范数。
(向量序列收敛性定理) 设 xk Cn , 则
k xi xi 0, i 1, 2, , n lim xk x 0 lim k k
lim x k = x
k
其中 x k x1 , x2 , , xn
这说明,W的L1范数是绝对值,|w|在w=0处是不可微的。
L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优 化求解特性而被广泛应用。
稀疏的原因
特征选择
稀疏规则化受欢迎的一个关键原因在于它能实现特征的 自动选择。
可解释性
通过稀疏可以使模型更容易解释。
L2范数
L2范数: ||W||2,在回归里面,有人把有它的 回归叫“岭回归”,有人也叫它“权值衰减”。 它的强大功效是改善机器学习里面一个非常重要 的问题:过拟合。
上面的图是线性回归,从左到右分别是欠拟合,合适的 拟合和过拟合三种情况。
Logistic回归
如果模型复杂(可以拟合任意的复杂函数),它可以让 我们的模型拟合所有的数据点,也就是基本上没有误差。 对于回归来说,就是我们的函数曲线通过了所有的数据 点。对分类来说,就是我们的函数曲线要把所有的数据 点都分类正确。这两种情况很明显过拟合了。
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
关于范数的理解或定义

I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1ο对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性)2ο对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3ο对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1ο成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pix 11)(∑= = αp x 知性质2ο成立。
3、欲验证性质3ο,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数ptptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得:q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pii ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i ii ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piipp111 左右两边同时除以()∑+y x iip1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
线性方程组解法 第2节 向量范数等价性证明

1 2 n 0.
为A对T 称A矩阵,设
为 的u相1,应u于2 ,(5.9), un A
的特征向量且
,又设 为任一非零向量,
(ui , u j ) ij
xRn
于是有
n
x ciui , i 1
(5.9)
12
其中 为c组i 合系数,则
n
Ax 2 2 x2
( AT Ax, x) ( x, x)
向量范数
1. 向量范数的定义
函数 (((123N定)))义正齐三x9定次角(性 性 不向等量x式范,数若)xx满x足0对 ,:yxx于,向其 0量 x中x yRx,nR或 (x或 0,x或 y记 CRCn为n)的;或某 ;个C实n值。非负
称N
(
x)
||
x
||
是R
n
上
或C n
一个向量范数或模。
设
x (x1, x2 , , xn )T , y ( y1, y2 , , yn )T R(n 或 )C.n
将实数
(或复数 称为向量
n
(x, y) yT x xi yi i 1
( x, y) )y H x n xi yi i1
的x数, 量y 积.
18
将非负实数
1
x
2
1
(x, x) 2
aij x j
j1
max i
aij
j1
xj
n
t max i
j1
aij .
10
这说明对任何非零 , x R n 有
Ax
.
x
(5.8)
接下来说明有一向量 ,
x0 0
使
Ax0 .
x0