高中数学23直线与平面垂直及其性质平面与平面垂直的判定与平行领学案新人教A版必修2

合集下载

新人教A版高中数学(必修2)2.3《直线、平面垂直的判定及其性质》word教案

新人教A版高中数学(必修2)2.3《直线、平面垂直的判定及其性质》word教案

2.3直线与平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、教学目标1、知识与技能(1)掌握直线和平面垂直的定义及判定定理;(2)掌握判定直线和平面垂直的方法;2、过程与方法(1)通过实例,使学生感知直线和平面垂直的概念,操作确认的基础上学会归纳、概括结论.(2)经历判定直线与平面垂直的判定过程.3、情感、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.二、教学重点、难点重点:直线与平面垂直的定义和判定定理的应用.难点:直线与平面垂直的定义和判定定理的探究.三、教学设计(一)创设情景,导入新课思考1:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价.思考2:将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?思考3:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容.(二)师生互动,探究新知1、借助长方体模型让学生感知直线与平面的垂直关系.教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义.如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面.如图1,直线与平面垂直时,它们唯一公共点P叫做垂足.并对画示表示进行说明.Lpα图12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施.有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2试验:过△ABC 的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2 教案

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2 教案

2.3.1直线与平面垂直的判定【教学目标】1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.【教学重难点】教学重点:运用判定定理证明一些空间位置关系的简单命题。

教学难点:运用判定定理证明一些空间位置关系的简单命题。

【教学过程】1. 从实际背景中感知直线与平面垂直的形象问题1:空间一条直线和一个平面有哪几种位置关系?问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.2.提炼直线与平面垂直的定义问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么设计意图:主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法.通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法.3.探究直线与平面垂直的判定定理创设情境猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理.学生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)问题5:(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD 抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.根据试验,请你给出直线与平面垂直的判定方法.(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出“为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解.4.直线与平面垂直判定定理的应用如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?思考:如图6,已知,则吗?请说明理由.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.求证:AC⊥平面VKB思考:(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;(3)在⑵的条件下,有人说“VB⊥AC, VB⊥EF,∴VB⊥平面ABC”,对吗?设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理. 3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.5.总结反思,当堂检测(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?检测设计1.课本66P探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.2.如图9,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.【板书设计】一、直线与平面垂直的定义二、直线与平面垂直的判定定理三、例题例1变式1【作业布置】课本67P练习22.3.1直线与平面垂直的判定导学案课前预习学案一、预习目标:借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;二、预习内容:问题1:空间一条直线和一个平面有哪几种位置关系?问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么直线与直线垂直是的定义________________________________________________________________思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(3) 如何判定一条直线直线和平面垂直呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标:(1)探究出直线与平面垂直的判定定理(2)利用定理解决实际问题学习重点:运用判定定理证明一些空间位置关系的简单命题。

新人教A版高中数学必修二《8.6.3平面与平面垂直》教学设计

新人教A版高中数学必修二《8.6.3平面与平面垂直》教学设计

人教A 版必修第二册§8.6.3 平面与平面垂直教学设计一、教学内容分析本节课选自普通高中课程标准实验教科书人教版必修必修第二册第八章《立体几何初步》第六节《空间直线、平面的垂直》,主要为两个平面互相垂直的定义、两个平面互相垂直的判定定理,是一节新授课。

平面与平面的垂直关系是“立体几何初步”章节中的又一个重点,是继直线、平面的平行关系,直线与平面的垂直关系之后的迁移与拓展,是“类比”与“转化”思想的又一重要体现。

这一节的学习对理顺“立体几何初步”章节的知识结构体系、提高学生的综合能力起着十分重要的作用。

平面与平面垂直是平面与平面相交的特殊情况,生活中平面与平面垂直的例子大量存在,引导学生观察、发现大量实例,通过类比直线、平面平行关系的判定以及直线与平面垂直的判定,提出“平面与平面垂直判”判定的猜想,选择“如果一个平面过另一个平面的垂线,那么这两个平面互相垂直”等典型猜想进行说理。

本节课中,几何直观、空间想象、合情推理和论证推理的结合有助于学生数学核心素养的培养。

二、教学目标与核心素养课程目标学科素养1.通过实例,学生运用类比的思想,独立探索空间中两个平面互相垂直的定义方法,体会定义一个数学对象的基本思想;2.熟悉线线垂直、线面垂直的转化;3.通过运用所学定理的过程,达到巩固理解所学知识的目标,提高学生类比化归能力,培养学生降低空间维数的转化与化归1.数学抽象、直观想象:平面与平面垂直的定义;2.逻辑推理:用定理证明垂直关系;三、学情分析经过前面的学习,学生有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,能较准确地使用图形和数学语言表述几何对象的位置关系;已了解“平行关系”的性质和判定方法,以及直线与直线、直线与平面“垂直关系”的性质和判定方法;已基本掌握解决空间问题的一般方法—平面化,具备学习本节课所需的知识。

然而,学生的能力发展正处于由形象思维向抽象思维转折的阶段,但更注重形象思维,对两个平面的垂直关系还停留在感性的认识阶段,没有上升到理论。

高中数学 2.3直线、平面垂直的判定及其性质教学设计 新人教A版必修2

高中数学 2.3直线、平面垂直的判定及其性质教学设计 新人教A版必修2

2015高中数学 2.3直线、平面垂直的判定及其性质教学设计新人教A版必修2(一)、观察归纳直线与平面垂直的定义1、直观感知问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?设计意图:从实际背景出发,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一步的数学抽象做准备。

师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面的位置关系,直立书的书脊与桌面的位置关系等,由此引出课题。

2、观察归纳思考1:直线和平面垂直的意义是什么?我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系,直线和平面垂直的问题同样可以转化为考察直线和平面内直线的关系。

问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所在直线的位置关系是什么?(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B′C′的位置关系又是什么?由此可以得到什么结论?设计意图:引导学生用“平面化”与“降维”的思想来思考问题,通过观察思考,感知直线与平面垂直的本质内涵。

师生活动:学生思考作答, 教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,再引导学生根据异面直线所成角的概念得出旗杆所在直线与地面内的任意一条直线都垂直。

问题3:如图2,AC、AD是用来固定旗杆AB的铁链,它们与地面内任意一条直线都垂直吗?设计意图:通过反面剖析,进一步感悟直线与平面垂直的本质。

师生活动:引导学生将三角板直立于桌面上,用一直角边作旗杆AB,斜边作为铁链AC,观察桌面上的直线(用笔表示)是否与AC垂直,由此否定上述结论。

问题4、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?设计意图:让学生归纳、概括出直线与平面垂直的定义。

师生活动:学生回答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,同时给出直线与平面垂直的记法与画法。

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2

高中数学 2.3.1直线与平面垂直的判定教案新人教A版必修2(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线和平面所成的角.难点:直线与平面垂直判定定理的探究.[教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面α内的任意一条直线都垂直,我们说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面α垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面α垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析]例 1 如图,已知a∥b,a⊥α,求证:b⊥α.证明:在平面α内作两条相交直线m、n.因为直线a⊥α,根据直线与平面垂直的定义知a⊥m,a⊥n.又因为b∥a,所以b⊥m,b⊥n.又因为,m nαα⊂⊂,m、n是两条相交直线,b⊥α.师:要证b⊥α,需证b与α内任意一条直线的垂直,又a∥b,问题转化为a与面α内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.……师:此结论可以直接利用,判定直线和平面垂直.巩固所知识培养学生转化化归能力、书写表达能力.探索新知二、直线和平面所成的角如图,一条直线PA和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.PO ,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.典例剖析例2 如图,在正方体ABCD–A1B1C1D1中,求A1B和平面A1B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角解:连结BC1交B1C于点O,连结A1O.设正方体的棱长为a,因为A1B1⊥B1C1,A1B1⊥B1B,所以A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又因为BC1⊥B1C,所以B1C⊥平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,∠BA1O为A1B与平面A1B1CD所成的角.在Rt△A1BO中,12A B a=,22BO a=,所以112BO A B=,∠BA1O = 30°因此,直线A1B和平面A1B1CD所成的角为30°.师:此题A1是斜足,要求直线A1B与平面A1B1CD所成的角,关键在于过B点作出(找到,面A1B1CD的垂线,作出(找到)了面A1B1CD的垂线,直线A1B在平面A1B1CD内的射影就知道了,怎样过B作平面A1B1CD的垂线呢?生:连结BC1即可.师:能证明吗?学生分析,教师板书,共同完成求解过程.点拔关键点,突破难点,示范书写及解题步骤.随堂练习1.如图,在三棱锥V–ABC中,VA = VC,AB = BC,求证:VB⊥AC.学生独立完成答案:1.略2.(1)AB边的中点;(2)点O是△ABC的外心;(3)点O是△ABC的垂心.巩固所学知识2.过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC.(1)若PA= PB= PC,∠C=90°,则点O是AB边的心.(2)若PA = PB =PC,则点O是△ABC的心.(3)若P A⊥PB,PB⊥PC,PB⊥P A,则点O是△ABC的.心.3.两条直线和一个平面所成的角相等,这两条直线一定平行吗?4.如图,直四棱柱A′B′C′D′–ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A′C⊥B′D′?3.不一定平行.4.AC⊥BD.归纳总结1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业 2.7 第一课时习案学生独立完成强化知识提升能力例1 如图,在空间四边形ABCD中,AB = AD,CB = CD,M为BD中点,作AO⊥MC,交MC于O.求证:AO⊥平面BCD.【解析】连结AM∵AB = AD,CB = CD,M为BD中点.∴BD ⊥AM ,BD ⊥CM .又AM ∩CM = M ,∴BD ⊥平面ACM . ∵AO 平面ACM ,∴BD ⊥AO .又MC ⊥AO ,BD ∩MC = M ,∴AO ⊥平面貌BCD .【评析】本题为了证明AO ⊥平面BCD ,先证明了平面BCD 内的直线垂直于AO 所在的平面.这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.例2 已知棱长为1的正方体ABCD – A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.【解析】取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连AO . 由已知正方体,易知EO ⊥ABC 1D 1,所以∠EAO 为所求. 在Rt △EOA 中, 111222EO EF AD ===, 2215()12AE =+=, sin ∠EAO =10EO AE =. 所以直线AE 与平面ABC 1D 1所成的角的正弦值为10. 【评析】求直线和平面所成角的步骤:(1)作——作出斜线和平面所成的角; (2)证——证明所作或找到的角就是所求的角;(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形)⊂≠。

人教A版高中数学必修二《直线与平面垂直的判定》教学设计

人教A版高中数学必修二《直线与平面垂直的判定》教学设计

课题:2.3.1 《直线与平面垂直的判定》教学设计一、教学目标教学目标知识目标借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.能力目标 通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念.情感目标 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣. 重难点重点 操作确认并概括出直线与平面垂直的定义和判定定理.难点 操作确认并概括出直线与平面垂直的定义和判定定理及初步应用.法制渗透 无 教学方法 启发式 教学工具 三角形纸片二、教学设计活动名称 师生互动活动意图活动1[复习旧知引入课题]1.空间中一条直线与平面有哪几种位置关系?答案:直线在平面内、直线与平面平行、直线与平面相交.2. 直线和平面相交时,有一种特殊的位置关系是什么?(垂直) 是否也可以像直线与平面平行那样,也有一个判定定理呢? →引入课题:直线与平面垂直的判定(板书课题)1、答案让学生回答,教师引导和纠正.2、教师引导学生回忆,并对学生活动进行评价;学生回顾知识点时,可互相交流.结合学生已有知识,启发学生思考,激发学生学习兴趣.活动2[探究和证明判定定理]1.知识探究(一):直线与平面垂直的概念 (1)创设情境请同学们找出下图中线与面垂直的地方?(2)思考:如何定义一条直线与一个平面垂直?→通过动画的展示,让学生明白到底什么叫做直线与平面垂直.直线与平面垂直的定义:如果一条直线l 与平面α内的任意一条直线都垂直,则称这条直线与这个平面垂直.记作 α⊥l .l a若a l a l ⊥⇒⊂⊥αα,(线面垂直⇒线线垂直). (3)深入理解“线面垂直定义”教师引导学生去探索和发现直线与平面垂直的判定的证明方法。

让学生知道数学问题源于实际生活,培养学生证明直线与平面垂直的判定的方法,证明思路。

Pα①.如果一条直线与一个平面垂直,那么它与平面内所有的直线都垂直( )②.如果一条直线与平面内无数条直线都垂直,那么它与平面垂直( ) 答案:①√,②×2、知识探究(二):直线与平面垂直的判定定理 (1)思考:是否把平面中的直线一一找出,才能证明直线与平面垂直,该怎样判定直线与平面垂直呢? (2)探究活动:请同学们拿出一块三角形的纸片,做以下试验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触). ①折痕AD 与桌面垂直吗? ②如何翻折才能保证折痕AD 与桌面所在平面肯定垂直 答案:当BC AD ⊥时AD 作为BC 边上的高时,AD ⊥α,这时AD ⊥ BC ,即AD ⊥BD ,AD ⊥CD ,BD ∩CD=D.结论:AD ⊥BD ,AD ⊥CD ,BD ∩CD=D ,有AD ⊥α. (3) 直线与平面垂直的判定定理:一条直线和一个平面内的两条相交直线都垂直,则这条直线垂直于这个平面.n m m n P l l m l n ααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭线线垂直⇒线面垂直活动名称师生互动 活动意图αPnml活动3[学以致用]例1.如图,已知a ∥b 、a ⊥α.求证:b ⊥α.分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式 → 得出结论 证明:在平面α内作两条相交直线n m ,. 因为直线α⊥a ,根据直线与平面垂直的定义知n a m a ⊥⊥,.又因为b ∥a 所以.,n b m b ⊥⊥又因为n m ,是平面α内的两条相交直线, 所以α⊥b .结论:若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.例2.如图,已知OA 、OB 、OC 两两垂直.(1)求证:OA ⊥平面OBC (2)求证:OA ⊥BC.B分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式答案:(1)OC OB OA ,, 两两垂直 OC OA OB OA ⊥⊥∴, 又O OC OB =⋂ ⊥∴OA 平面OBCBCOA OBCBC OBC OA ⊥∴⊂⊥ , )2(平面平面教师引导学生由已知条件,并结合判定定理去解决问题;并让抽学生解答, 教师应该关注并发现学生的做题步骤,对做得好的学生应该给予表扬.同时强调,立体几何是一门数与形结合的学科.教师引导学生发现答案,并让学生上黑板来板书解答过程。

高中数学面面垂直的判定与性质面面垂直的判定与性质新人教A版必修

另一个 二面角的两个半平面,那么这两个二面角( ). A.相等 B.互补 C.相等或互补 D.关系无法确定 解析 如图所示,平面EFDG⊥平面ABC,当平面 HDG绕DG转动时,平面HDG始终与平面BCD垂 直,所以两个二面角的大小关系不确定,因为二 面角HDGF的大小不确定. 答案 D
法二
在 α 内作直线 m 垂直于 α 与 γ 的交线,在 β 内作直线 n
垂直于 β 与 γ 的交线, ∵α⊥γ,β⊥γ,∴m⊥γ,n⊥γ. ∴m∥n.又 n⊂β,∴m∥β.又 m⊂α,α∩β=l, ∴m∥l.∴l⊥γ.
【变式 2】 如图,在三棱锥 P-ABC 中,PA⊥平面 ABC,平面 PAB⊥平面 PBC.求证:BC⊥AB.
面面垂直 线面垂直
例4 , a , a , 判断a与 位置关系 α 解:设 l
在α内作直线b⊥l
β l b b 又a a // b b l a
bl

b a // a
答案 2
6.如图所示,四边形ABCD为正方形,SA垂直于 四边形ABCD所在的平面,过点A且垂直于SC的平 面分别交SB,SC,SD于点E,F,G. 求证:AE⊥SB,AG⊥SD. 证明 因为SA⊥平面ABCD, 所以SA⊥BC. 又BC⊥AB,SA∩AB=A,所以BC⊥平面SAB, 又AE⊂平面SAB,所以BC⊥AE. 因为SC⊥平面AEFG,所以SC⊥AE. 又BC∩SC=C,所以AE⊥平面SBC, 所以AE⊥SB.同理可证AG⊥SD.
答:二面角的平面角与其顶点的位置无 任何关系,只与二面角的张角大小有关。
平面角是直角的二 面角叫做直二面角
当两个半平面重合时,平面角为0 °, 当两个半平面合成一个平面时,平面角为180 °

新人教A版必修2高中数学学案教案: 2.3.1直线与平面垂直的判定与性质

数学 2.3.1直线与平面垂直的判定与性质教案新人教A版必修2一、教学目标1、知识与技能(1)掌握直线和平面垂直的定义及判定定理、性质定理;(2)掌握判定直线和平面垂直的方法;掌握直线和平面垂直的性质。

(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法(1)感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。

3、情感态度与价值观:培养学生学会从“感性认识”到“理性认识”过程中获取新知。

二、教学重点、难点:直线与平面垂直的定义和判定定理的探究。

三、教学设计(一)创设情景,揭示课题举例:旗杆与地面,大桥的桥柱和水面等的位置关系。

模型演示:直棱柱的侧棱与底面的位置关系。

(二)研探新知1、直线与平面垂直的定义:直线l与平面内α的任意一条直线都垂直。

记作:l ⊥α。

直线l叫做平面α的垂线,平面α叫做直线l的垂面,垂线与平面的交点P叫做垂足。

2、直线与平面垂直的判定:(1)探究:准备一块三角形纸片。

过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)。

①折痕AD与桌面所在平面α垂直吗?②如何翻折才能使折痕AD与桌面所在平面α垂直?(AD是BC边上的高)(2)思考:①有人说,折痕AD所在直线已桌面所在平面α上的一条直线垂直,就可以判断AD垂直平面α,你同意他的说法吗?②如图,由折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD,由此你能得到什么结论?(3)归纳结论:(直线与平面垂直的判定定理)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:ααα⊥⇒⊥⊥=⊂⊂l b l a l A b a b a ,,,,I 。

作用:由线线垂直得到线面垂直。

(线不在多,相交就行。

)强调:① 定理中的“两条相交直线”这一条件不可忽视;② 定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

高中数学 直线与平面垂直的判定教学设计 新人教A版必修2

“直线与平面垂直的判定”教学设计(1)一、内容和内容解析本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。

直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。

直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。

本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。

直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础。

二、目标和目标解析1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。

高中数学人教A版必修二教案:2.3.3直线与平面垂直、平面与平面垂直的性质


可. 【证明】法一:如图,设 ∩r = a , ∩r = b,在 r 内任取一点
P.过点 P 在 r 内作直线 m⊥a,n⊥b. ∵ ⊥r, ⊥r, ∴m⊥a,n⊥ (面面垂直的性质). 又 ∩ = l,
∴l⊥m,l⊥n.又 m∩n = P,m,n r
∴l⊥r. 法二:如图,设 ∩r = a, ∩r = b,在 内作 m⊥a,在 内作 n⊥b. ∵ ⊥r, ⊥r,
2.例 1
设 , 与两个平面的交线垂直即可.
I =CD, AB ,AB⊥CD
师:证明直线和平面垂直
,AB⊥CD = B 求证 AB
一般都转化为证直线和平面内
两条交线垂直,现 AB⊥CD,
需找一条直线与 AB 垂直,有
条件 还没有用,能否利
本例 题的难点 是构造辅 助线,采 用分析综 合法能较 好地解决 这个问题.
c.一条直线在平面内,另
一条直线与这个平面垂直,则
这两条直线互相垂直. ( √

(2)已知直线 a,b 和平
面 ,且 a⊥b,a⊥ ,则 b
与 的位置关系是
.
答案:b∥ 或 b .
2.(1)下列命题中错误的
是( A ) 随堂练习
A.如果平面 ⊥平面 ,
那么平面 内所有直线垂直于
平面 .
质定理
观察、讨论,然后回答问题
1.问题
生:借助长方体模型,在
黑板所在平面与地面所在 长方体 ABCD – A′B′C′D′中,面
平面垂直,你能否在黑板上画 A′ADD′⊥面
一条直线与地面垂直?
ABCD,A′A⊥AD,AB⊥A′A
探索新知
∵ AD I AA A
∴A′A⊥面 ABCD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
7.平面与平面垂直的定义: 一般地,两个平面相交,如果它们所成的二面角是__________,就说这两个平面互相垂直。 8.平面与平面垂直的判定定理: 一个平面____________另一个平面的_____________,则这两个平面__________________. 9.怎样用符号语言表述两个平面垂直的判定定理?
10.直线与平面垂直的性质定理:垂直于同一个平面的两条直线___________。 11.怎样用符号语言表述直线与平面垂直的性质定理
12.平面与平面垂直的性质定理: 两个平面垂直,则____________垂直于_______________的直线与另一个平面________. 怎样用符号语言表述平面与平面垂直的性质定理:
A. 30° B. 60°
) C. 30°或 150° D. 60
【探究点五】线面垂直的性质定理 〖合作探究与典例解析〗 例 5.如图, 在正方体 ABCD A M 是 AB 的中点, N是A MN 平面 A 1B 1C1D 1 中, 1 C 的中点, 1 DC 求证: (1)MN P AD1 (2)M 是 AB 的中点
P
Aห้องสมุดไป่ตู้
D
B
C
(1) 求二面角 A PD C 的大小 (2) 求二面角 B PA D 的大小 (3) 求二面角 B PA C 的大小 〖课堂检测〗
4
5. (5 分)在二面角 α -l-β 中,A∈α ,AB⊥平面 β 于 B,BC⊥平面 α 于 C,若 AB=6,
BC=3,则二面角 α -l-β 的平面角的大小为(
C.60°
3.如图,在长方体 ABCD-A1B1C1D1 中,AB=BC=2,AA1=1,则 BC1 与平面 BB1D1D 所成角的正弦 值为( ).
【探究点三】平面与平面垂直的判定定理
3
〖合作探究与典例解析〗 例 3.在四棱锥 P-ABCD 中,底面是边长为 a 的正方形,侧棱 PD=a,PA=PC= 2a, (1)求证:PD⊥平面 ABCD; (2)求证:平面 PAC⊥平面 PBD;
【探究点一】直线与平面垂直的判定 〖合作探究与典例解析〗 例 1.如图,已知△ABC 中,∠ACB=90°,SA⊥平面 ABC,AD⊥SC 于 D,求证:AD⊥平面 SBC.
2
〖课堂检测〗 1. 如图,已知△ABC 是正三角形,EA、 CD 都垂直于平面 ABC,且 EA=AB=2a,DC=a,F 是 BE 的中点, 求证:
① ,m
2 下列命题中,正确的有(
①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直. ②过直线 l 外一点 P,有且仅有一个平面与 l 垂直. ③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面. ④垂直于角的两边的直线必垂直角所在的平面. ⑤过点 A 垂直于直线 a 的所有直线都在过点 A 垂直于 a 的平面内. A.2 个 B.3 个 C.4 个 D.5 个
D1 A1 N D A M B
C1
B1 C
【探究点六】面面垂直的性质定理 〖合作探究与典例解析〗 例 6.如图,在正四面体 P-ABC 中,D,E,F 分别是 AB,BC,CA 的中点,下面四个结论不成立的是 ( )
A.BC∥平面 PDF
B.DF⊥平面 PAE
C.平面 PDF⊥平面 ABC
D.平面 PAE⊥平面 ABC
〖课堂检测〗 6.在正方体 ABCD-A1B1C1D1 中,M,N 分别是 BC1,CD1 的中点,则下列说法错误的是 ( )
5
A.MN 与 CC1 垂直
B.MN 与 AC 垂直
C.MN 与 BD 平行
D.MN 与 A1B1 平行
1. 设 m, n 是两条不同的直线, , 是两个不同的平面,给出下列条件,能得到 m 的 是 . ② m , ) ③ m n, n ④ m / / n, n
(1)FD∥平面 ABC;
(2)AF⊥平面 EDB.
〖概括小结〗 【探究点二】直线与平面所成的角 〖合作探究与典例解析〗 例 2.在三棱柱 ABC-A1B1C1 中,各棱长相等,侧棱垂直于底面,点 D 是侧面 BB1C1C 的中心, 则 AD 与平面 BB1C1C 所成角的大小是( A.30° 〖课堂检测〗 2.已知 PA 底面 ABCD,且底面 ABCD 是菱形,则 BC 与 PD 所成的角 B.45° ). D.90°
直线与平面垂直的判定和性质,平面与平面垂直的判定和性质
1. 能够利用判定定理证明直线与平面垂直,平面与平面垂直 学习 2. 理解并掌握直线与平面垂直的性质,平面与平面垂直的性质 目标 3. 能够在几何体中作出直线与平面所成的角,平面与平面所成的角 学习 疑问 学习 建议
【预学能掌握的内容】 1.直线与平面垂直的定义: 如果直线 l 与平面 内的_________ 直线都垂直,我们就说直线 l 与平面 互相垂直, 记作_________,直线 l 叫作____________,平面 叫作______________,直线与平面垂直 时,他们唯一的公共点 P 叫做_______. 2.直线与平面垂直的判定定理 一条直线与一个平面内的两条_________直线都__________, 则该直线与此平面_________. 3.怎样用符号语言表述直线与平面垂直的判定定理
4.作出直线与平面所成的角: (进一步指出直线与平面所成的角的取指范围)
5.二面角的定义: 从一条直线出发的_____________所组成的图形叫做二面角,这条直线叫做二面角的_____, 这两个半平面叫做二面角的_______,棱为 AB,面分别为 , 的二面角记作:________ 6.二面角的平面角及直二面角 (1)在二面角 -L- 的棱上任取一点 O,以点 O 为垂足,在半平面 和 内分别作垂直于 棱 L 的射线 OA 和 OB,则________________________叫做二面角的平面角。 (2)平面角是_________的二面角叫做直二面角。
〖课堂检测〗 4.在三棱锥 P-ABC 中,已知 PA⊥PB,PB⊥PC,PC⊥PA,如右图所示,则在三棱锥 P-ABC 的 四个面中,互相垂直的面有________对.
【探究点四】二面角的求法 〖合作探究与典例解析〗 例 4.四边形 ABCD 是正方形, PA 平面 ABCD ,且 PA AB ,
相关文档
最新文档