沈阳市高考数学一轮专题:第21讲正弦定理和余弦定理(II)卷
总复习《第21讲 正弦定理与余弦定理应用》

考点三
三角形的面积
ቤተ መጻሕፍቲ ባይዱ
例题1:
3 已知ABC的面积为 ,且b 2,c 3, 2 60或120 则A .
考点三
三角形的面积
变式1:
在△ABC中,cos2A-3cos(B+C)=1.
(1)求A的大小;
(2)若S△ABC =5√3,b=5,求sinBsinC的值.
课堂小结
(1) 方程思想 (2) 转化思想 ①边转化为角 ②角转化为边
10 3 2 4 C 10 3 D E
② ?
30
h
①h ?
考点一
利用正、余弦定理解三角形
变式1:
A B
C
75 45
3
30
45
D
考点一
利用正、余弦定理解三角形
变式2:
A
h
B
45 120
C
30
40
D
考点二
判断三角形的形状
变式1:
△ABC 是 A.直角三角形 C.钝角三角形 B.锐角三角形 D.不能确定 ( )
谢 谢 大 家!
.在△ABC 中,若 sinA∶sinB∶sinC= 3∶4∶ 30,则
考点二
判断三角形的形状
变式2:
在△ABC中,2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)若sinB+sinC=1,试判断△ABC的形状.
考点二
判断三角形的形状
[自主解答] (1)由已知, 根据正弦定理得 2a2=(2b+c)b+(2c+b)c, 即 a2=b2+c2+bc. 由余弦定理得 a2=b2+c2-2bccosA, 1 故 cosA=- ,又 A∈(0,π),故 A=120° . 2 (2)由(1)得 sin2A=sin2B+sin2C+sin Bsin C. 1 又 sinB+sinC=1,得 sinB=sinC= . 2 因为 0° <B<90° ,0° <C<90° ,故 B=C. 所以△ABC 是等腰的钝角三角形.
辽宁省沈阳市第二十一中学高三数学(文)总复习课件 正弦定理和余弦定理

2.三角形形状的判断 在判断三角形的形状时, 一般将已知条件中的边角关系 利用正弦定理或余弦定理转化为角角的关系或边边的关系, 再用三角变换或代数式的恒等变形(如因式分解、配方等)求 解,注意等式两边的公因式不要约掉,要移项提取公因式, 否则会有漏掉一种形状的可能.
热点题型一
利用正、余弦定理解三角形
a b a 10 由正弦定理sinA=sinB,可得sin30° =3. 5 所以 a=3.
1 3 (2)因为△ABC 的面积 S=2acsinB,sinB=5, 3 所以10ac=3,ac=10. 由余弦定理 b2=a2+c2-2accosB, 8 得 4=a +c -5ac=a2+c2-16,即 a2+c2=20.
4 3 4 2 解析:由正弦定理知sin60° =sinB, 2 ∴sinB= 2 ,又 a>b,∴A>B,∴B=45° .
答案:C
2.在△ABC 中,a= 3,b=1,c=2,则 A 等于( A.30° C.60° B.45° D.75°
)
b2+c2-a2 1+4-3 1 解析:∵cosA= 2bc = = , 2×1×2 2 又∵0° <A<180° ,∴A=60° .
从近几年的高考试题来看,正弦定理、余弦定理是高考 的热点,主要考查利用正弦定理、余弦定理解决一些简单的 三角形的度量问题,常与同角三角函数的关系、诱导公式、 和差角公式,甚至三角函数的图象和性质等交汇命题,多以 解答题的形式出现,属解答题中的低档题.
预测今后高考仍将以正弦定理、余弦定理,尤其是两个 定理的综合应用为主题考点, 重点考查计算能力以及应用数 学知识分析和解决问题的能力.
A 为锐角 图形 A 为钝角或直角
关系式 解的个数
专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。
备考2019年高考数学一轮专题:第21讲正弦定理和余弦定理

一、单
1.在△ABC 中, sin2A=sin2B+ sin2C- sin Bsin C,则 A 的值是 ( )
A、 B、
D、
C、
+
2.在
中, A ,B, C的对边分别为 a,b,c,已知 ,
,则
的周长 是()
A、 B、
C、
D、
+
3.在
|.
,求角
+ 23.在
(1)、已知 (2)、已知 +
中,角
的对边分别为
,求的大小; ,求的大小.
+
7.在
中,若
,则
()
A、 B、 C、 D、
+
8.在
中,
,则 ( )
A、 B 、 +
C、 D、
9.在
中,
A、4 B、 C、
, D、
+
, ,则 ( )
10. 中
的大小是()
A、
B、
C、 +
的对边分别是 D、
其面积
,则中
11.在
中,若
,则其面积 等于()
A、12 B、 C、 28 D、
+
二、填空题
12.在△ABC 中, AB = , ∠A =75°,∠B=45°,则 AC= +
(2)、若
, 边上的中线
+
的长为
21.在
,
,
,求
的面积.
(1)、若
,求 的长
(2)、若点在边
上,
,
的值 .
+
, 为垂足,
辽宁省沈阳市第二十一中学高三数学(文)总复习课件 正弦定理和余弦定理PPT共64页

(文)总复习课件 •
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
正弦定理和余弦定理
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
高考数学一轮复习正弦定理和余弦定理(第2课时)系统题型——解三角形及应用举例讲义(含解析)

第2课时 系统题型——解三角形及应用举例1.(2018·天津期末)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知sin C =sin 2B ,且b =2,c =3,则a 等于( )A.12 B.3 C .2D .2 3解析:选C 由sin C =sin 2B =2sin B cos B 及正、余弦定理得c =2b ·a 2+c 2-b 22ac,代入数据得(2a +1)(a -2)=0,解得a =2,或a =-12(舍去),故选C.2.(2018·天津实验中学期中)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π6解析:选B ∵3sin A =5sin B ,∴由正弦定理可得3a =5b ,即a =53b .∵b +c =2a ,∴c =73b ,∴cos C =a 2+b 2-c 22ab =259b 2+b 2-499b22×53b 2=-159103=-12.∵C ∈(0,π),∴C =2π3.故选B.3.(2018·北京高考)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ; (2)求AC 边上的高.解:(1)在△ABC 中,因为cos B =-17,所以sin B = 1-cos 2B =437.由正弦定理得sin A =a sin Bb =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =32×⎝ ⎛⎭⎪⎫-17+12×437=3314, 所以AC 边上的高为a sin C =7×3314=332.[方法技巧]用正、余弦定理求解三角形基本量的方法1.(2019·湖南师大附中月考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b cos C c cos B=1+cos 2C1+cos 2B,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形解析:选D 由已知1+cos 2C 1+cos 2B =2cos 2C 2cos 2B =cos 2C cos 2B =b cos Cc cos B ,∴cos C cos B =b c 或cos Ccos B =0,即C =90°或cos C cos B =b c .由正弦定理,得b c =sin B sin C ,∴cos C cos B =sin Bsin C,即sin C cos C =sin B cosB ,即sin 2C =sin 2B ,∵B ,C 均为△ABC 的内角,∴2C =2B 或2C +2B =180°,∴B =C或B +C =90°,∴△ABC 为等腰三角形或直角三角形.故选D.2.(2018·重庆六校联考)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形。
第21讲-正弦定理和余弦定理-2021年新高考数学一轮专题训练含真题及解析

第21讲-正弦定理和余弦定理一、 考情分析1.掌握正弦定理、余弦定理.2.能解决一些简单的三角形度量问题.二、 知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =csin C =2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C 常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .三、 经典例题考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6B.π3C.5π6D.2π3(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6 【解析】 (1)由正弦定理,得sin B =b sin Cc =6×323=22,结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12, 又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.考点二判断三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.考点三和三角形面积、周长有关的问题角度1 与三角形面积有关的问题【例3-1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】(1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3. 即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 【解析】 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22, 则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [方法技巧]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab <0,可知角C 为钝角,则△ABC 为钝角三角形.4.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.5.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.四、 课时作业1.(2020·安徽省舒城中学高一月考(文))在ABC 中,a =c =60A =︒,则C =( ). A .30°B .45°C .45°或135°D .60°2.(2020·四川外国语大学附属外国语学校高一月考)在ABC ∆中,,,a b c 分别为,,A B C 的对边,60,1A b ==,则a =( )A .2BC .D3.(2020·浙江省高一期中)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,222c a b =+,则C =( ) A .60B .30C .60或120D .1204.(2020·金华市江南中学高一期中)钝角三角形ABC 的面积是12,AB=1,,则AC=( )A .5B C .2D .15.(2020·全国高三(文))在锐角ABC ∆中,若2C B =,则cb的范围( )A .B .)2C .()0,2D .)26.(2020·全国高三(文))在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-7.(2020·山东省枣庄八中高一开学考试)在ABC 中,π3A =,b 2=,其面积为sin sin A Ba b++等于( )A .14B .13C D 8.(2020·四川省高三二模(文))ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin B A =,3C π=,则ca的值为( )A B C .2 D .129.(2020·秦皇岛市抚宁区第一中学高二月考(理))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知sin cos 2A a B b c -=-,则A = A .6πB .4π C .3π D .23π 10.(2020·金华市江南中学高一期中)在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c 若a =60A ︒=,45B ︒=,则b 的长为( )A .2B .1CD .211.(2020·浙江省高二学业考试)已知ABC 的三个内角A ,B ,C 所对的三条边为a ,b ,c ,若::1:1:4A B C =,则::a b c =( )A .1:1:4B .1:1:2C .1:1:3D .1:1:12.(2020·威远中学校高一月考(文))在△ABC 中,a=3,b=5,sinA=,则sinB=( ) A .B .C .D .113.(2020·石嘴山市第三中学高三其他(理))在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足22265b c a bc +=+,则sin 2B C +⎛⎫= ⎪⎝⎭( )A .22B .5 C .25D .2514.(2020·山东省高三其他)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin 3°的近似值为( )(π取近似值3.14)A .0.012B .0.052C .0.125D .0.23515.(2020·全国高三(文))在ABC ∆中,若cos cos a cA C b++=,则ABC ∆的形状是( ) A .C 为直角的直角三角形 B .C 为钝角的钝角三角形 C .B 为直角的直角三角形D .A 为锐角的三角形16.(2020·四川省成都外国语学校高一期中(文))在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( ) A .(2,23B .(22,23C .()2,4D .()23,417.(2020·四川省高一月考(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,23C c π==,当ABC面积最大时,此时的ABC 为( ) A .直角三角形 B .钝角三角形C .等边三角形D .不能对形状进行判断18.(2020·宁夏回族自治区银川一中高三其他(文))已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为( ) A .3B .4C .5D .619.(2020·辽宁省高三月考(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足6a =,c =2sin tan tan cos CA B A+=,则ABCS =( )A .B .C .D .20.(2020·威远中学校高一月考(文))在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( )A .2πB .2πCD 21.(2020·山东省高三其他)已知ABC △同时满足下列四个条件中的三个: ①π3A =;②2cos 3B =-;③ 7a =;④ 3b =. (Ⅰ)请指出这三个条件,并说明理由; (Ⅱ)求ABC △的面积.22.(2020·山东省枣庄八中高一开学考试)一道题目因纸张破损,其中的一个条件不清楚,具体如下:在ABC ∆中,已知a =_______,)22cos1cos 2A CB +=,经过推断破损处的条件为该三角形一边的长度,且该题的答案为60A =︒,那么缺失的条件是什么呢? 问题:(1)如何根据题目条件求出,B C 的大小? (2)由求得的,B C 的值和正弦定理如何求出,b c 的值?(3)破损处的条件应该用b 边的长度还是用c 边的长度,还是二者均可?为什么?23.(2020·肥城市教学研究中心高三其他)在ABC 中,,,a b c 分别为角,,A B C 所对的边,且22()b a a c c -=-.(1)求角B .(2)若 b =2a c +的最大值.。
(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)
;
根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳市高考数学一轮专题:第 21 讲 正弦定理和余弦定理(II)卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 11 题;共 22 分)
1. ( 2 分 ) (2017 高 三 · 银 川 月 考 ) 在
中,内角 A,B,C 所对的边分别是
,则角 A 为( )
,若
A.
B.
C.
D.
2. (2 分) △ABC 中,a=1,b= , A=30°,则 B 等于( ) A . 60° B . 60°或 120° C . 30°或 150° D . 120°
3. (2 分) 已知
则 的值是( )
A.
B.
C.
D.
4. (2 分) (2016 高二上·黑龙江开学考) 锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c,若 B=2A,
第 1 页 共 12 页
则 的取值范围是( )
A.
B.
C.
D. 5. (2 分) (2018 高一下·齐齐哈尔期末) 在 A. B. C.
中,若
,则 与 的关系为( )
D.
6. (2 分) (2016 高一下·蓟县期中) 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c,a=4,b=4 则角 B 等于( )
,A=30°,
A . 30°
B . 30°或 150°
C . 60°
D . 60°或 120°
7. (2 分)
中,若
,则
的面积为( )
A.
B.
第 2 页 共 12 页
C. 或
D. 或
8.(2 分)(2020·化州模拟) 在
中,三个内角 , , 所对的边为 , , ,若
,
,
,则 ( )
A.
B. C. D.
9. (2 分) (2016 高二上·南阳期中) 在△ABC 中,若 A . 锐角三角形
=
,则△ABC 的形状是( )
B . 直角三角形
C . 等腰三角形
D . 等腰或直角三角形
10. (2 分) (2019 高二上·兰州期中) 在
中,若
则
()
A.
B.
C.
D.
11. (2 分) (2016 高一下·沙市期中) 已知 a、b、c 是△ABC 中 A、B、C 的对边,且 a=1,b=5,c=2 ,
则△ABC 的面积 S=( )
第 3 页 共 12 页
A. B.2 C.3 D.4
二、 填空题 (共 4 题;共 4 分)
12. (1 分) (2016 高三上·定州期中) 在△ABC 内角 A,B,C 的对边分别是 a,b,c,cos = acosB+bcosA=2,则△ABC 的面积的最大值为________.
,且
13. (1 分) 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 acosB+bcosA=csinA,则△ABC 的形状为 ________.
14. (1 分) (2016 高二上·宝安期中) △ABC 中,a,b 是它的两边,S 是△ABC 的面积,若 S= 则△ABC 的形状为________.
(a2+b2),
15. (1 分) (2019 高一下·湖州月考) 如图,△ABC 中,AB=AC=2,BC= 则 AD 的长度等于________.
,点 D 在 BC 边上,∠ADC=45°,
三、 解答题 (共 8 题;共 85 分)
16. (10 分) (2017·天津) 在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 a>b,a=5,c=6,sinB= .
(Ⅰ)求 b 和 sinA 的值; (Ⅱ)求 sin(2A+ )的值.
第 4 页 共 12 页
17. (10 分) 在
中,角
所对的边分别为
,且满足
,
.
(1) 求 (2) 若
的面积;
,求 、
的值.
18. (10 分) (2016 高二下·哈尔滨期末) 设△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知
=
.
(1) 求角 A 的大小; (2) 当 a=6 时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状.
19. (10 分) (2018·安徽模拟) 在
中,角
的对边分别为。
(1) 求角 的大小;
(2) 若
,求
的面积。
20. ( 10 分 ) (2017 高 三 上 · 辽 宁 期 中 ) 在 ,
(1) 求
的值;
(2) 若
,求
的面积.
21. (10 分) (2018 高一下·佛山期中) 在锐角
,且
.
(1) 求角 ;
中,
分别是角
的对边,且
中,角 , ,
的对边分别为 , ,
(2) 若
,求
周长的取值范围.
第 5 页 共 12 页
22. (15 分) (2019 高一下·上海月考) 在
满足
.
中,内角 , , 所对的边分别为 , , ,
(1) 求证:
;
(2) 若
的面积为
,求角 的大小.
23. (10 分) (2017 高一下·桃江期末) 化简计算:
(1) 化简:
.
(2) 已知:sinαcosα= ,且 <α< ,求 cosα﹣sinα 的值.
第 6 页 共 12 页
一、 单选题 (共 11 题;共 22 分)
1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、
二、 填空题 (共 4 题;共 4 分)
12-1、 13-1、 14-1、
参考答案
第 7 页 共 12 页
15-1、
三、 解答题 (共 8 题;共 85 分)
16-1、 17-1、 17-2、
第 8 页 共 12 页
18-1、
18-2、
第 9 页 共 12 页
19-1、 19-2、
20-1、 20-2、
21-1、
第 10 页 共 12 页
21-2、22-1、
22-2、23-1、
23-2、。