杨氏双缝干涉实验步骤
近代物理实验:杨氏双缝干涉实操指导手册

近代物理实验:杨氏双缝干涉实操指导手册一、实验目的本实验旨在通过杨氏双缝干涉的实际操作,帮助学生加深对波动光学基本原理的理解,并通过实验数据的收集和分析,进一步加深对干涉现象的认识。
二、实验原理1. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验。
当一束光通过两个间距较小的狭缝后,光波会发生干涉现象。
通过观察干涉条纹的位置和形态,可以推断出光波的波长和波速等物理量。
2. 干涉条纹在杨氏双缝干涉中,两个狭缝会形成一系列亮暗相间的干涉条纹。
其中,亮条纹表示光程差为整数倍波长,暗条纹表示光程差为半整数倍波长。
三、实验器材1.光源:稳定的单色光源2.双缝装置:包含两个相邻的狭缝3.屏幕:用于观察干涉条纹4.尺子和刻度尺:测量实验参数四、实验步骤1. 实验准备1.将双缝装置置于光源前方。
2.调整双缝装置,使两缝间距相等且与光源垂直。
3.将屏幕放置在较远的位置,以便观察干涉条纹。
2. 实验操作1.打开光源,使光线通过双缝产生干涉。
2.观察屏幕上的干涉条纹。
3.使用尺子和刻度尺测量干涉条纹间距等实验数据。
3. 数据处理1.根据实验数据计算出光波的波长和波速。
2.绘制出干涉条纹的图像,并分析其特征。
五、实验注意事项1.操作时要注意保持实验环境的稳定。
2.光线要足够强且单色,以获得清晰的干涉条纹。
3.实验结束后,注意关闭光源并整理实验器材。
六、实验结果与分析通过本次实验,我们成功观察到了杨氏双缝干涉产生的干涉条纹,并通过数据处理计算出了光波的波长和波速。
实验结果与理论值较为接近,说明本次实验取得了成功。
七、实验拓展学生可以尝试调整双缝间距、光源波长等参数,观察干涉条纹的变化,进一步了解杨氏双缝干涉的规律。
八、结论通过本次实验,学生对杨氏双缝干涉的原理和实际操作有了更深入的了解,进一步巩固了波动光学的知识。
希望同学们在实验中认真思考和实践,不断提升实验能力和科学素养。
参考文献1.Young, T. (1802).。
杨氏双缝实验

实验六 杨氏双缝实验一、实验目的1.观察杨氏双缝干涉现象,认识光的干涉。
2.了解光的干涉产生的条件,相干光源的概念。
二、实验原理(一)杨氏双缝实验由光源发出的光照射在单缝S 上,使单缝S 成为实施本实验的缝光源。
在单缝S 前面放置两个相距很近的狭缝S 1和S 2,且S 1和S 2与S 之间的距离均相等。
S 1和S 2是由同一光源S 形成的,满足振动方向相同、频率相同、相位差恒定的相干条件。
故S 1和S 2为相干光源。
当S 1和S 2发出的光在空间相遇,将产生干涉现象,在屏幕P 上将出现明、暗交替的干涉条纹。
1. 分波阵面获得相干光,满足振动方向相同,相位差恒定,频率相同的干涉条件。
2. 干涉明暗条纹的位置P 点处的波程差,12r r -=δ∆,(空气的折射率 n = 1 ) 在 D >>d , D >>x ,即θ 很小时,D xd d d r r =≈≈-=θθδtan sin 12 (其中Dx=θtan ) (1)双缝干涉的明暗纹条纹干涉相消暗纹干涉相长明纹 ,2,1,0,2,1,0)12(==⎩⎨⎧+±±==k k k k x D dλλδ(2)干涉明暗纹的位置,2,1,02)12(,2,1,0=+±==±=k dD k x k d D kx ,暗纹,明纹λλ两相邻明纹或暗纹的间距都是dD x λ=∆ 其它 x 点的亮度介于明纹和暗纹之间,逐渐变化 综上所述,杨氏双缝干涉的特点:(1) 用分振幅法获得相干光,两束光初相位相同,均无半波损失;(2) 干涉明暗纹是等间距分布,相邻明纹间的距离与入射光的波长成正比,波长越小,条纹间距越小;(3) 若用白光照射,则在中央明纹(白光)的两侧将出现彩色条纹。
(二) 杨氏双缝干涉的光强分布狭缝S 1和S 2发出的光波单独到达屏上任一点B 处的振幅分别为A 1和A 2,光强分别为I 1和I 2,则根据叠加原理,两光波叠加后的振幅为:)cos(212212221ϕϕ-++=A A A A A两光波叠加后的光强为:)cos(2122121ϕϕ-++=I I I I I其中: λδπϕϕ212=-。
杨氏双缝实验实验报告

一、实验目的1. 通过杨氏双缝实验,观察光的干涉现象,验证光的波动性。
2. 理解光的干涉条件,包括相干光源的概念。
3. 掌握实验仪器的操作方法,包括光源、狭缝、透镜和屏幕等。
4. 学习如何测量光波的波长。
二、实验原理杨氏双缝实验是由英国物理学家托马斯·杨于1801年提出的,该实验通过观察光通过两个狭缝后在屏幕上形成的干涉条纹,验证了光的波动性。
实验原理基于以下两个假设:1. 光是一种波动现象。
2. 当两束相干光波相遇时,会发生干涉现象。
在杨氏双缝实验中,光通过两个狭缝后,在屏幕上形成一系列明暗相间的干涉条纹。
这些条纹的形成是由于两束光波相遇时发生干涉,即两束光波的振幅相加,导致某些区域光强增强(亮条纹),而另一些区域光强减弱(暗条纹)。
根据杨氏双缝实验的原理,可以推导出干涉条纹间距的公式:\[ \Delta x = \frac{\lambda L}{d} \]其中,\(\Delta x\) 是相邻两条亮条纹或暗条纹之间的距离,\(\lambda\) 是光波的波长,\(L\) 是屏幕到双缝的距离,\(d\) 是两个狭缝之间的距离。
三、实验仪器1. 激光器:提供单色光源。
2. 狭缝板:包含两个平行的狭缝。
3. 透镜:将激光束聚焦到狭缝板上。
4. 屏幕板:用于观察干涉条纹。
5. 支架:用于固定实验仪器。
四、实验步骤1. 将激光器、狭缝板、透镜和屏幕板按照实验要求放置在支架上。
2. 调整透镜,使激光束聚焦到狭缝板上。
3. 调整狭缝板,使两个狭缝平行且距离适中。
4. 调整屏幕板,使屏幕与狭缝板平行,并观察屏幕上的干涉条纹。
5. 记录屏幕上的干涉条纹间距,并计算光波的波长。
五、实验结果与分析1. 在实验过程中,成功观察到屏幕上的干涉条纹,验证了光的波动性。
2. 根据干涉条纹间距的测量结果,计算出光波的波长。
3. 通过实验结果,可以得出以下结论:- 光是一种波动现象。
- 干涉现象是光波的基本特性之一。
17-2 杨氏双缝干涉实验 双镜 劳埃德镜

三、劳埃德镜
实验装置:
直射光和反射光形成相干光,
在屏幕相遇区产生干涉条纹。
显然也产生了与双缝实验相似的装置。
但干涉条纹被限制在如图上方区域。
此外该实验还证明了半波损失的存在。
半波损失现象
当光从折射率较小的介质射向折射率较大
的介质时,反射光的相位较入射光的相位
(1) 干涉条纹在中央明纹两侧对称分布;
(2) 相邻两级明纹(暗纹)中心间距相等;
(3) 白光入射时,在白色的中央明条纹两侧出现对称的各级彩色条纹。如右图。
二、双镜
实验装置:
两镜的反射光形成相干光,
在屏幕相遇区产生干涉条纹。
显然产生了与双缝实验相似的装置。
(2) 若入射光的波长为6000A,求相邻明纹间的距离。
解:
(1)根据双缝干涉明纹的条件:
(2)根据相邻两明条纹间距:
跃变了π,相当反射光与入射光之间的
光程差为λ/2。
劳埃德镜实验,若把屏幕向前移,到镜子
端点,这时双缝实验中央明纹处是暗纹。
这就证明了半波损失现象的存在。
例1以单色光照射到相距为d=0.2mm的双缝上,双缝与屏幕的垂直距离d’=1m。
(1) 从第一级明纹到同侧旁第四级明纹间的距离为7.5mm,求单色光的波长;
(1) 加强条件:
δ=r2-r1=±kλ/2(k=0,1,2…)
即满足该条件处是明纹;
K=0,x=0,该处亮纹称中央明纹。
(2) 减弱条件:
δ=r2-r1=±(2k+1)λ/2(k=0,1,2…)
即满足该条件处是暗纹;
波动光学实验系列之杨氏双缝干涉

波动光学实验系列之杨氏双缝干涉导言波动光学是物理学中一个重要的研究领域,它探讨光在波动性质下的各种现象。
杨氏双缝干涉实验是波动光学中的经典实验之一,通过该实验可以直观展示出光波的干涉现象。
本文将对杨氏双缝干涉实验进行探讨,揭示其原理、实验步骤以及相关的物理现象。
杨氏双缝干涉实验原理在光学中,双缝干涉是一种常见的干涉现象,它源于入射光波在通过两个狭缝后形成的干涉图样。
当两束光波相遇时,它们会发生相对相位的变化,从而形成明条纹和暗条纹的干涉条纹图案。
在杨氏双缝干涉实验中,一束单色光通过一个狭缝后,再经过另一个狭缝后形成干涉图样。
通过观察干涉条纹的位置和间距,可以得出有关入射光波波长、光程差等物理量的信息。
杨氏双缝干涉实验装置杨氏双缝干涉实验需要一些基本的器材来实现,例如:单色光源、狭缝装置、屏幕等。
实验装置的搭建需要保证光路的稳定性和准确性,以获得清晰的干涉条纹图案。
在实验过程中,单色光源发出的光线通过第一个狭缝后,变成一束平行光线。
接着经过第二个狭缝后,形成交叠的光波,产生干涉现象。
在屏幕上观察,可以看到明暗条纹交替出现的图案。
杨氏双缝干涉实验结果分析通过杨氏双缝干涉实验得到的干涉条纹图案,可以进行精确的测量和分析。
根据干涉条纹的间距和位置可以计算光波的波长、狭缝之间的距离以及入射光的入射角等物理量。
在实验中,如果调整狭缝之间的距离或光源的波长,观察干涉条纹的变化情况,可以进一步验证波动光学理论,加深对光波行为的理解。
结论杨氏双缝干涉实验是波动光学中具有代表性的实验之一,它揭示了光波的干涉现象并为光学研究提供了重要的实验依据。
通过对该实验的学习和探索,有助于加深对光波行为的认识,拓展波动光学领域的知识。
波动光学的研究不仅在理论上有着重要的意义,也在实际技术应用中有着广泛的应用。
随着光学技术的不断发展,波动光学实验系列将继续为人们展示光波的奇妙世界,为光学研究的进步贡献力量。
光学实验报告杨氏干涉

一、实验目的1. 了解杨氏干涉实验原理,验证光的波动性。
2. 学习双缝干涉实验装置的组装和使用方法。
3. 掌握干涉条纹的观察、测量和分析方法。
二、实验原理杨氏干涉实验是英国物理学家托马斯·杨在1801年提出的。
实验原理是利用两个狭缝作为两个相干光源,通过光的干涉现象,在屏幕上形成明暗相间的干涉条纹。
根据光的波动理论,当两束光波在空间中相遇时,会发生干涉现象。
当两束光波的相位差为整数倍波长时,光波相互加强,形成亮条纹;当相位差为奇数倍半波长时,光波相互减弱,形成暗条纹。
三、实验装置1. 杨氏干涉实验装置包括:光源、单缝、双缝、屏幕、光具座等。
2. 实验装置的组装:将光源、单缝、双缝、屏幕依次安装在光具座上,确保各部件对齐。
四、实验步骤1. 调整光源,使光线垂直照射在单缝上。
2. 调整双缝与单缝的距离,使双缝与单缝对齐。
3. 调整屏幕与双缝的距离,使屏幕与双缝对齐。
4. 观察屏幕上的干涉条纹,并记录条纹的形状、间距等特征。
5. 改变双缝与单缝的距离,观察干涉条纹的变化,并记录数据。
6. 改变光源的波长,观察干涉条纹的变化,并记录数据。
五、实验结果与分析1. 在实验过程中,观察到屏幕上出现明暗相间的干涉条纹,条纹间距随着双缝与单缝距离的变化而变化。
2. 当双缝与单缝的距离增加时,干涉条纹间距增大;当双缝与单缝的距离减小时,干涉条纹间距减小。
3. 当光源的波长增加时,干涉条纹间距增大;当光源的波长减小时,干涉条纹间距减小。
根据实验结果,可以得出以下结论:1. 光的波动性得到了验证,因为干涉条纹的形成证明了光具有波动性质。
2. 干涉条纹间距与双缝与单缝的距离和光源的波长有关。
当双缝与单缝的距离增加或光源的波长增加时,干涉条纹间距增大;反之,干涉条纹间距减小。
六、实验讨论1. 实验过程中,观察到干涉条纹的对比度受到光源的非单色性和光具的成像质量等因素的影响。
2. 实验过程中,为了提高干涉条纹的对比度,可以采取以下措施:选择单色光源、减小光具的像差、调整光源和光具的位置等。
杨氏双缝干涉

杨氏双缝干涉干涉是光学中一种常见的现象,它制约着光的传播以及我们对光的理解。
其中,杨氏双缝干涉是经典的干涉实验之一。
本文将通过对杨氏双缝干涉的解析,详细介绍其原理、实验步骤以及实验结果。
一、杨氏双缝干涉原理杨氏双缝干涉是指当光通过两个紧密且等宽的缝隙时,光的波动特性导致的一种干涉现象。
当光线通过两个缝隙时,它们会发生干涉,交叠形成一系列亮暗条纹。
这是因为光的波动特性使得每个缝隙都成为了一个次级光源,这些次级光源形成的波前在空间中相互干涉,产生了不同的干涉图案。
二、实验步骤1. 准备实验装置:首先,需要准备一个光源、一个狭缝、一个屏幕以及一台可调节的显微镜。
将光源置于较远的位置,将狭缝置于光源与屏幕之间,确保光线能够通过狭缝均匀地照射在屏幕上。
2. 调整狭缝宽度:调整狭缝的宽度,使其尽量保持均匀并且两个缝隙之间的距离相等。
3. 观察干涉图案:将显微镜对准屏幕上的干涉图案,并调节焦距。
通过显微镜观察,将会看到一系列明暗相间的条纹。
这些条纹是由缝隙产生的次级光源交叠形成的。
三、实验结果杨氏双缝干涉实验的观察结果是一系列条纹,其特点如下:1. 条纹间距:相邻两条亮纹或暗纹之间的距离相等,且依赖于光源波长以及缝隙间距,可以通过公式Δx = λL/d计算得到,其中Δx为条纹间距,λ为光源波长,L为狭缝到屏幕的距离,d为缝隙间距。
2. 条纹明暗:亮纹代表光的增强,暗纹代表光的减弱。
这是因为两个缝隙发出的光波在某些方向上相互增强,形成亮纹;而在其他方向上相互抵消,形成暗纹。
3. 干涉级数:根据实验结果,可以观察到不同级别的干涉条纹。
首先出现的为一级暗纹与一级亮纹,然后是二级暗纹与二级亮纹,以此类推。
干涉级数越高,条纹越密集。
四、应用与意义杨氏双缝干涉实验是光学研究中的重要实验之一,它具有以下应用与意义:1. 验证光的波动理论:杨氏双缝干涉实验结果可以很好地验证光的波动性质。
实验证实了平面波的效应以及波的叠加原理。
杨氏双缝干涉实验报告

一、实验目的1. 理解杨氏双缝干涉现象的基本原理。
2. 掌握杨氏双缝干涉实验装置的基本结构及光路调整方法。
3. 观察双缝干涉现象,并掌握光波波长的一种测量方法。
二、实验原理杨氏双缝干涉实验是托马斯·杨于1801年设计的一个经典实验,用以证明光的波动性质。
实验原理基于光的干涉现象,即当两束相干光波相遇时,它们会相互叠加,形成明暗相间的干涉条纹。
实验中,单色光通过两个非常接近的狭缝后,在屏幕上形成干涉条纹。
干涉条纹的形成是由于两束光波在经过狭缝后发生相位差,从而产生干涉现象。
根据干涉条纹的间距,可以计算出光波的波长。
三、实验器材1. 杨氏双缝干涉仪一台(WSY-6-0.5mm)2. 测微目镜一个(0.01mm)3. 钠灯光源一套4. 硬纸板一块5. 刻度尺一把6. 画笔一支四、实验步骤1. 将杨氏双缝干涉仪放置在实验台上,调整至水平状态。
2. 将钠灯光源置于干涉仪的一端,调整光源位置,确保光束垂直照射到狭缝上。
3. 使用测微目镜观察干涉条纹,调整狭缝间距和屏幕距离,使干涉条纹清晰可见。
4. 使用刻度尺测量干涉条纹的间距,记录数据。
5. 改变狭缝间距和屏幕距离,重复实验步骤,记录不同条件下的干涉条纹间距。
6. 分析实验数据,计算光波的波长。
五、实验结果与分析1. 通过观察干涉条纹,可以清晰地看到明暗相间的干涉条纹,证明了光的波动性质。
2. 根据干涉条纹的间距,可以计算出光波的波长。
实验结果显示,钠光的波长约为589nm。
3. 改变狭缝间距和屏幕距离后,干涉条纹间距发生变化,说明干涉条纹间距与狭缝间距和屏幕距离有关。
六、实验总结1. 杨氏双缝干涉实验成功地证明了光的波动性质,为光的波动理论提供了有力证据。
2. 实验过程中,通过调整狭缝间距和屏幕距离,可以观察到不同条件下的干涉条纹,加深了对干涉现象的理解。
3. 本实验为光波波长的一种测量方法,具有较高的精度。
七、注意事项1. 实验过程中,注意保持干涉仪的稳定,避免振动影响实验结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨氏双缝干涉实验步骤
杨氏双缝干涉实验是在两个狭缝上投射光线,观察穿过狭缝后形成的干涉图案的实验。
其步骤如下:
1. 准备实验装置:在一个黑暗的房间内,设置一块光屏,其中间打两个极细的狭缝(两缝之间的距离称为狭缝间距),可以使用细丝、刀片等制作。
在光屏后方放置一个光源,例如激光、单色光或者狭缝后有直线光源等。
2. 调整实验装置:调整光源和狭缝的位置和角度,使其能够发出平行光束并垂直照射在光屏上,确保两个狭缝之间的距离恰好在可观察范围内。
3. 观察干涉图案:在光屏的另一侧观察光的分布情况。
可以使用肉眼、放大镜或者干涉计等工具来观察光强的分布情况。
4. 分析干涉现象:观察到的干涉图案是由两个光波通过狭缝之后叠加形成的。
如果两个光波的相位差为整数倍的波长,那么干涉就是增强的;如果相位差为半整数倍的波长,干涉则是减弱的。
5. 记录和分析实验结果:观察干涉图案的特征,记录光强的分布情况。
使用干涉公式和波动理论等方法分析实验结果,确定两个狭缝间距、波长等参数。
杨氏双缝干涉实验是探究光的波动性质的重要实验,它可以验证光的波动理论,并提供了许多相关研究和应用的基础。