北师大版九年级全册导学案
北师大版九年级上册数学全册导学案

第一章证明(二)单元总览1.1你能证明它们吗(1)目标导航1.了解作为证明基础的几条公理的内容;掌握证明的基本步骤和书写格式.2.能够用综合法证明等腰三角形的有关性质(等边对等角,三线合一).基础过关1.边边边公理的内容是.2.边角边公理的内容是.3.角边角公理的内容是.4.全等三角形的相等,相等.5.角角边推论的内容是.6.三角形ABC中,如果AB=AC,则.7.等腰三角形的、、互相重合.8.等边三角形的各边都,各角都是.能力提升9.下列说法中,正确的是()A.两边及一角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边对应相等的两个三角形全等10.若等腰△ABC 的顶角为∠A ,底角为∠B =α,则α的取值范围是( )A. α<45°B. α<90°C.0°<α<90°D.90°<α<180°11.△ABC 中, AB =AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE =DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.68°B.52°C.51°D.78° 12.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90-2 nC.2n D.90°-n °13.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.14.等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________. 15.如图,∆ABC 中,AB=AC, ∠BAD=︒30 ,AE=AD,则∠EDC= .EDCBA15题图 16题图16.如图,在△ABC 中,∠A =20°,D 在AB 上,AD =DC ,∠ACD ∶∠BCD =2∶3,求:∠ABC 的度数.17.已知:如图∆ABD 、∆ACE 都是等边三角形,求证:BE=DC.EDCBA18.如图,在∆ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求∠ADB 的度数.DCBA聚沙成塔已知:如图,D 是等腰ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF.当D 点在什么位置时,DE=DF ?并加以证明.1.1你能证明它们吗(2)目标导航1.能够用综合法证明等腰三角形的有关性质.2.了解并能证明等腰三角形的判定定理.3.结合实例体会反证法的含义. 基础过关1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.4.在△ABC 中,AB=AC ,∠A=︒36,BD 是的角平分线,图中等腰三角形有( )A.1个B.2个C.3个D.4个5.在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( ) A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)BAC BAC B AC B AP EDCBA(1) (2) (3) (4) 7题图 能力提升6.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.7.如图,在△ABC 中,BC=5cm,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD//AB ,PE//AC ,则△PDE 的周长是 .8.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( )A.15B.12C.15或12D.以上都不正确 9.已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.10.如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BAC.11.用反证法证明:△ABC 中至少有两个角是锐角.12.如图,小明欲测量河宽,选择河流北岸的一棵树(点A )为目标,然后在这棵树得正南岸(点B )插一小旗作标志,从B 点沿南偏东︒60方向走一段距离到C 处,使∠ACB 为︒30,这时小明测得BC 的长度,认为河宽AB=BC ,他说得对吗?为什么?60︒CBA13.如图,在ABC Rt ∆中,∠CAB=︒90,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F.求证:△AEF 为等腰三角形.F EDCBA14.如图,在△ABC 中,AB=AC,P 是BC 上一点,PE ⊥AB, PF ⊥AC,垂足为E 、F,BD 是等腰三 角形腰AC 上的高, ⑴求证:BD=PE +PF.⑵当点P 在BC 边的延长线上时,而其它条件不变,又有什么样的结论呢?请用文字加以说明本题的结论.FEPC A D聚沙成塔如图所示,点O 是等边△ABC 内一点,∠AOB=110。
北师大版九年级数学上册全册导学案

北师大版九年级数学上册全册导学案第一章 证明(二)§1.1 你能证明它们吗(1)撰稿人 王可 审稿人 龚敏林 日期教学目标1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式2.经历“探索—发现—猜想—证明”的过程,能够用综合法证明等腰三角形的有关性质定理3.运用等腰三角形的性质定理及其推论证明与等腰三角形有关的角相等或线段相等 教学重点、难点:1.了解作为证明基础的几条公理的内容2.掌握证明的基本步骤和书写格式教学过程一、预习反馈 明确目标1.等腰三角形知识回顾1) 如图1,在△ABC 中,AB = AC ,则顶角为 ,底角为 ,腰为 ,底边为 。
2) AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线,则 ;AD 是△ABC 的垂线,则 ; 3) 如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。
找出所有的等腰三角形 。
2.说出学过的公理及推论3.已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
二、创设情境 自主探究1. 议一议 等腰三角形的性质 等腰三角形的两个底角相等 (等边对等角)我们如何验证这个命题成立呢?我们以前是用度量、折纸的方法得到的,但要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的。
那么,我们应该如何证明呢? 2.讲解例题 已知,如图,在△ABC 中,AB = AC 。
求证:∠B =∠C 。
分析:要想证明∠B=∠C ,根据以前所学的证明方法,只需证明分别包括∠B 和∠C 的两个三角形全等。
但图中只有一个三角形。
我们应该如何作辅助线呢?引导学生作出辅导线,得出证明过程。
发散学生思维,让学生找出其它的证明方法。
除了作顶角的平分线还可以怎样作辅助线?顶角的平分线 底边上的中线 底边上的高ABCDDCBAABCA A A ABCA BCDE F三、展示交流 点拨提高如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
北师大版九年级地理全册导学案

北师大版九年级地理全册导学案一、导学目标1. 了解九年级地理全册的内容和结构。
2. 掌握每个单元的主要知识点和考点。
3. 学会有效地使用教材,提高研究效率。
二、导学内容1. 教材内容概述- 九年级地理全册涵盖了中国和世界地理的主要内容。
- 共分为X个单元,每个单元围绕一个主题展开研究。
- 每个单元包括教材内容、活动实践、知识检测等部分。
2. 单元知识点和考点单元一:地球与地图- 知识点:地球的形状、地球的运动、地图的投影方法等。
- 考点:理解地球的自转和公转运动对地球上的影响。
单元二:中国的自然地理环境- 知识点:中国的自然地理特征、地貌区划、气候特点等。
- 考点:掌握中国各地的地质构造、气候带分布。
单元三:中国的人口与城市- 知识点:人口与人口分布规律、城市与城市分布特征等。
- 考点:了解中国人口结构及变化、城市化进程。
单元四:旅游与地理- 知识点:旅游与地理的关系、我国的旅游资源等。
- 考点:理解旅游对地理环境的影响、旅游资源的开发利用。
3. 教材使用方法- 阅读教材内容时,注意理解关键词和词组的含义。
- 完成活动实践部分时,充分动脑思考,加深对知识的理解。
- 做好知识检测前,复并总结学过的知识点。
三、导学建议1. 提前预:在课前预教材内容,了解每个单元的主题和目标。
2. 制定研究计划:合理安排时间,把握每个单元的研究进度。
3. 多角度研究:通过多种资源了解地理知识,如图书、互联网等。
4. 讨论交流:与同学或老师进行交流,相互促进研究。
5. 复巩固:及时复,巩固所学知识点,为考试做好准备。
以上是关于北师大版九年级地理全册的导学案,希望能够帮助你有效地学习地理知识。
北师大版九年级数学下册导学案(全册)

2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)
3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.
4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.
[问题] 3、cos30°等于多少?tan30°呢?
[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?
结论:
三anα
30°
45°
60°
[例1]计算:
(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.
学习难点:
理解正切的意义,并用它来表示两边的比.
学习方法:
引导—探索法.
学习过程:
一、生活中的数学问题:
1、你能比较两个梯子哪个更陡吗?你有哪些办法?
2、生活问题数学化:
⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?
⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?
二、直角三角形的边与角的关系(如图,回答下列问题)
3、在△ABC中,AB=AC=10,sinC= ,则BC=_____.
4、在△ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )
A.sinA= B.cosA= C.tanA= D.cosB=
5、如图,在△ABC中,∠C=90°,sinA= ,则 等于( )
A. B. C. D.
2019年北师大版九年级数学上册全册导学案(含答案)

第1课时菱形的性质1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力.自学指导:阅读课本P2~4,完成下列问题.1.有一组邻边相等的平行四边形叫做菱形.3.菱形具有平行四边形的一切性质.2.菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.它有两条对称轴,两条对称轴互相垂直.4.菱形的四条边都相等.5.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.知识探究1.请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?解:(1)菱形是轴对称图形,有两条对称轴,是菱形领条对角线所在的直线。
两条对称轴互相垂直。
(1)菱形的邻边相等,对边相等,四条边都相等.自学反馈如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)图中有哪些线段是相等的?哪些角是相等的?(2)有哪些特殊的三角形?活动1 小组讨论例1已知:如图,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O. 求证:(1)AB=BC=CD=AD ; (2)AC ⊥BD.证明:(1)∵四边形ABCD 是菱形,∴AB = CD ,AD= BC (菱形的对边相等). 又∵AB=AD , ∴AB=BC=CD=AD. (2)∵AB=AD,∴△ABD 是等腰三角形. 又∵四边形ABCD 是菱形,∴OB=OD (菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB=OD, ∴AO ⊥BD, 即AC ⊥BD.例2 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长.解:∵ 四边形ABCD 是菱形, ∴AB=AD(菱形的四条边都相等), AC ⊥BD (菱形的对角线互相垂直) , OB=OD=21BD=21×6=3(菱形的对角线互相平分).在等腰三角形ABD 中, ∵∠BAD=60°, ∴△ABD 是等边三角形. ∴AB=BD=6.在Rt △AOB 中,由勾股定理,得OA 2+OB 2=AB 2 .∴OA=.333362222=-=-OB AB∴AC=2OA=.36此题由菱形的性质可知AB=AD ,结合∠BAD=60°,即可得到△ABD 是等边三角形,从而可求AB 的长度.在根据菱形的对角线互相垂直,可以得到直角三角形,通过勾股定理可求AO,继而求出AC.活动2 跟踪训练1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCABCDO2.如图,在菱形ABCD 中,AC =6, BD =8,则菱形的边长为( )A.5B.10C.6D.83.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A.B.C.23cmD.223cm4.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( ) A .(21),B .(12),C .(211)+,D .(121)+,5.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则对角线AC 等于 .6.如图,在菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .7.如图,点E是菱形ABCD的对角线BD上任意一点连结AE、CE,请找出图中一对全等三角形为______________.8.如图所示,在菱形ABCD中,∠ABC= 60°,DE∥AC交BC的延长线于点E.求证:DE=12 BE.课堂小结1.菱形的定义.2.菱形的性质.3.菱形与平行四边形的关系.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈解:(1)相等的线段:AB=CD=AD=BC,OA=OC,OB=OD.相等的角:∠DAB=∠BCD,∠ABC=∠CDA,∠AOB=∠DOC=∠AOD=∠BOC=90°,∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8.(2)等腰三角形:△ABC △DBC △ACD △ABD直角三角形:Rt△AOB Rt△BOC Rt△COD Rt△DOA【合作探究】活动2 跟踪训练1.B2.A3.D4.C5.56.37.ABD CDB△≌△(或ADE CDE△≌△或ABE CBE△≌△)8.∵ABCD是菱形,∴AD//BC,AB=BC=CD=DA.又∵∠ABC= 60°,∴BC=AC=AD.∵DE∥AC,∴ACED为平行四边形.∴CE=AD=BC,DE=AC. ∴DE=CE=BC,∴DE=12 BE.第2课时菱形的判定理解菱形的判别条件及其证明,并能利用这两个定理解决一些简单的问题自学指导:阅读课本P5~7,完成下列问题.知识探究1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四边相等的四边形是菱形.自学反馈1.判断下列说法是否正确:(1)对角线互相垂直的四边形是菱形;( )(2)对角线互相垂直平分的四边形是菱形;( )(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;( )(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.( )2.□ABCD的对角线AC与BD相交于点O,(1)若AB=AD,则□ABCD是形;(2)若AC⊥BD,则□ABCD是形;(3)若∠BAO=∠DAO,则□ABCD是形.活动1 小组讨论例1. 已知:如图,在□ABCD中,对角线AC与BD交于点O,AC⊥BD.求证: □ABCD是菱形.[ 证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形定义).例2已知:如图,四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形定义).活动2 跟踪训练1.如图,在ABCD中,添加下列条件不能判定是菱形的是( )A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD2.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC,且BD=CDC.AD为中线 D.EF⊥ADAB D CFE3.将一张矩形纸片对折,如图所示,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A.三角形B.不规则的四边形C.菱形D.一般平行四边形②①4.如图,在ABCD中,AE、CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF 为菱形的是()A.AE=AF B.EF⊥ACC.∠B=600 D.AC是∠EAF平分线5.如图所示,在ABCD中,AC BD⊥,E为AB中点,若OE=3,则ABCD的周长是 .6.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.7.如图,□ABCD的两条对角线AC、BD相交于点O,A B=5,AC=8,DB=6.求证:四边形ABCD是菱形.课堂小结菱形常用的判定方法:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈1.(1)×(2)√(3)×(4)×2.(1)菱(2)菱(3)菱【合作探究】活动2 跟踪训练1.D2. C3. C4. C5. 246.证明:(1)∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∵四边形ABCD是平行四边形,∴∠A=∠C.∵在△AED和△CFD中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,DFDECACFDAED,∴△AED≌△CFD(AAS).(2)∵△AED≌△CFD,∴AD=CD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.证明:∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=3.又AB=5,则32+42=52,即OA2+OB2=AB2.∴∠AOB=90°,即AC⊥BD,∴四边形ABCD是菱形.第3课时菱形的性质与判定的综合1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.3.在学习过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力.阅读教材P8-9,能灵活运用菱形的性质及判定.自学反馈1.如图所示:在菱形ABCD中,AB=6,(1)三条边AD、DC、BC的长度分别是多少?(2)对角线AC与BD有什么位置关系?(3)若∠ADC=120°,求AC的长.(4)菱形ABCD的面积.活动1 小组讨论例1 如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长为10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,即∠AED=90°,DE=12BD×10=5(cm)∴在Rt△ADE中,由勾股定理可得:∴AC=2AE=2×12=24(cm).(2)S菱形ABCD = S△ABD+ S△CBD=2×S△ABD=2××BD×AE= BD×AE=10×12=120(cm2).菱形的面积除了以上求法,还可以用对角线相乘除以2.活动2 跟踪训练1.如图,菱形ABCD的周长为40cm,它的一条对角线BD长10cm,则∠ABC= °,AC= cm.2.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是cm2.3. 如图,四边形ABC D中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.课堂小结通过本节课的学习你有哪些收获,你还存在什么疑问?教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈解:(1)6.(2)垂直平分.(3)36.(4)318.【合作探究】活动2 跟踪训练51.120°32.163.解:由AB=AC=AD,可知△ABC、△ADC是等腰三角形.∵AE是∠BAC的角平分线,AF是CD边上的中线,则∠AEC=∠AFC=90°.∵PC⊥CD,QC⊥BC,∴∠QCE=∠PCD=90°.∴AE∥QC,PC∥AF,∴四边形APCQ是平行四边形.在Rt△PEC和Rt△QFC中,∠PEC=∠QFC=90°,∠PCE=90°-∠PCQ=∠QCF,由BC=CD,可知EC=CF,∴Rt△PEC≌Rt△QFC,∴PC=CQ.∴平行四边形APCQ是菱形.第1课时矩形的性质1.掌握矩形的的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.自学指导:阅读课本P11~14,完成下列问题.1.有一个角是直角的平行四边形叫做矩形.2.生活中你见到过的矩形有五星红旗、毛巾.3.矩形是特殊的平行四边形,具有平行四边形的一切性质.4.矩形的四个角都是直角.5.矩形的对角线相等.6.直角三角形斜边上的中线等于斜边的一半.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?[解:由矩形性质2得:AC=BD,再由平行四边形性质得:AO=OC,BO=OD,所以AO=BO=CO=DO=12AC=BD.因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.请同学们拿出准备好的矩形纸片,折一折,观察并思考。
北师大版九年级数学上册全册学案(89页)

北师大版九年级上册数学数学导学案单位:教师:日期:第一章 特殊的平行四边形1.1 菱形的性质与判定第一课时 性质学习过程:一、自主预习(10分钟)自学课本例题以上的内容,完成下列问题: 如何从一个平行四边形中剪出一个菱形来的四边形叫做菱形,生活中的菱形有 。
按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。
图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。
性质:证明:二、合作解疑(20分钟) 菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。
2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60° 沿菱形的两条对角线修建了两条小路AC 和BD , 求两条小路的长和花坛的面积。
3.如图是边长为16cm 的活动菱形衣帽架,若墙上钉子间的距离AB=BC=16cm ,则∠1= .4.如右图,在菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF. 求证:①△ABE ≌△ADF ;平行四边形菱形 ?1 CB A A②∠AEF=∠AFE.综合应用拓展如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB =4. 求:(1)∠ABC 的度数;(2)菱形ABCD 的面积.三、限时检测(10分钟)1.______________的平行四边形叫做菱形.2.按图示的虚线折纸,然后连接ABCD 可得菱形,由此可以得 到_____________的四边形是菱形.3.木工做菱形窗棂时总要保持四条边框一样长,道理是__________________________________ . 第3题图4.菱形的对角线长分别为6和8,则这个菱形的周长是_______,面积是______. 5.下面性质中,菱形不一定具有的是( )A .对角线相等B .是中心对称图形C .是轴对称图形D .对角线互相平分 6.菱形的周长为20 cm ,两邻角的比为1:2,则较短对角线的长是_____________;一组对边的距离是____________. 7.以菱形ABCD 的钝角顶点A 引BC 边的垂线,恰好平分BC ,则此菱形各角是____________.1.1 菱形的性质与判定第一课时 判定学习过程:一、自主预习(10分钟) 1.复习(1)菱形的定义: (2)菱形的性质1 性质2(3)运用菱形的定义进行菱形的判定,应具备几个条件? 2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗? 3.【探究】用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 通过演示,容易得到: 菱形判定方法1 :注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直. 通过下面菱形的作图,可以得到从一般四边形直接判定菱形的方法: 菱形判定方法2 :二、合作解疑(20分钟))1.判断题,对的画“√”错的画“×”(1).对角线互相垂直的四边形是菱形( )AB C D(2).一条对角线垂直另一条对角线的四边形是菱形( ) (3)..对角线互相垂直且平分的四边形是菱形( ) (4).对角线相等的四边形是菱形( ) 2.已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC分别交于E 、F .求证:四边形AFCE 是菱形.3.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗? 求证:(1)四边形ABCD 是平行四边形(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥CD 于F.用等积法说明BC=CD. (3) 求证:四边形ABCD 是菱形.综合应用拓展如图,在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点. 求证:MN 与PQ 互相垂直平分.三、限时检测(10分钟) 1.填空:(1)对角线互相平分的四边形是 ;(2)对角线互相垂直平分的四边形是 ;(3)对角线相等且互相平分的四边形是 ;(4)两组对边分别平行,且对角线 的四边形是菱形. 2.下列条件中,能判定四边形是菱形的是 ( ).(A )两条对角线相等 (B )两条对角线互相垂直(C )两条对角线相等且互相垂直 (D )两条对角线互相垂直平分.3.如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E , 求证:四边形OCED 是菱形。
北师大版九年级物理全册14.1简单磁现象导学案

14.1 简单磁现象导学目标1. 知道什么是磁体、磁极,认识磁体的性质。
2.了解什么是磁化、什么是磁性材料及分类。
3. 合作探究观察磁现象,能描述现象,得出结论,学会从物理现象中归纳规律,认识科学研究方法的重要性。
重点:磁体的性质、磁极、合作探究观察磁现象。
难点:磁化自主学习1. 磁性:物体能够吸引、钴、镍等制成的物品的性质叫做。
2. 磁体:具有的物体称为磁体。
3.将下面三个磁体的名称填在图形下方。
()()()4.磁极:磁体各部分磁性的强弱是的,磁性最强的两个部分叫做。
它的位置在磁体的。
5.磁体静止后都是指示方向。
指向南方的一端叫做磁体的极(用表示),指向北方的一端叫做磁体的磁极(用表示)。
6. 在磁体的影响下,使原来没有磁性的物体的过程叫做磁化像钢棒这种能长期保持住磁性的磁体叫。
7.能够被磁化的材料通称为。
如、、镍和部分合金;磁性材料分为材料和材料。
8.硬(永)磁材料的特点是,如、、、、是硬磁材料,主要应用在、;含有稀土元素钕的是新型的优良的永磁材料。
冰箱门上有用橡胶制成的密封条,可以和钢质门框相吸引。
软磁材料的特点是,如、、、,主要应用在、、、。
9.利用纳米技术制造出了磁性液体,它既能被又具有流动性,航天员的太空服就是用它来密封的。
合作探究1.磁极做一做:(图14—1)将一条形磁体放入一堆铁屑中,然后取出来观察。
填一填:发现它的两头吸引的铁屑,中间吸引的铁屑。
(填“多”或“少”)想一想:这表明磁体各部分磁性的强弱。
磁体上磁性最强的两个部分叫做,它的位置在磁体的。
2.磁体具有指向性做一做:(图14—2):在条形磁体的中间位置拴一根细线,将其悬挂起来,并使它能在水平面内自由转动,观察磁体每一次静止时的方向。
填一填:每次条形磁体静止后都是一端指向方,一端指向方。
想一想:指向南方的一端叫做磁体的极(S极),指向北方的一端叫做磁体的极(N 极)。
指南针(古代又称司南、罗盘)就是根据就是根据自由旋转的磁体,静止时总是的特点制成的3.磁化做一做:(图14—3):用条形磁体吸引大铁钉(原来没有磁性),使大铁钉再去靠近小铁钉,看到了什么?如果将大铁钉与磁体分离,看到了什么?如果将大铁钉换成大钢钉,重复前面的过程,又看到了什么?填一填:被磁铁吸引的大铁钉和大钢钉都能够吸引。
最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元感受时代脉动
第一课认识社会巨变
第一课时我们生活的变迁
学习目标
1.理解与掌握生活的变迁主要表现在物质、文化与生活方式等方面。
2.从我们的生活中去感受物质,文化与生活方式的变化,增强热爱生活热爱国家的情感。
自学提纲
【物质生活水平在不断提高】
1.随着的发展、的进步、的不断增加,我们切实感受到:人们的生活越来越。
从,到的变化,都显示着不断提高。
【文化生活日益丰富】
2.由于用于大幅度增加,也越来越多样化,文化活动也更加丰富多彩。
【生活方式也发生了很大变化】
3.随着生活水平的提高、文化生活丰富,人们开始注重追求。
培育,提升,使自己得到全面发展。
随着文明程度的提高,更加融洽,更加和谐。
4.我们生活的变迁主要表现在:;;。
课堂探究
探究点一:物质生活水平在不断提高
活动一:两代人学习用具看变化
结合教材P3的“思想驿站”填写下面的表格并回答
1.填表
比较内容
学习用具学习方式
比较对象
父母们的
我们的
2.我们的生活正发生哪些变化?
活动二:历史票证看变化
阅读教材P3下图及右边的文字部分与P4的“历史的镜头”回答下列问题:
1.我们的父辈们在消费时,除了用钱还得用什么?为什么?
2.你见过或知道哪些票据?
3.现在人们的消费理念是什么?
活动三:“四大件”知变化
阅读教材P6“四大件”的变迁填写下面的清单并回答问题
1. 填表
2.“四大件”的变迁说明了什么? 3.除了“四大件”的变迁,你所在农村或者城市还有哪些显著的变化?(请填空) 道路 房屋 交通运输工具
衣着
活动小结:
探究点二:文化生活日益丰富
活动四:教育娱乐看变化
阅读教材P5下至P6上的“社会观察”回答
1.你同父辈们比较在受教育方面最大的区别是什么?还有哪些区别?
2.认为花点钱学些知识值得吗?在生活中有哪些表现?
3.除了学习,你现在最主要的文化活动方式有哪些?
活动小结:
年代 “四大件”名称 资金级别 上世纪50——70年代
上世纪80——90年代
上世纪90年代后。